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Preface

This book is a translation of Probleme de Combinatorica si Teoria Grafurilor.
which was published in Bucharest, Romania in 1981. In Romania, graph theory
is taught in the faculty of mathematics and in particular in what is known as the
chair of informatics (=computer science). Students in preparatory schools
which specialize in mathematics and physics also receive instruction in this
subject. Thus the selection of problems presented includes some which are
quite elementary and self-contained and others which were previously acces-
sible only in research journals. The author has used the text to prepare
Romanian candidates for participation in International Mathematical
Olympiads.

Each problem is accompanied by a complete and detailed solution together
with appropriate references to the mathematical literature. This should enable
mature students to use the book independently. Teachers of courses in com-
binatorics and graph theory will also find the text useful as a supplement,
since important concepts are developed in the problems themselves. Even in
the more elementary problems the reader will learn the important concepts
and structures in the field.

Revisions in the original Romanian edition have been made, and about 60
new problems and solutions have been added. The caretul translation of this
material by Professor Melter will make available to users of English-language
texts a unique collection of problems in an expanding field of mathematics
which has many scientific applications.

The author and translator are grateful to Ms. Linda Kallansrude for her
professional typing and to the staff of John Wiley & Sons for their interest
and concern in the development of this book.

loaN TOMESCU

Bucharest. Romarnica
February 1985
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Glbssary of Terms Used

Abel’s Tdentlty: Sce Problem 1.29.
Arborescence with root a: A digraph with the property that for every point
x=a there is a unique path from a to x.

Articulatlon point (or cut point): A point x of a connected graph G with the
property that the subgraph G, obtained from G by removing the point x
is no longer connected.

Automorphism: An isomorphism of a graph G with itself.

Balanced incomplete block design (BIBD): Sce Problem 4.37.

Bell’s number. denoted B, : The number of all partitions of a set with n elements:
thus B,=S(n. )+S(n. 2)+ - - - + S(n. n) (see Stirling number).

Bicovering of a set X: A family of nonempty subsets of X such that each element
of X is contained in exactly two subsets of the family.,

Block of a graph G: A maximal 2-connected subgraph of G. Each two blocks
of a graph which is not itself 2-connected have in common at most one
point, which must be a point of articulation.

Burnside’s lemma: See Problem 13.2.

Cardinal number of a finite set X': The number of elements in X : it isdenoted |X|.

Catalan number, denoted C,: The number of ways in which parentheses can be
inserted in a nonassociative product of n factors. The numerical value of
the Catalan numbers is given by the formula C,,=(1/n)(2""__12).

Cauchy’s formula: See Problem 12.6.

Cauchy’s identities: See Problems 3.35 and 12.7.

Cayley’s formula: The number of labeled trees with n vertices is equal to n

Center of a connected graph G: The set of vertices x, of minimum eccentricity,
i.e., e(xo)=min e(x)=p(G) where p(G) is the radius of G.

Characteristic equation of a linear recurrence relation: See Problem 1.31.

Chromatic index g(G): The minimum number of colors with which the edges
of G can be colored if every two edges with a common endpoint are colored
with distinct colors.

Chromatic number z(G): The minimum number of colors with which the vertices
of G can be colored if every two adjacent vertices have distinct colors.

n-2
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Chromatic polynomial of a graph: See Problem 10.14.

Circuit: A path D=(x,, ..., x,) in a digraph G such that x,=x, and the arcs
(X0, X1)s (xy, X3),...,(x,~1, X,) are distinct. The circuit is said to be
elementary if all the vertices of the circuit, with the exception of the first
and last (which coincide), are pairwise distinct. The length of a circuit
is equal to the number of arcs it contains.

Clique: A complete subgraph of a graph.

k-coloring of a graph: Let G=(X, U). A k-coloring of G consists of a partition
X=X,u " 'uX, of the set of vertices, such that no vertices in the same
class are adjacent. It may also be defined as a function f: U—{1,2,.. .,k
such that [i, j]1 € U implies f(i)+# f()).

Combinations of n things taken k at a time, number of, (or simply n take k, or
binomial coefficient) ({)=n(n—1) - - - (n—k+1)/k!: The number of ways of
choosing k objects from a set of n objects. By definition (;)=1 if k=0 and
nzk. Likewise (;)=0 if n<k. This notation is also utilized when n is
rational or n <0. Further details are given in the text. (See, e.g., Problem
1.22))

Numbers of combinations of n things taken k at a time with replacement: The
number of increasing words of length & formed from an alphabet 4 with n
letters on which is defined a total order. The words are thus of the form
€€y ... Cp,wherec; <c,< - €cande; € 4 for | i<k, The numerical
value of n take k with replacementisa(n+1) - - - (n+k —1)/k!. The number
of strictly increasing words of length k with letters in A is equal to ().

Complement of a graph: Let G=(X, U). The complement of G is a graph
G=(X, U). It has the same set of vertices X as G. Two vertices are adjacent
in G if and only if they are not adjacent in G.

(v, k, A)-configuration: See Problem 4.38.

Covering of a set X: A family of pairwise distinct nonempty subsets, whose
union is X. A covering 4 of X which is made up of £ subsets is said to be
irreducible if the union of every £ — 1 subsets of 4 is a proper subset of .X.

Cut of a network G=(X, U, ¢) with source g and sink b: The set of arcs w™(4)=
{(x, Mix¢ A, ve A} where AcX, a¢ A, and b € 4. The capacity of the
cut w”(A) is the sum of the capacities of the arcs of w™(4).

(a, b)-cut of a digraph: A set C of arcs with the property that every path from
vertex a to vertex b (a+b) contains at least one arc of C.

Cycle in a graph: A walk W=][x,, x,,....x,] with the property that xo=x,
and all the edges [x, x], [xy, x5], .. .. [x,~, x,] are pairwise distinct.
The cycle is said to be elementary if all its vertices (except the first and the
last) are distinct. The length of a cycle is equal to the number of edges in it.

Degree of a vertex x: (1) In a graph G, the degree of a vertex x, denoted d(x),
is the number of edges incident with x. (2) If G is a digraph, then the
indegree d~ (x) of a vertex x is the number of arcs which terminate at x, i.e.,
of the form (y, x). its outdegree d*(x) is the number of arcs of the form
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(x, 2), that is, which originate at x. It follows that d(x)=d+(x)+d‘(x_).
Diameter of a connected graph G: The maximum distance between a pair of
vertices of G. The diameter is denoted d(G).
Distance between vertices x and y: Let x and y be vertices of a connected graph
G. The distance d(x, v) is the length of a shortest walk in G from x to .
Dixon’s formula: See Problem 1.8.

Eccentricity of a vertex x of a connected graph: e(x)=max, d(x, y), where
d(x, y) is the distance between x and y.

Erdés—-Ko-~Rado theorem: See Problem 4.22.

Eulerian cycle (circuit): A cycle {circuit) in a graph G which passes through all
the edges (arcs) of G.

Euler’s formula {or a planar graph G: If G is connected and contains » vertices
and m edges, then every planar representation of G has m—n+2 faces.

Euler’s function ¢(n): The number of positive integers smaller than » and prime
to n. If the decomposition of 7 into prime factors contains distinct prime
factorspy, ..., p,, then

can -)-0-2)

Euler’s identities: See Problems 1.37 (or 2.9) and 5.6.
Eulerian number: See Problem 12.22.

Euler’s Pentagonal Theorem: The recurrence relation for the number P(n) of
partitions of an integer . See Problem 5.8.

Face of a planar representation of a planar graph G: A connected component
of the topological space obtained by removing from the plane the edges
and vertices of the planar representation of G. The boundary of each face
is a closed Jordan curve, consisting of the edges of an elementary cycle
of G. The infinite face is the unique unbounded connected component
obtained in this way.

Ferrers diagram: Let n=n;+n,+ - - - +n, be a partition of an integer n. A
Ferrers diagram is a table with » cells. In the first line there are n, cells.
in the second line n, cells, etc. The cells are arranged beneath each other
and are aligned on the left. A Ferrers diagram is symmetric if there are the
same number of cells in line i and column i for every i 1. This symmetry
is with respect to the principal diagonal of the diagram.

Fibonacci numbers: Numbers defined by Fo=F,=1 and F,,,=F,,,+F, for
each n>0.

Filter basis: A system S of nonempty subsets of a set X with the property that
for every A4, B € S there exists C € S such that CcAnB.

Flow in a network: See Problem 9.18.
Ford-Fulkerson algorithm: See Problem 9.20.
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Ford—Fulkerson theorem: In every network the maximum value of the exit
flow is equal to the minimum capacity of a cut (see Problem 9.19).

Gauss’s number [];: The number of subspaces of dimension k of an n-
dimensional vector space over a field with g elements, where g is a power
of a prime. An expression for the value of Gauss’s number is given in
Problem 3.33.

Generating function: Let (a,) be a sequence of numbers. Its generating function
is the sum of the series } .~ ; a,x". The expression ) =, a,x"/n! is called
the exponential generating function of the sequence (a,). These series are
considered as formal series to which algebraic operations can be applied,
without consideration of their convergence. In general the generating
functions in actual use are defined by means of series which are convergent
for all real numbers or for an interval of real numbers of positive length,
but the convergence of the series will not be established in this book. The
series representations which we use depend on the expansions of ¢ and
In(1 +x), on Newton’s generalized binomial formula, and on the sum of
an infinite geometrical progression.

Girth of a graph G: The length, denoted g(G). of the shortest elementary cycle
in the graph G.

Graph: (1) a graph G is an ordered pair of sets (X, U), where X is a finite set
called the set of vertices or nodes, and U contains unordered pairs of
distinct elements of X called edges. If an edge is denoted [x, v], then x, y
are called its endpoints, the vertices x and y are said to be adjacent in the
graph G, and the vertices x and y are by definition incident with the edge
[x, ¥]. (2) A digraph (directed graph) G is an ordered pair of sets (X, U),
where X is called the set of vertices or nodes, and U contains ordered
pairs of distinct elements of X, called arcs. If an arc is denoted u=(x, v),
then x is called its initial vertex and j' its terminal vertex ; the arc is said to
be directed from x to y. One also says that the vertices x and y are adjacent
in G and incident with the arc (x, »). A spanning graph of a graph G=(X, U)
is a graph G, =(X, V) where V< U. It is thus a graph G, obtained from G
by suppressing certain edges (arcs). A subgraph of a graph G is a graph
H=(Y, V) where Y <X the edges (arcs) of V are those edges (arcs) in U
which have both endpoints in the set of vertices Y. A subgraph H of G
induced, or generated, by the set of vertices Y is obtained from G by sup-
pressing all the vertices of X \Y and all the arcs incident with them.

Graph, bipartite A graph G=(X, U) for which there exists a partition of X
in the form X=A4 u B, A nB=, such that each edge u of the graph has
one endpoint in 4 and the other in B. A bipartite graph is said to be com-
plete if it contains all edges of the form [a, b] where ae 4 and be B. If
|A|=p and |B|=g, the complete bipartite graph is denoted K, ,.

Graph, k-chromatic: A graph G with chromatic number y(G)=k.
Graph, k-colorable: A graph G with chromatic number ¥(G)<k. It is thus a
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graph whose vertices can be colored with & colors so that each two adjacent
vertices have different colors. '

Graph, complete, on n vertices: A graph, denoted K, in which every two vertices
are adjacent. It has (}) edges. The complete graph on a denumerably
infinite set of vertices is denoted K. A digraph is complete if each two
distinct vertices x and » are adjacent with respect to either the arc (x, )).
the arc (y, x), or both. In the complete digraph, denoted K}, each two
distinct vertices x and 3 are joined by both the arcs (x, y) and (¥, x). It has
n(n—1) arcs.

Graph, connected: A graph G with the property that every two vertices are the
endpoints of a walk in G. If G is not connected, then it has at least two
connected components (maximal connected subgraphs, which are pairwise
disjoint with respect to vertices). A connected graph with at least k+1
vertices is k-connected if the graph obtained by suppressing every set Y of
vertices of cardinality |Y|<k—1 is connected.

Graph, strongly connected: A digraph G with the property that for every two
vertices x and y thereisa path D, =(x, ..., andapath D,=(», ..., x)
inG.

Graph, Hamiltonian: A graph which contains a Hamiltonian cycle, or a directed
graph which has a Hamiltonian circuit.

Graph, multipartite: A graph G=(X, U) whose vertex set can be partitioned as
X=A,u" U4, so that each edge has its endpoints in two distinct sets
of the partition. A multipartite graph is complete if each pair of vertices
located in different partition sets is adjacent.

Graph, planar: A graph G whose vertices can be represented as points in the
plane; the edges become arcs of a Jordan curve which join points corre-
sponding to adjacent vertices. Two such arcs have in common at most
one endpoint.

Graph, k-regular: A graph in which each vertex x has degree d(x)=k%, or a
digraph with the property that d~(x)=d™(x) =k for every vertex x.

Graphs, isomorphic: The graphs G=(X, U) and H=(Y, V) are isomorphic
if there exists a bijection f:X—-Y such that [x, y]e U if and only if
[/(x), f(»]eV.

Hamiltonian cycle (circuit): An elementary cycle (circuit) which contains all
the vertices of the graph.

Independence number o(G) of a graph G: The maximum number of vertices in
an independent set of G.

Independent (internally stable) set: A subset of vertices which induces a sub-
graph consisting only of isolated vertices.

Inversion of a permutation p € S,: A pair {p(i), p(j); with the property that
1 <i<j<nand p())>p()).

Konig’s theorem: See Problem 9.23.
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Li-Jen-Shu formula: See Problem 1.5(h).

Lucas numbers L,: Defined by Lo=2, Ly=1,and L,.,=L, .+ L, for every
n=0.

Matching of a graph G: A set of edges such that no two have a common end
point. The maximum number of edges in a matching of G is denoted W(G).

Matroid: For a definition in terms of independent sets see Problem 6.30.

Moebius function: See Problem 2.20.

Moebius inversion formula: See Problem 2.22.

Multigraph: [f in the definition of a graph G=(X, U) the set of edges is replaced
by a multiset, then a multigraph is obtained. A multigraph can contain
many edges having the same endpoints.

Multinomial formula: See Problem 1.16.

Multinomial number: A number of the form (, " )=nl/n!---n,! where
Nyyeo,mp20and ny+ -+ +n,=n For p=2 this reduces to the binomial

coefhicients
n \_(n\_[n
Ny, Ny ny ny)

If ny + - ++ +n,+n, the multinomial number is by definition equal to zero.
Multiset X, or collection, of type 1¥: 2%2 - pkn: A set X together with a partition
of itself of type 1% 2*2- - ¥~ that is, containing k; classes with j elements
for j=1,2,...,n; the elements belonging to a class with p elements are
identified for 2< p<n.
Network : See Problem 9.18,

Newton’s generalized binomial formula: (x+a)f =a* +o0d* " 'x+ {ala—1)/21} x
@ x4 o 4+ (Da* T x*+ -+, where a>0. This series is convergent
for every real number o and every real number x with |x|<a. If & is a
positive integer one obtains Newton’s binomial formula.

Norlund’s formula: See Problem 3.2(b).

Orbit of a permutation group: If G S, is a group of permutations of the set
X={1,...,n} and x, y € X, then x is equivalent to y with respect to the
group G if there exists a permutation f € G such that y= f(x). The equiv-
alence classes for this equivalence relation are called the orbits of the group
G.

Partition: (1) A partition of a set X is a representation of X in the form X =
A uA,u- - rUA, where the nonvoid sets 4y, ..., 4; are pairwise dis-
joint; these sets are called the classes of the partition. The partition does
not depend on the order of writing the classes nor on the order of the
elements in each class. A partition has type 1% 2*2 - n*» if it contains
k; classes with j elements. (2) A partition of an integer n is a
representation of n in the form n=n;+n,+ -+ +m; the integers
ny,ny,...,m are called the parts of the partition and satisfy the
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inequalities n, >n,> -+ =m=1. The number of partitions of » into k&
parts is denoted P(n, k) the total number of partitions of » is denoted P(n).

Path: Let G=(X, U) be a digraph. A path is a sequence of vertices D=
(X0, Xy, ..., X,)such that (xo, xy), (x;, x3), ..., (x,- 1, x,) € U, 1.e., are
arcs of the graph. The vertices x, and x, are called endpoints of the path D.
The length of a path is equal to the number of arcs it contains. The path D
is said to be elementary if its vertices x,, x;, ..., X, are pairwise distinct.

Permanent of a matrix 4: Let A=(a;;); ;=1.....»- The permanent of 4 is denoted
per(A4) and is defined by per(4)= pes, Atp(11325(2) " Anpiry-

Permutationof a set X ={1,..., n}: A bijection p: X — X; it can be written either
as p(1) p(2)- - - p(n) or in the form

( 1 2 - oon )

p(1) p2) - pn)
A permutation is of the type 1% 2%2---p¥» if it contains k; cycles with j
elements, when k; +2k,+ -+ +nk,=n. Every permutation has a unique
representation (if we ignore the order of the factors) as a product of cycles
which do not have any common elements: the product is composition
of functions.

Permutation, circular, or cycle with r elements: A permutation in S, with a
unique cycle of length r, the remainder of the n—r cycles being of length
one. A cycle is thus a permutation of type 1"~"r!,

Permutations, conjugate: Two permutations s, 7 in S, are conjugate if there
exists g € S, such that s=g1g~ ", or equivalently if s and ¢ have the same
cycle structure.

Petersen graph: See Figure 8.3.
Polya’s theorem: See Problem 13.6.

Polynomial, cycle index of a permutation group G S,: A polynomial in n
variables

1
|G| se6

where 4,(g) is the number of cycles of length i of g for 1 <ign.
Principle of inclusion and exclusion: See Problem 2.2.

Projective plane, finite: A symmetric BIBD with parameters (v, v, &, k, 1) where
v24. (See Problem 4.50.)

Priifer code associated with a tree: See Problem 6.15.
Radius of a connected graph: The smallest eccentricity of its vertices.

Ramsey number R(p, q) with two parameters: The smallest integer ¢ with the
property that each graph with 7 vertices contains either a complete sub-
graph with p vertices or an independent set with g vertices.

xiil(g) s xﬁn(g),



v numuet DK L [argest number r with the property that the set {1...., r
can be partitioned into & possibly empty subsets, with the property that
none of them contains numbers x, y, z such that x+y=z.

Sperner’s theorem: See Problem 4.21,

Star: A complete bipartite graph of the form K, .

Steiner triple system: If X is a set with v 23 elements wherev=1 orv=3 (mod 6),
a Steiner system of order v is a family of three-element sets of X, called
triples, such that each two-element subset of X is contained in a unique
triple.

Stirling number of the first kind, s(n, k): The coefficient of x* in the expansion

x(x=1) - (x=n+ )= Y s(n, k)x-.
k=0

Stirling number of the second kind, S(n. k): The number of partitions of a set
with n elements into k classes.

Support or transversal set of the edges of a graph: A set S of vertices with the
property that every edge has at least one endpoint in S. The smallest
cardinal number of a support for a graph G is denoted 1(G).

Surjections, number of : The number of surjections f :X—Y where |X|=m and
|Y|=n is denoted s, ,.

Symmetric difference: Let 4 and B be sets. Their symmetric difference is defined
as 4 6 B=(A\B)u(B\A).

System of distinct representatives (SDR) of a family of sets: A family of subsets
M(S={S1,S3,...,Sn; of a set S has an SDR if there is an injective
function f:{S,, ..., Sn}—S such that f(S;) e S, forevery {, 1 <i<m.

Tournament: A complete, antisymmetric, directed graph. Thus between each
two vertices x =y, there is one and only one arc (x, ») or (y, x).

Transposition: A permutationg € S, which hasn—2 fixed points and is therefore
of type 1"72 21,

Tree: A connected graph without cycles.

Tree, spanning, of a connected graph G: A spanning graph of G which is a tree.

Triangulation: A planar representation of a planar graph in which each face
is a triangle (cycle with three vertices).

Triangulation of an elementary cycle with » vertices: The graph which consists
of the cycle and the »—3 diagonals which do not intersect in the interior
of the cycle.

Turan’s theorem and Turan’s number M (n, k): See Problem 9.9.

Vandermonde’s formula: See Problem 3.2(a).

Van der Waerden’s number W(k, 1): The smallest natural number n with the
property that if the set {1, ..., n} is partitioned into k classes, then there
exists a class of the partition which contains an arithmetic progression
with 741 terms.
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Vertex, isolated: A vertex of degree zero in a graph.
Vertex, terminal: A vertex of degree one in a graph.

Vizing’s theorem: The chromatic index of every graph G isequalto D or D+1,
where D is the maximum degree of the vertices of G. (See Problem 10.19.)

Walk: (1) In a graph G=(X, U) a walk is a sequence of vertices W=
[xg, X1, - - ., x,] with the property that each two successive vertices are
adjacent. that is [xq, x], [x;, X3}, . . ., [%,—1, X,] € U. The vertices xq and
x, are called the endpoints of the walk, and r is the length of the walk. If
the vertices xp, X, ..., X, are pairwise distinct, then W is said to be
elementary. (2) If G is a directed graph, a walk W=[u; . uy,...,u,)isa
sequence of arcs, with the property that for each i, each two successive
arcs u; and u;., have one common endpoint, 1 <i<p—1. The endpoint
of u; which is not common to v, and the endpoint of u, which is not com-
mon to u,_, are called the endpoints of the walk.

Walk (path), Hamiltonian: An elementary walk (path) which contains all the
vertices of the graph.
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1

Combinatorial Identities

1.1

12

Show that the following identities hold for every natural number n:

2y (/n n 2 1 (2n
@ 3 {<k>_<k—1>} Thel < n>'
where [x] is the greatest integer <x,
" (n+k\ 1
b ==2"
( ) k§0< n ) 2"
Prove the equalities listed below:

n=3 p )(n—p—l> (n)
(@) I,=Z,‘_3<k—3 2 k)’
1 for n=0(mod 3),

'Z (=1 (2” ”>= 0 for n=1(mod 3),
p=0 —1 for n=2(mod 3):

n 2 -1
¢ le<;> =n<2:_1>.

1.3 Let Sy(n)=1%+2*+ --- +n*, where k is a non-negative integer. Show

that

1+'Z () =(n+1Y.

1.4 Prove that for natural numbers mand n, there exists a natural number p

such that the identity (/m+/m—1)"=/p+/p—1 holds.

1.5 Prove the following combinatorial identities:

L)
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(h) kg,o (i) (n+§§—k>=<n;p> (Li-Jen-Shu formula).

1.6 Prove the identity
T (= 1) 21 2m 2n _ I+ m+n)1(2D!(2m)!(2n)!
. -l l+k\m+k/\n+k) (I+mlm+n)in+D1Imh!

for non-negative integers /, m, n, where the summation is taken over all integer
values of k.

1.7 Show that

8 ()= (1) onr

1.8 Prove Dixon’s formula:

'
Z (_1 ( ) (__1)n(( ';3

1.9 Given the expansion

(4 x+x)"=ag+a,x+ax>+ - +a,x*+  +a,,x2",
show that:

_, nln=1) n(n=1)(n-2)(n-3) _ (2k
(a) a,=1+ Ty + o . WP <2k>

k)O

(b) agar—aia,+ara3— - —a3,-1a,2,=0:
(€} ag—af+a3— - +(=1"'ai_ =g, + (- 1)V 'a});

o oo (o e

l 0 if p is not a multiple of 3,

] (—1) (Z) if p=3k;

(€) ag+a,+as+ -+ =33"+1)
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and
ay+astast =4 1);
(f) a0+a3+a6+a9+ =a1+a4+a7+a10+ e

=a,+as+ag+a; + - =3""1
(g) With respect to the summations
do+ag+ag+ ....a, +as+ag+ ...,
ay+ag+a o+ ...,a3+a;+a; + ...
show that three are equal and that the fourth differs from their value
by one.
(h) Verify the inequalities
l=go<a;< - <a, and a,>a,+1> " >da,=1
for every nx>2.
1.10 Suppose that
(l+x+xi4+ +x'=ag+a,x+ax2+ ' +Qpux™,
and set
Si=a;+ Qivm+ 2T it 2me 3T+ -
for every 1, 0<i<m+1. Show that:
_mE (=17t

Si m+2

+(—1) for n+i=0(mod m+2)

and in the opposite case,
m+1)+(=1)""
Sl= .
m+2

1.11 What is the coefficient of x* in the expansion of
(T+x+x2+ - +x"71H)27

1.12  Given positive integers n, and r show that there also exist r unique
integers

a,>a,> ' >a20

such that

1.13 Show that

n A n-k
(x+y)=3 <2n - 1>(X"+ﬁ‘)<i> A
k=1

n—1 X+y
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1.14 Prove the identity
n-1

-1
¥ (" ) "t Kk 4 1) =n".
¥=o\ kK

1.15 Show that the number of arrangements of a set of n objects in p boxes
such that the jth box contains n; objects, for j=1,..., p is equal to the multi-

nomial number
n n!
ny,n n) ngingl-oont’
19 74290y flp 102 p*

where n;,20and ny+ny+ - +n,=n

1.16 Prove the multinomial formula

n
(ap+ax+ - +ap)'= 2 ( )a’{‘a’;2 Cagh
Riaeens np20 Ny, Nayeo oy Ny
ng+cotnp=n
where a,, ..., a, are elements of a commutative ring.

1.17 Justify the identity

h m—1
k;l (sl.;,:p <sli~- 'vsk>_<h—1> ,

where the second summation is taken over all choices of the numbers
S15- .+, 82 0 which satisfy the relations

Sl+52+ +Sk=h;
S1+28,+ 0 +ks,=m.

1.18 Afunction f:{1,...,n}—{l,...,r}issaid to be increasing if f(})< f(j)
for every i.j, 1 <i<j<n. Show that the number of increasing functions defined
on the set {1,...,n} with values in the set {1,...,r} is equal to

[r]"_r(r+ e (r+n-1)
nt n! '

This number is also called the number of combinations with replacement of r
things taken k at a time.

1.19 In how many wayscan a natural number m be written as the sum of n
non-negative integers

m=u;+us+ " + Uy,

where two sums are considered to be different even if they differ only in the order
of their terms? What is the result if ;>0 for all i?

1.20 Determine the number of monomials in the expansion of the poly-
nomial

(xg+Xy+ 0 40,
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1.21 Let P(x) be a polynomial of degree n such that P(x)=2* for every
x=1,2,...,n+1. Determine P(n+2). '

1.22  Verify the identity

3 o 2= 1) (2~ (k= 1)
el 2k—1)! '

;20
1.23 Prove the identity
-1
(l4x+x24 )=} (n+r )x".

rz0

1.24 Show that

Uitja+ o+ 1

Jiliale ! n
[or every positive integer n, where the sum is taken over all partitions of n of
the form j, +2j,+ - - +nj,=nand j;>0for 1 ign.

Z (_ 1)11+jz+---+.in+1

1.25 Show that for h> 2 the following relations hold:

ko /n _ n—k+1\
(@) (nlr.r.lé.xnk) i=z1 (h>_( h >,

£ (ny t t+1
b i H=(k— + :
( ) (nll:ljl.l.r,]nk) 1=Zl (h) ( r) (h) ’ ( h )
The maximum [minimum] is taken over all representations of n of the form
n=n1+"'+nk and. nh....nkkl, tz[ﬁ],
and r is the remainder when n is divided by k.

1.26 Evaluate:

{a) max max  nynyccong,

1<kgsnm+ - +n=n

nefnzy, (™
(b) IT?SXH n|+p}§—)flk=n<2><2> <2>

1.27 Ifn,23h, n, 23k, h2 1, where ny, n,, h are integers, show that for all
integers x. y such that 0<x<h, 0 y<h, the following inequality holds:

n, —x nz—y>> 2h
n=h/\ny=h)" \x+y)’

1.28 For every p<k justify the identity

k! n\“ n\*  (nk
> Vorom 10— T = :
2+ 2ay e bmay=p Oy k= (2 + +oa,) AL n p
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1.29 Prove Abel’s identities:

Z () (x+kFHy+n—kyF=(x+y+n);
(b) i n (x+k)k—1(y+n_k)n—k—1= l+l (X+y+n)"‘1-
0 k Xy ’

(c) ";;‘ <:) K=Y — k)t =2 — 1) 2

1.30 Show that

pn=1 +k2 < > KoY n—ky~k=n"
=1
1.31 Given a recurrence relation of the form
Sin+2)=af(n+ 1)+ bf(n),
where g, b are real numbers with b#£0and n=0, 1, 2,.. ., the quadratic equation
ri=ar+b
is called the characteristic equation of the given recurrence relation. Show that:

(a) Tf the characteristic equation has two distinct roots r, and r,, then the
general solution of the recurrence relation has the form

S=Cri+Cory,

where the constants C, and C, are determined from the initial conditions by
solving the system of equations

Ci+Cy=f(0),
Ciry+Cyry= f(1)

(b) If the characteristic equation has a double root equal to r,, the general
solution of the recurrence relation has the form

S(n)=r{(C, + Cyn),
where C; = f(0) and C, =[f(1)=r, f(O)/r..

1.32 A pupil has $n. Every day he buys exactly one of the following prod-
ucts: a bun which costs $1, an ice cream which costs $2, or a pastry which costs
$2, until he has no more money. In how many ways can he use up these $n?

1.33 Let U(n) be the number of ways in which one can cover a 3-by-n
rectangle ABCD with dominoes (rectangles with sides 1 and 2). Show that
U(n)=0if nis odd and that for neven U is given by the formula

1
= 12 m —12=J3).
m) i (B+D2+B)+ B-12 =B
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.34 How many words of length n can be formed with letters of the alphabet
A={a, b, ¢, d} so that the letters g and b are not adjacent?

135 Let
[n/2] —
ap= Z (n kk> Z".
k=0

=Y

forz# —4% and a,=(n+1)/2" for z= —4.

Show that

1.36 Consider the polynomial
S =aox"+a;x"" 4+ - +a,.
Let
Splxyy ooy Xg)=flxy 4 +x) =2 Xy 4+ 0 +Xnmy)
+3 S(x+ X)) = (=17 S(0),

where the first summation is taken over the (nfl) sums of n—1 variables x,,
the second summation is taken over the (,”,) sums of n—2 variables x;, etc.
Show that S,(x,,...,X,)=agn!x; x5 X,.

1.37 Let p(x,,...,x,) be a polynomial in n variables of degree m. Denote
by Z*p the polynomial obtained by replacing k of the variables x,...,x, in p
with O in all possible ways and then summing the () polynomials thus obtained.
Show that

' ) 0 ifm<n;
p—z'pt+zip—- = :
¢xy %, ifm=n,
where ¢ is the coefficient of the monomial x, ''x, in the expansion
of the polynomial p. By taking p(x,...,x,)=(x; + -+ +x,* and setting
xy= ' =x,=1, deduce Euler’s identity:

= LAY 0 for 0<k«<n;
PR (i)l ’{(-1)%! for k=n.

1.38 Show that the following identity holds for all positive integers n, p with

nzp:
p!=nv—(’l’> (n—l)v+(’2’> (Me2P = oo (=17 (ﬁ) (n—p).

1.39 Show that
n
.\ n!

n n
VA\YA + (-1
x x+1 x+n x(x+1)-(x+n)
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The Principle of Inclusion
and Exclusion;
Inversion Formulas

2.1 In a Romanian high-school class there are 40 students. Among them
14 like mathematics, 16 like physics, and 11 like chemistry. It is also known that
7 like mathematics and physics, 8 like physics and chemistry and 5 like mathe-
matics and chemistry. All three subjects are favored by 4 students. How many
students like neither mathematics, nor physics, nor chemistry?

2.2 Justify the following formula, known as the principle of inclusion and
exclusion:

q
N A
i=1

23 IfA,. A4,,...,A;= X, prove that the number of elements in X which
belong to p of the sets A, is equal to

2o &

(Al §iat 5, st s

1gi<jgq

N4

ieK

(the sieve formula of C. Jordan).

2.4 Let n be a positive integer and ¢(n) the value of Euler’s function,
i.e, the number of positive integers less than or equal to and prime to n.
If n=pit p%- - p, is the decomposition of n into g distinct prime factors, show

that
o) =n (1_ L)(l_ L)---(l_ ‘)
D1 P2 Pq

2.5 Let p be a permutation of a set X ={1,...,n}. A fixed point of p is a
number i such that p(i)=1i (1< i< n). Show that the number D(n) of permutations
of X without fixed points is given by

D(nj=n! (1,— 1i+_1-_. ~1_+ U b l)>‘

10



The Principle of Inclusion and Exclusion: Inversion Formulas 1
How many permutations of a set o[ n objects have p fixed points?

26 LetX={l,2,...,n},and let D(n) be the number of permutations of the
set X without fixed points. I[ E(n) represents the number of even permutations
of X without fixed points, show that

E(my=4Dn)+(=1)"n-1)}.
2.7 Show that ) ,. o(d)=n, where ¢ is Euler’s [unction.

2.8 Show that the number of square matrices of order 3 with non-negative
integer elements for which every row sum and every column sum is equal to r

is given by
r+2 2_3 r+3
2 4 )

29 Verify that

D(n+1)=(n+1)D(n)+(=1)y""",
D(n+1)=n{D(n)+D(n—1)}.

2.10 Show that the number s, , of surjective functions f:X—Y with
\X|=nand |Y|=m is given by the expression

sﬂ,m=mn—(':‘> (m—1)"+<';> (m=2f 4 +(=1)""'m,
Deduce from this that if E(n, m) denotes the right side ol this expression, then
E(n,n)=n! and E(n, m)=0 for n<m (Euler’s identities).

2.11 Denote by s, ,, the number of functions f:X —Y which have the
property that f(X)>Z, where |X|=n, |Y|=m, and Z< Y, |Z|=r. Verify the
formula

Snomr =" = (;) (m— 1)"+<;> (m=2= o+ +(=1V(m=r).

2.12 Let A4 be an alphabet formed of n pairs of identical letters a;, a,:
as, dz; . da,. d,. Different pairs contain different letters. Form all the words
which use all 2n letters of the alphabet 4 so that no adjoining letters are identical.

Show that the number of words formed in this way is equal to

%{(m!—(';) 2A2n~ 1)!+<;> 22n=2l= - (=~ U"Z"n!}-

2.13 Let g, be the number of digraphs with n vertices which are labeled
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with numbers from the set {1, ..., n} and which do not contain a circuit. Show
that the numbers a, satisfy the recurrence relation

— C -t (B =K}
a k§1 ( 1) <k> Ap-x
if, by definition, g, =1.

2.14 A set X is said to be a collection of objects of type 14 2%2 -« p*n if
there exists a partition of the set X which contains 4; classes with j elements,
for j=1,...,n. Objects which belong to the same class of the partition are
identified. An arrangement of the objects in cells is a function f:X — A4, where
A is the set of cells. If f(x)=a;, we shall say that the object x € 4 is arranged in
cell g,. By definition, two arrangements are equivalent if one can be obtained
from the other by a permutation of the objects in the same classes of the partition
of X. Classes of this equivalence relation are called arrangement schemes of
objects in cells.

Denote by Ag(1% 2%+« n*7; 1™} the number of arrangement schemes
of a collection of objects of type 1% 2%2---n*n in m distinct cells, and by
A(1#1 2% p*2: 1™y the number of arrangement schemes which leave no cell
empty. Show that

. m\* /m+1\* m+n—1\*
A 1)., 2).2... An; 1m — s
a2 =1 (1 (1)
T SRR RSN £ K\ (k+ 1\ [k4n—1\*
A(1%42 n ,1)_;( 1) (k><1> (2 . .

2.15 Find the number of possible ways of writing a natural number p as a
product of m factors different from one, for which two products are also ‘con-
sidered to be different if the order of the factors is different; the decomposition
of the number p in prime factors contains 4, factors of exponent 1, A, factors of
exponent 2,..., 4, factors of exponent n.

2.16 Let
M(p. q>=<2q—1y’—<‘1’> (2"“—1>P+© (0721 (= 1P g,

Show that M(p. ¢)=M(q, p).

2.17 Prove the inverse binomial formula: If the numbers a,, a4, ..., a, and
bo, by, . . ., b, satisfy the relations a,=Yr. , ()b, for k=0, 1, ..., n, then the
numbers by, by, ..., b, are given by the relations

b= Zk: (k) (- 1)"_(01-

i=o \1

2.18 Count in two different ways the number of representations of m as a
sum of n integers,m=u, +u, + - - +u,, where ;22 for 1 <i<n. Two sums are
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also considered to be distinct if they differ only in the order of their terms. Use
this to obtain the 1dentity

n=! n\(m—i—1 m—n—1
L (0SE)-)
i=o i\n—i-1 n—1
foranym>2n+122.
219 Let V={x,,...,x,} be afinite set on which is defined a partial order
< which, by definition, satisfies the following three properties:
(@) x;<x; foreveryi=1,...,n (reflexivity);
(b) x;<x;and x;<x; imply x;=x; (and thus i=j) for 1 <i, j<n (anti-
symmetry);
() x;<x;and x;<x, imply x;<x, for 1<, j, k< n (transitivity).
A square matrix of order n whose elements are real numbers (a;)); j=1,....» Will
be said to be compatible with the partial order defined on V, or simply com-
patible, if a;;#0 implies x,<x; for every i, j=1,...,n Show that the sum and
the product of two compatible matrices is a compatible matrix, and show that
if a compatible matrix is nonsingular, then its inverse is compatible.

2.20 1f V is the partially ordered set of the preceding problem, show that
there exists a function y defined on V x V with the following properties:

(a) plx, y)=0if x is not less than or equal to y;
(b) ulx, x)=1foreveryxeV;
(©) Yreyes Mx, y)=0for every x<zifx,zeV.

The function p is called the Moebius function of the set V.

2.21 Evaluate the function pu(x, y) introduced in the preceding problem if

Vis:
{a) the family of all subsets of a finite set S with respect to the partial
order relation of nonstrict inclusion, denoted X <= Y,
(b) the set of integers 1,2,...,n where x<y is defined by x| y (i.e. x
is a divisor of y);
(c) an arborescence, where the relation of partial order between
vertices is defined by x <y if the unique path which joins the root of
the arborescence with the vertex y passes through x.

2.22 Let f(x) be a real-valued function defined on a set V, and u(x, y) the
Moebius function on V. Let

gx)=7% f(2).

z€X

Show that
fx)=Y ulz, x)g(2).

zI€x

(This is the Moebius inversion formula).
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with numbers from the set {1,..., n} and which do not contain a circuit. Show
that the numbers a, satisfy the recurrence relation

— C -t (B =K}
a k§1 ( 1) <k> Ap-x
if, by definition, g, =1.

2.14 A set X is said to be a collection of objects of type 1% 2%2 -+« p*n if
there exists a partition of the set X which contains 4; classes with j elements,
for j=1,...,n. Objects which belong to the same class of the partition are
identified. An arrangement of the objects in cells is a function f:X — A4, where
A is the set of cells. If f(x)=a,, we shall say that the object x € 4 is arranged in
cell g;. By definition, two arrangements are equivalent if one can be obtained
from the other by a permutation of the objects in the same classes of the partition
of X. Classes of this equivalence relation are called arrangement schemes of
objects in cells.

Denote by Ag(1% 2%+ n*7; 1™} the number of arrangement schemes
of a collection of objects of type 1% 2%2---n*n in m distinct cells, and by
A(1#1 2% p*2: 1™} the number of arrangement schemes which leave no cell
empty. Show that

Ag(].)" 2)'2"'71""'1"'): m\* (m+1 )'2”_ m+n—1\*
) 1 2 " ,
1Ay AAs L. pAne 1My = BP— M (k+1 3-2”' k4 n—1\*
e e

2.15 Find the number of possible ways of writing a natural number p as a
product of m factors different from one, for which two products are also ‘con-
sidered to be different if the order of the factors is different; the decomposition
of the number p in prime factors contains 4, factors of exponent 1, A, factors of
exponent 2,..., 4, factors of exponent n.

2.16 Let
M(p. q>=<2q—1y’—<‘1’> (2"“—1>P+© (0721 (= 1P g,

Show that M(p. ¢)=M(q, p).

2.17 Prove the inverse binomial formula: If the numbers a,, a4, ..., a, and
bo, by, . . ., by satisfy the relations a,=3 ., (b for k=0, 1, ..., n, then the
numbers by, by, ..., b, are given by the relations

b= Zk: (k) (- 1)"_!01-

i=o \1

2.18 Count in two different ways the number of representations of m as a
sum of n integers,m=u, +u, + - - +u,, where ;22 for 1 <i<n. Two sums are
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Stirling, Bell,
Fibonacci, and
Catalan Numbers

3.1 Forevery real number x and every natural number n let
[x],=x(x=1)"(x=n+1),
[x]"=x(x+1) " (x+n=1),
where, by definition. [x]o=[x]°=1. The Stirling number of the first kind.

s{n, k), is defined as the coefficient of x* in the expansion of [x],, that is.

n

[xI,= 3 s(n k)xk.

k=0
Show that

[x]"= 2": |s(n, k)|x*.
k=0

3.2 Show that the following equalities hold:

n

(@) [x+yl,= 2, <Z> (x1elyJa-x and

k=0

n

(0) [x+yT= % (,’Z) LT,

k=0
where [x]o=[x]"=1.

3.3 Prove the following identities:
(@) x"= Y S(n k[xJ and
k=1

CESED Z—:(Z:i) [

k=1

where S(n. k) are Stirling numbers of the second kind.
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3.4 Show that the Stirling numbers of the second kind can be expressed as a
function of the number of surjective functions by the relation

S(n. m)=;7 Sn.me

Show that the Stirling numbers also satisfy the recurrence relation
S(in+1, m)=5(n, m—1)+mS(n, m),
where S(n, 1)=S(n, n)=1.

3.5 Justify the following recurrence relations for the Stirling numbers of
the second kind, S(n, m), and for the Bell numbers B,:

@ St+1m= 3 (Z)S(k,m—l);

k=m-—1
(b) Bysr= Y, (;1() B,, where B,=l1.
k=0

3.6 Show that the number of partitions of an n-element set of type
1kt 2¥2 - pk» (e, which contain k; classes with j elements, j=1,2,...,n) is
equal to

n!
Phek, ! 20k,! oo (n)erk, !

Further, the number of permutations p € S, of type 1% 2¥2 - .- p*» which contain

Part(1¥r 2k2 .. pkn: n)=(

k; cycles with j elements for j=1,2,..., nisequal to
Ky k k n!
Perm(l t 2% ... p " nJ=1k1k1! 2k2k2! nknk"!-

where k, +2k,+ - +nk,=nand k;20fori=1,...,n

3.7 Establish the following recurrence relations for the Stirling numbers of
the first and second kinds:

(i +j> s(n,i+j)= i (n) s(k. Ds(n=k, j),
J x=o \k
(":T’) St i+)= 3

k=0

(Z) S(k, 1)S(n—k. J).

3.8 Show that

n

Y s(n, k)S(k, m)=i S(n, K)stk, my=46, m,
k=0

k=0
where 6, , is the Kronecker symbol.

39 Let M(n)=max{k|S(n, k) is maximum; 1<k<n}. Show that the
sequence of Stirling numbers of the second kind is unimodal for every natural
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number n. that is, they satisfy one of the following formulae:
(1) 1=S8(n 1)<S(n,2)< - <S(n, M(n))>Sh.M(n)+1)> - >S(n.n)
1;
(2) 1=8(n1)<Sn,2)< - <8n M(n)—1)=8(n M(n))> - >S(n,n)=
ly
and M(n+ )=M(n)or M(n+ 1)=M(n)+ 1.

3.10 Let a=(ag, a;, a;,...) be an infinite sequence of real numbers. The
generalized Stirling numbers are defined as follows:

(1) Stirling numbers of the first kind s,(n, k) by the identity

n

(x]a@)y=(x—aglx—a,)* (x—a,- 1=Z k)x* and (xla)y=1;

(2) Stirling numbers of the second kind by the identity

t 1=

=3 Sy(n Kx—aolx—ay) - (x—ar_) =3 Suln, Kx]ak.
K=0

k=0

Show that:
(a) sa(nv k)=sa(n_1’ k_lj_an—lsa(n_ 1» k),
(b) Su(n, k)= S,(n—1, k=1)+a,S,(n—1, k);

(©) s4ln, k)= s,(n+1, r+1)a;*

TOR

[}
x

A
&
2
]
5
=
=
]

S,r=1, k="1)a)™

0= i1

() sJn, k) (=1 "s,(r—1, k=1) ]‘[

By
]
x~

kz (n. k)S km=z o(n, K)s,(k, m)=6, ,
=0 k=0

(Kronecker symbol).

3.11 Show that the generating function for the Stirling numbers of the
second kind associated with the sequence (ay, a,, a,,...) can be expressed as

Z Sa(n, k)"

3.12  Let Si(n. k) denote the number of partitions of a set X with n elements
into k classes. each one of which contains at least i elements. Show that:

fk

T(T=ao(l—ain - (I—an)’

(@) Siln, k)=kS;(n—1, k)+ (';_’ l1>s,.(n —i k—1);
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1 n!
(b) Si(n, k)=— ——
‘ k!(ju-z--‘,jk\h! !
where the sum is taken over all integral solutions of the equation
Ji+ o +j,=n which satisfy j,;zifors=1,...,k

3.13 Show that the Stirling numbers of the second kind satisfy the {ollowing
relations:

(@) S(n,2)=2""1-1:

m)mmn-n=<g;

€} S(n, )=118(n, 2)+2!S(n, 3)=3!S(n, 4)+ - +{=1)""n-1)!=0
fornz2.

3.14 A bicovering with k classes of a set X with n elements is a family of k
nonempty subsets of X such that each element x € X is contained in exactly
two subsets of the family. If ¢(n, k) denotes the number of bicoverings with k
classes of X, show that

c(n, 3)=33""'-1).
3.15 A partial partition of a set X is a partition of a subset:
YeoX, Y+

Show that the number of partial partitions of a set X with n elements is equal
to B,y —1.

3.16 Show that the exponential generating function for the Bell numbers
is given by

Y, 1—:—;' "=explexp(t)~ ).

n=90 ‘-
3.17 Show that the Bell numbers B, satisfy
1 0 kn

n ——
€= k!

Also show that the difference between the number of partitions with an even
number of classes and the number of partitions with an odd number of classes
of a set with n elements is equal to

@ (_l)kkn
e ——
kgl k!

3.18 Let f(n, k) denote the number of subsets of the set X={1,...,n}
which contain k elements, no two of which are consecutive integers. Show that

fin, k)=("‘:“).
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If Foe1=Y,5, f(n k), then Fo=F =1. Show that F,=F,_, +F,_, for every
n2 2. The numbers F, are called Fibonacci numbers.

3.19 Suppose that f*(n, k) denotes the number of k-element subsets of
X={1,...,n} which contain neither two consecutive integers nor | and n
simultaneously. Show that

—k

It L,=Y,,0f*(nk for n>1, then L, =1, L,=3, and L,.,=L,+L,-, for
every n=2. The numbers L, are called Lucas numbers.

3.20 Show that the Fibonacci numbers satisfy the identity
Fn+1Fn—1 _Fr71'=(—l)n+l'

3.21 In how many ways u, can one mount a staircase with n steps if every
movement involves one or two steps? Show that the generating function is

1

o)
UpX'=———
HZO " l—x—xz’

where, by definition, uy=1.

3.22 Show that every natural number n> 1 can be written as a sum of pair-
wise distinct Fibonacci numbers which are not consecutive numbers F, and
F,, of the Fibonacci sequence.

3.23 Show that the generating function of the Catalan numbers C, satisfies

the equation
1-1-4dx

fX)=Cix+Cyx2+  +Cpx"+ -+ = 3

Use this fact to obtain an expression for the number C,.

3.24 Show that the number of sequences (x;, X;...., X2,-5) such that
x;e{—1,1}fori=1,2,...,2n—2 and which satisfy

(1) xi+x,+ " +x20forevery 1 <k<2n-2, and
(2) X1+X2+"'+X2,,_2=0

is equal to (1/m(2"" D).

3.25 A triangulation of a convex polygon 4,4, -+ A, with n+1 vertices
is a set formed of n—2 diagonals which do not intersect in the interior of the
polygon but only at vertices, and which divide the surface of the polygon into
n—1 triangles. Show that the number of triangulations of a convex polygon with
n+ 1 vertices is equal to
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3.26 Show that the number of increasing functions
f L Ln - {1, )
which satisfy the condition f(x)<x for every 1<x<n is equal to the Catalan

number
1 2n
C"H—n+1 <n>

3.27 Let A;4, ' A, be a convex polygon. In how many ways can this
polygon be triangulated with n—3 diagonals which do not intersect in the
interior of the polygon, so that each triangle has one or two sides in common
with the convex polygon?

3.28 Show that the number of sequences (ay, a,, ..., ax+) formed of non-
negative integers with the properties

a;=0 and la—a+,|=1 for 1<igk
is equal to ()5,

3.29 Let go(n+1) be the number of sequences (ay, a;,...,dn: ) of non-
negative integers such that a, =0 and

[a,-—aiﬂlél for i=12,...,n
Show that
goln+1)=c(n, n)+c(n, n+1),
where

Q+x+x3=Y clm, k)x*
k20
3.30 Show that the number of sequences(ay, as,..., az,+,) 0f nonnegative
integers with the property that a; =a,,,,=0and |a;—a;,,|=1fori=1,...,2n
is equal to the Catalan number
1 /2n
n+1 ( n ) '

3.31 Show that the number of sequences
(xyy.vr,X,) with 1<x;<n

which contain at most i—1 terms smaller than or equal to i for i=1,...,n1is
equal to (n—r)n" ! for every 1 <r<n.

332 Let S, be the number of functions f:{1,...,n}—{l,..., n} with the
property that if f takes on the value i, then f takes on the value j for 1 <j<i.
Show that

w0 kl‘l
Sp= ,
kzo 2k+1
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and deduce that the exponential generating function ol the numbers S, is equal to
N

X~

n= On' 2—e’

n.on__

. where Sy=1.
3.33 Let[;], be the number of subspaces of dimension k of an n-dimensional

vector space V over a finite field F with g elements, where g is a power of a
prime. This number is called the Gauss coefficient. Show that

H (g"=lNg" ' ~1) (" " 1)
k], (¢ =Dg= =1 (g—1
3.34 Demonstrate the following properties of the Gauss coefficients:
o[-
g—1!
n
o 1L
n n—1 | n=1
© l:kl_l:k_ljlq-’_q l: k l.
3.35 Letgbeapowerofaprimenumber. Show that Cauchy’sidentity holds:

n—1
y=1+ % m (r=Dly=) - (y=g" 1)
k=0 q

336 For nxz2 let f(n, k) denote the number of sequences of k integers
1<a,<a,< -+ <a,=n which satisfy

A= =A3— G2 = =ap_ 1 —G-,=1 (mod 2)
and
Ay — - =0 (mod 2).
Show that:
[n+k—3}
(@ fo=|L 2 1
k-1
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Problems in Combinatorial
Set Theory

4.1 Let X be a collection of n objects (n> 1) which are not necessarily
pairwise distinct. If n3> a% 4 1, where a is a non-negative integer, show that one
or more of the following two statements is valid:

(1) At least a+ 1 objects are identical.
(2) Atleast a+ 1 objects are pairwise distinct,

4.2 In how many ways can one arrange k rooks on a chessboard with m
rows and n columns so that no rook can attack another?

4.3 Let 4 be a set formed {from 19 pairwise distinct integers which belong
to the arithmetic progression 1, 4, 7,.... 100. Show that there are two distinct
integers in 4 whose sum is equal to 104.

4.4 Letk>1beanatural number. Determine the smallest natural number n
with the following property: For every choice of n integers there exist at least
two whose sum or difference is divisible by 2k + 1.

45 Let A=(A});<cicn B=B)i<icn, C=(Cy)y <i<n be three partitions of a
finite set M. If for each i, j, k the following inequality is satisfied:

show that [M|>n?/3, with equality holding if n=0 (mod 3).

4.6 A mapping f:X—>X is said to be idempotent if f(f(x))= f(x) for
every x € X. I | X|=n prove that:

{a) the number i(n) of idempotent mappings f:X —X is equal to

to(n
: = k- k.
=3 )]0

(b) 1+ i i(n) ;L::exp(xe’).
n=1 .

4.7 Let P be a partially ordered set. A subset S of P is called a chain if every
two elements of S are comparable with respect to the order relation. If S is an

22
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antichain, every two elements of § are noncomparable with respect to the order.
For a natural number m, show that if P does not contain a chain of cardinality
m+ 1, then P can be represented as a union of m antichains.

4.8 A chain of length n in the family of partitions of an n-element set X is a
sequence of pairwise distinct partitions which satisfy

P,<Py< <P,

The partition P, has a single class formed of X, while P, has n classes which
each contain a single element of X.

Show that the number of chains of length n in the family of partitions of an
n-element set X is equal to

(n—1)!n!
T
49 Let F={E,...,E;} be a family of r-element subsets of a set X. If the

intersection of each r+ 1 subsets of F is nonempty, show that the intersection
of all the subsets of F is also nonempty.

410 Let S=(X)), ¢;¢, be a family of pairwise distinct subsets of X with the
property that X;n X ;% for every i, j=1,...,r. If the set X has n elements.
show that max r=2""!

4.11 Let X be a nonempty set and let F be a family of m distinct subsets of
X where m> 2. Show that the collection of subsets of the form 4 4 B (symmetric
difference of A and B) where A, B € F contains at least m pairwise distinct sets.

4.12 A covering of a set § is a family of nonempty pairwise distinct subsets
of S whose union is equal to S. Show that the number A(n) of coverings of an
n-element set is given by the formula

A(n) = z (=1) (") y2mi-1
j=0 J
4.13 Acovering A of a set S by k nonempty subsets is said to be irreducible

if the union of every k— 1 subsets of A is a proper subset of S. If I(n, k) denotes
the number of irreducible coverings by k subsets of an n-element set, show that

In k=Y ('Z) (2= k—1)"~1S(i, k),
i=k

where S(i, k) is the Stirling number of the second kind. In particular verify that
In,n=1)=4n(2"-n-1)

and

I(n. 2)=S(n+1, 3).

4.14 Let A,,...,A, be a collection of n pairwise distinct sets, and
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Ay, ..., A, a subfamily of maximal cardinality with the property that it does
not contain the union of the sets, that is,

AIU AJ# Ak
for each three pairwise distinct indices i, j, k € {i,, ..., i }. Let f(n)=min r, where

the minimum is taken over all families of n pairwise distinct sets. Show that
Sn—1<f(n)<2n+ 1.
4,15 Let A, A,,...,A,be finite sets such that
[Ay[=]4,]= - =]4,]

and let |JI_, 4;=S. Suppose that for fixed k (1 < k< n) the union of every k sets
of this family is equal to S, and the union of at most k—1 sets of the family is a
proper subset of S. Show that |S|=(,”,). When equality holds, it follows that
|A,-|=(,'<':i) for everyi=1,...,n.

4.16 Let (X)) ci<x be a family of k-element subsets of a set X. Show that
min |J{_, X,| is equal to the smallest integer m such that k<(}).

4.17 Show that
Y JAguA,u U A =2k =1)24 Y,

where the sum is taken over all choices of subsets 4,,..., 4, of an n-element
set X.

4.18 Show that
Yldiu v =2 =1 Y |40 04,

where the sum is taken over all choices of subsets A4,,..., A, of an n-element
set X.

4.19 A collection S of nonempty distinct subsets of an n-eclement set X is
called a filter basis if for every A4, B € S there is a set C € § such that Co ANB.
Show that the number of filter bases of X is equal to

n—1 ﬂ) .
2251
A

4.20 Let (A;) < cm and (By) <icm be two families of sets with the property

that|d,|= " =|A4,|=p.|By|="" =|B,|=qand 4,nB;=¢¥ il and only il i =}.
Show that
m<<p+q>'
p
4.21 Let X be an n-element set, and G={A4,,..., 4,} a family of subsets

of X which are noncomparable with respect to inclusion; that is, A;¢ A4; for
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every i,j=1,..., p with i#j. Show that

_( n
max p= ([n/Z]) .

This result is called Sperner’s theorem.

4.22 Let X be an n-element set, and F={A, ..., 4,} a family of subsets
of X which satisfy the following conditions:

(1) |A;|=r<n/2foreveryi=1,...,p;
(2) AinA;#£ foreveryi,j=1,...,p.

Show that max p=(_1).

‘-

This result is knowr; as the Erdds~Ko~Rado theorem.

4.23 Let X be afinite set, and E,, ..., E,, a family of subsets of X with the
property that the intersection of two distinct sets E; and E; never has cardinality
exactly equal to one. Further assume that |[Ej|>2fori=1....,m.

Show that under these circumstances one can color the elements of X with
two colors so that no subset E, has all its elements colored with the same color.

424 Let F={E,...,E,} beafamily of r-element subsets of a set X, where
n<2~'. Show that it is possible to color the elements of X with two colors so
that no subset in the family F has its elements colored with the same color.

4.25 Let M be a set with n> S elements and F, a family of pairwise distinct
three-element subsets of M. If F contains at least n+ | subsets, show that there
are at least two distinct subsets which have exactly one element in common.

4.26 Consider two collections (multisets) of integers {a,,...,a,}#
{by,...,b,} such that an integer can appear several times in each collection.
Assume that the collections

{a;+a;]1 <i<jgn} and {b;+b;|1<i<j<n]
are equal. Show that n is a power of 2.

427 Let X be an n-element set (1> 1). Suppose that F={A4,,....A,} isa
family of subsets of X with the property

|A;nA;|=1  forevery 1<ij<m and i#].
Show that m<n.

4.28 One is given n distinct points in the plane. Show that there exist fewer
than nﬁ pairs of these points which have their distance equal to 1.

4.29 One s given n points in space, no four of which are coplanar. Consider
the set of (3) planes determined by each triple of points with the property that
no two planes are parallel. Determine the number of lines of intersection of
these planes.
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430 How many triangles can be [ormed [rom the n vertices ol a convex
polygon il no side of a triangle can be a side of the polygon?

4.31 Consider a convex polygon with n vertices. There are n(n—23)/2
diagonals of the polygon with the property that no two are parallel and no
three are concurrent other than at vertices of the polygon. Show that the number
of points of intersection located outside of the polygon is equal to

nn=3)n-4)(n-195)
12 )

4.32 Suppose there are n points on a circle with the property that no three
of the n(n—1)/2 chords they determine are concurrent in the interior of the circle.
Show that in this case these chords delimit

V(1) +1
4 2
regions in the interior of the circle.

4.33 A set of simple closed curves is drawn in the plane. They do not inter-
sect themselves, but each two curves intersect in at least two points. Let n, be
the number of points in which exactly p of the curves intersect.

Show that the number of closed regions of the plane which are bounded by
arcs of these curves and which do not contain such an arc in their interior is
equal to

L+np+2n3+4 - +(p=1)n,+ .

434 Let S be a set, and denote by M(S)=(S,, S,,...,S,,) an ordered
family of its subset. A system of distinct representatives (SDR) for M(S) is an
m-tuple (a,, a;,...,a,) such that g, €S, for 1<i<m and a,#a; il i#j (or
1<i,j<m.

Show that M(S) has an SDR if and only if |S;, US;,u "+ US, |>k for all
choices of pairwise distinct numbers

{ity oo iye{l,... m},  where 1<k<m.

4.35 Let X be an n-element set. and F a family of h-element subsets of X.
Denote by M(n, k, h) the minimal number of h-element sets in F which has the
property that each k-element subset of X contains at least one set of the family
F(nzk>2h>=1) Show that:

n
n—h
{b) Min, k, h)<M(n—=1, k=1, h—=1)+M(n—1,k, h);

© <Z>/<:)SM(n, k,h)<<n—:+h>.

(a) M(n, k, h)=

Min=1,k h);



Problems in Combinatorial Set Theory Y

436 Show that

_ 2_ 2
(a) M(n, k, 2)=<;>_ H S _<;>

for every n=2 k> 2, where r=n (mod k—1) and 0<r<k-2;
(b) M(n,n=h.k)=h+1 forevery nz2k(h+1)and k> 1.

4.37 A balanced incomplete block design (BIBD) is a set B formed of ¢
objects (also called varieties) together with a family F of b subsets of B (called
blocks), such that:

(1) each block contains exactly k objects;
(2) each object belongs to exactly r blocks;
(3) each pair of distinct objects is contained in exactly A blocks.

Show that the parameters (b, v, r, k, 4) of a BIBD satisfy the following relations:
bk=vr and rk—1)=Av-1)

4.38 Let X be a set with v elements, andlet X, X,,..., X, be afamily of v
subsets of X. This family is called a (v, k, 4)-configuration if it satisfies the fol-
lowing conditions:

(1) 1X/|=kfori=1,2,...,v;
) |XinX;|=4forevery i#);
(3) O<i<k<p—1.

The incidence matrix 4 =(a;;);<; ;<o Of this configuration is a square matrix
defined as follows: a;;=1 if the element i of X belongs to the set X, and a;;=0
otherwise. Show that

ATA=(k= AT +2J,

if and only if 4 is the incidence matrix of a (v, k, A)-configuration where A7 is
the transpose of 4, and J is a square matrix of order v all of whose elements
are 1. The matrix I is the identity matrix of order .

4.39 Show that every (v, k, 4)-configuration is a BIBD with parameters
(v, v, k, k, A).

440 Let X be a v-element set, 12 3. A Steiner triple system of order v is a
family of 3-element subsets of X called triples, such that each two element
subset of X is contained in a single triple.

Show that a necessary condition for the existence of a Steiner triple system
of order vis that v=1 or 3 (mod 6).

4.41 A BIBD is said to be symmetric if v=>b (and hence k=r). Show that
if a symmetric BIBD has parameters (v, v, k, k, A) where v is even, then k—A is a
perfect square,
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4.42 Let X be an n-clement set, and Y a k-element subset of X. Show that
the maximal number of pairwise distinct subsets of X which are noncomparable
with respect to inclusion, and which contain exactly r elements of Y is equal to

(eom)
r/)\[(n—k)/21)"

443 Consider the functions f: X — X such that f(f(x)}=a for every x € X,
where a is a fixed element of X. If [X|=n3>2, prove that the set of all such

functions has cardinality
n—1
5 (n— 1) e,
p=1 p

4.44 Consider the r-element subsets of the set {1,...,n}. Select the mini-
mum element of each subset. Show that the arithmetical mean of the numbers
obtained in this way is equal to (n+ 1)/(r +1).

445 Let M={l,2,...,2048}. Show that for any subset X =M, |X|=15,
there are two disjoint subsets A, B< X such that
Y i=) ]
ied jeB

Does this property hold for 12-element subsets of M?

446 Letx=(xy,...,x,) and y=(y,,...,y,) be two vectors. It is said that
x covers yif x =y or x;=y, for n—1 values of i. Let F denote the set of p" vectors
(yi.. .,y where 1<y, <pfori=1,...,n Aset Hofvectors hy, h,,...Iscalled
a covering set if every vector y in F is covered by at least one vector h; in H. Let
o(n, p) be the minimum number of vectors which such a covering set H can
contain,

Prove that 6(2, p)=p and a(n, p) = p"/{n(p—1)+1}.

4.47 Given a set of n+1 positive integers, none of which exceeds 2n, show
that at least one member of the set must divide another member of the set.

448 Let X be a finite set containing at least four elements, and let
Ay, ..., Ao besubsets of X which are not necessarily distinct, and are such that
|4;|>3|X| for any i=1,...,100. Show that there exists Y= X,|Y|<4, with
YNnA;# foreveryi=1,..., 100

449 The digital plane D is the set of all points (digital points) in the
Euclidean plane which have integral coordinates. For any two points P(xy, yy)
and P,(x,, y,) from D the city-block distance is defined by

da(Py, Py)=|x, = x|+ |y, =yl

which yields a metric for D. For any F = D a subset Bc F is said to be a metric
basis for F if for any x, y € F, x#y, there exists b € B such that d,(x, b) #d,(y, b).
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Prove that:

(a) D has no finite metric basis;

(b) for any natural number n> 3, there exists E,= D such that the
minimum number of elements in a metric basis for E, is equal to n.

450 A finite projective plane is a symmetric BIBD A with parameters
(t. v, k, k, #) where v24 and A=1. It is traditional in this context to substitute
the terms point for object and line for block. From Problem 4.37 one can
deduce that

p=k2-k+1.

The number n=k —1 is called the order of A, Thus {or a finite projective plane
of order n it can be seen that

b=v=n?+n+1, r=k=n+1.

It is convenient to say that a set of points is collinear if it is contained in some [ine.
Show that a set system A=(V, E) where E is a family of subsets of V is a finite
projective plane if and only if the following three conditions hold:

(1) Every pair of points is contained in exactly one line.
(2) Every pair of lines intersects in exactly one point.
(3) There exists a 4-subset of V' no 3-subset of which is collinear.
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5.1 In how many ways can three numbers be selected {rom the set
{1,2,...,3n} so that their sum is divisible by 3?

5.2 Show that the number P(n, m) of partitions of an integer n into m parts
satisfies the recurrence relation

Pin+k, k)=P(n, )+ P(n, 2)+ -+ + P(n, k),
with P(n, 1)=P(n, n)=1.

5.3 Show that the number of partitions of an integer n into pairwise distinct
parts is equal to the number of partitions of n into odd parts.

5.4 Verily that the number of partitions of a positive integer n into m
pairwise distinct parts is equal to

(r=(2))

5.5 For a positive integer n consider partitions of n such that every integer
between 1 and n can be uniquely represented as a partial sum of the partition.
For which numbers n is

n=1+1+ - +1
the unique partition with this property?

5.6 Prove Euler’s identity:

(=X =x)(1 =) (1 =x o =1+ 3 Ylnx”

n=1{
=l-x—xt+ xS +xT—x12— x4 x224 -

where Y(n)=(— 1) il n=(3k? £ k)/2 and Y(n)=0 if n cannot be represented in
the form n=(3k?+ k)/2 (k is an integer).

5.7 Justify the following expressions for generating functions:
{a) the generating function for the number P(n) of all partitions of an
integer n is

30
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L) . 1
L PO = o

where P(0)=1;
(b) the generating function of the number P(n, m) of partitions of an
integer n into m parts is

m

- n__ X .
&, P = e

(c) the generating function for the number of partitions of » into odd
parts is

1
(1—x1=x3){1-x% "

(d) the generating function for the number of partitions of » into pair-
wise distinct parts is (1+x)(1 +x3)(1 +x3) - ;

(e) the generating function for the number of partitions of » into pair-
wise distinct odd parts is (1 +x)1 +x3)(1+x%) -

5.8 Prove Euler’s Pentagonal Theorem:

P(my=P(n—1)+ Pn-2)—P(n—5)-Pn—-"7+ -~
_ ke _3k2—k _3k2+k
_k; (= 1kt {P (n 3 >+P (n 5 ,

5.9 Show that the number of partitions of n such that no integer appears
more than twice as a part is equal to the number of partitions of » into parts
which are not divisible by 3. For example, for n=6, these two sets of partitions
are, respectively {6, S+1, 442, 4+1+1, 343, 3+2+1, 242+ 1+1} and
5414424+ 1+1,24+24224 24141241 +1+1+ L1414+ 14+ 14141}

for every nz 3.

5.10 Let P(n) and Q(n) be the number of partitions of n and the number of
partitions of n into odd parts, respectively. Show that the following recurrence
relations hold:

(@) Q)= 3 (=1)Q(i)Q(2n~1), where Q(0)=

i>0
=Y P(i)Q(n—2i), where P(0)=Q(0)=1.
130

5.11 Show that P(n, m)=P(n—m) for m>n/2.

5.12 Consider the number of noncongruent triangles with pairwise distinct
integral sides and perimeter equal to 2a. Show that this number is equal to the
number Q(n, 3} of partitions of n into three pairwise distinct parts.

Also show that Q(n, 3)=[(n? —6n+12)/12].
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5.13 Justify the identity

o sz

Ko (1 =)L =x*) - (1 =x*)

by counting symmetric Ferrers diagrams in two different ways. Use the same
method to prove Euler’s identity:

(1+x)1 +x3H(1 +x5)

(L+xy) L+ 391 +x5y) z = 2)1_x4; T

5.14 Denote by B(n) the number of the partitions of n into parts which are
powers of two. For example B(6)=6, and the corresponding partitions are the
following:

T+Hl+l+t+ 1 4+1=2+14+1+1+1=2+2+2
=4+2=4+1+1.

Prove that:

(a) B(2n+1)=B(2n);
(b) B2n)=B(2n—1)+B(n);
(c) B(n)iseven for any nz2.

5.15 Show that P(n)= 2" for every n>2.
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Trees

6.1 Let A=(X,U)beatree and A=(X,, Uy),...,4,=(X,, U,) aset of
subtrees of 4. If B= f’=1 X,;#, show that B is the set of vertices of a subtree
of 4.

6.2 LetGy,...,G,beacollection of subtrees of a tree G with the property
that each two subtrees have at least one vertex in common. Show that the entire
collection has at least one vertex in common.

6.3 Letd,,...,d,be integers such that
O<d, < <d,.
Show that there exists a tree with n vertices of degrees d,, ..., d,, if and only if
di+ - +d,=2n-2

6.4 Let A, A, be two spanning trees of a connected graph G. Show that
there exists a sequence of trees

A1=B1,B2,...,Br=A2

such that B,,, is obtained from B; by suppressing an edge u and adjoining
another edge v between two nonadjacent vertices of B;, for i=1,...,r—1.

6.5 Foraconnected graph G let d(x, y) denote the distance between vertices
x and y, that is, the number of edges contained in the shortest walk which joins
x and y. Further define the eccentricity of a vertex x by e(x) =max, d(x, ). The
center of a graph G consists of those vertices x, with the property that e(xo)=
min, e(x) = p(G). [p(G) is called the radius of G.] The diameter of a connected
graph G, denoted d(G), is defined by d(G)=max, e(x).
{(a) Show that the center of a tree consists of a single vertex or two
adjacent vertices.
(b) If G is a tree show that e(x) is a convex function in the sense that if
y. z are adjacent to x, then

2e(x)<e(y)+el2).
(c) Show that for every connected graph G,
d(G)< 2p(G).

33
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6.6 Show that every tree with n vertices and with diameter greater than or
equal to 2k — 3 contains at least n—k walks of length equal to k.

6.7 Suppose that G is a tree with vertex set X. For x € X let

s(x)= 3 dix, y).
yeX
(a) Show that the function s(x) is strictly convex in the sense that if
¥ and z are two vertices adjacent to x, then
2s(x)<s(y)+ s(2).

(b) Prove that the function s(x) attains its minimum for a single vertex
or two adjacent vertices of the tree G.

6.8 Determine the trees G on n vertices for which ) . d(x, y) is minimal
(maximal).

6.9 Let x(,...,x, be terminal vertices of a tree 4, and set d;;=d(x;, x;).
Show that:
(a) for every three indices j, j, k the following relations hold:

dlj+djk_dlk>0
and
dij+djk'_dik-=—0 (mOd 2).

(b) for every four indices i, j, k, I, two of the numbers d;;+dy, dy+d;,
dy+dj are equal, and the third is less than or equal to the two
equal numbers.

6.10 Let A and B be two trees whose terminal vertices are labeled with
numbers from the set {1,2,...,r}. If the distances between these terminal
vertices are the same for 4 and B, that is,

da(i, j)=dp(1, j)
for every 1<i<j<r, show that the trees A and B are isomorphic.

6.11 Let G=(X.U) be a tree and f:X—>X a function with the property

that if [x, y]J € U then fi(x)= f(y) or [f(x), f(y)] € U. Show that f has a fixed
point or a fixed edge.

6.12 Let A be a tree with vertex set X such that |X|=2n+1. An auto-
morphism of A4 is a bijection f:X —X which preserves the adjacency of vertices,
that is, [x, y] is an edge of the tree A if and only if [ f(x), £(»)] is an edge of A.

Show that f has at least one fixed point.

6.13 Let A(=(X, U,)and 4,=(X. U,) be two trees which have the same
vertex set A. Suppose that for every vertex x € X the subgraph obtained from
A, by suppressing the vertex x and the edges incident with x is isomorphic to
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the subgraph obtained from A4, by the same operation. Show that the trees 4,
and A, have the same diameter. :

6.14 Let G be a tree with vertex set X ={x,,..., x,}, and set
D=(dlj)i,j=1‘...‘m
where d;;=d(x;, x;) is the distance between x; and x; in G. Show that
detD=(=1)""Yn—1)2""2

6.15 Let A4 be a tree with vertices x, ..., X,. Suppress the terminal vertex
(of degree 1) which has the smallest index, together with the edge incident with
it, and let 4,-, be the tree thus obtained and a, the index of the vertex adjacent
to the suppressed vertex. Repeat this procedure for the tree 4,_ ;, and determine
the index a, of the vertex adjacent to the terminal vertex of minimal index of
A, -, and so forth, until one comes to a tree consisting of two adjacent vertices.
One thus obtains a sequence (a,, a,, . . ., d,—,) of n—2 numbers 1 <a,<n for
1<ign-2, associated with the tree A. (It is called the Priifer code of 4.)

Show that:

(a) the correspondence thus defined is a bijection between the set of

trees A with n vertices x,,...,x, and the set of n"~2 sequences
(ay,...,a,-5) which can be formed with numbers from the set
{1,....n};

(b) there are n"~ 2 trees on n vertices x,,..., x, (this result is known
as Cayley’s formula);

{c) thenumber of trees whose verticesx,...,x,havedegreesd,,...,d,
which satisfy d;>1 and d, + -+ +d,=2n—-2 is equal to

n—2
di—1,...,d,—1/)"

6.16 Let 1, denote the number of trees with n labeled vertices. Show that

n=1{ n=2
I,= -
n kgl k <k— 1) lktn ks

and obtain Cayley’s formula from this identity by using Abel’s identity.

6.17 Find the number of trees with n labeled vertices and exactly p terminal
vertices.
6.18 Consider the ladder graph of Figure 6.1 with 2n vertices.

(a) In how many ways can n of its edges be chosen so that no two have
endpoints in common?

(b) Show that this graph has

1 n_ — n
z—ﬁ{mﬁ) 2-3)")

spanning trees.
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X1 k) Xn
o s 0
" 80
Y1 y2 Yn
Fig. 6.1

6.19 The distance matrix of a connected graph with p vertices is a square
matrix D =(d;;) with d;; equal to the distance between vertices i and j. Show that
asquare matrix D is adistance matrix if and only if it has the following properties:

{1) d;;=0forevery 1<i,j<p and d;;is an integer;

(2) dy=0ifand only ifi=j;

(3) D is symmetric;

(4) d<dy+dy;forevery i, j, k and

(5) TIfdy>1,thereis an index k#1i, j such that d;;=d;+ dy;.

6.20 Prove that the following properties are equivalent for a graph G:

(1) Gisatree;
(2) G is connected, and the deletion of any edge of G results in a
graph G, which is not connected;

(3) G has no cycle, and if x and y are any two nonadjacent vertices
of G, then the graph G, obtained [rom G by inserting the edge
[x, y] contains cycles.

6.21 Prove that the number of arborescences having n labeled vertices is
equal to n" %,

6.22 Show that for n>3 there are n"~? different trees with n unlabeled
vertices and n— 1 edges labeled 1, 2,...,n—1.

6.23 Let Gdenote a graph with n>2 labeled vertices denoted 1, 2,..., nand
m edges. Label the edges of G with the numbers 1, 2, ..., m, and give each edge
an arbitrary direction. The incidence matrix of G is the n-by-m matrix 4=(ay),
where | <i<nand | €<j<m,in which g;;equals + 1 or —1 if the edgej is directed
away from or towards the vertex i, and zero otherwise.

Prove that if the graph G has n vertices and is connected. then the rank of its
incidence matrix A is equalton—1.

6.24 Show that if B is any nonsingular square submatrix of 4, then the
determinant of Bis + 1 or - L.

6.25 The reduced incidence matrix A, of a connected graph G with n
vertices is the matrix obtained from the incidence matrix 4 by deleting some
row, say the nth. Prove that a square submatrix B of order n—1 of 4, is non-
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singular if and only if the edges corresponding to the columns of B determine a
spanning tree of G. '

6.26 Prove the Matrix Tree Theorem: If A, is a reduced incidence matrix
of the graph G, then the number of spanning trees of G equals the determinant
of 4,AT, where AT denotes the transpose of A.

6.27 Let G be a graph with n vertices, and let C=(c;)) for 1 <i,j<nbe a
matrix defined as follows: ¢;; is equal to the number of vertices adjacent to i in G;
c;;=—11if i#j and vertices i and j are adjacent in G; ¢;;=0if ij and vertices
i and j are not adjacent in G.

Show that 4, AT is the matrix obtained from the matrix C by deleting a row
(say the nth) and the column with the same index. Use this property to obtain
another proof of Cayley’s formula, since the number ¢, of trees with n labeled
vertices is equal to the number of spanning trees of the complete graph K,

6.28 Let R, be the tree with 2n vertices as illustrated in Figure 6.2. Show
that the number I, of independent sets of vertices of this graph is equal to

1n=3+§‘/§(1+§/§)"+3‘2‘/§(1—J§)".

6

n+l n+2 2n
U—L oool——l
1 2 n

Fig. 6.2

6.29 Let T be a tree having vertex set {1,..., n} and edge set denoted by
E(T).IfAy,...,A,= X, prove that

Ay UAnK{Z [il= 3 |ind,

=1 [1./1eE(T)
where the last sum contains n— 1 terms,

6.30 A matroid M is a pair (E, #), where E is a nonempty finite set, and .#
is a nonempty collection of subsets of E, called independent sets, satisfying the
following properties:

(1) any subset of an independent set is independent;

(2) if I and J are independent sets containing k and k+1 elements
respectively, then there is an element e contained in J but not in
I, such that I u {e} is independent.

A base is defined to be any maximal independent set, and the rank function p
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is an integer-valued function defined on the set of subsets of E by

p(Sy=max |l NS
les

For a connected graph G=(X, U) with n vertices let E be the set of edges of G
and take as independent sets the sets of edges I« U which are such that the
spanning graph of G with edge set I does not contain a cycle.

Show that M =(E, J) is a matroid [called the circuit matroid of G, and
denoted by M(G)] whose bases are spanning trees of G. Prove that if S= U,
then its rank p(S)=n—p, where p is the number of components in the spanning
graph (X, S) of G.



7
Parity

7.1 Let U be the set of edges of K,, the complete graph on n vertices. Let
F:U={=1,1}. Anedge u with f(u)=1 will be said to be positive, and one with
fw=—1 will be said to be negative. A triangle (elementary cycle with three
vertices) is positive if it contains an even number of negative edges; otherwise
it is negative.

If |f~Y(=1)|=p, that is, there exist p negative edges in U, show that the
number n{ /) of negative triangles satisfies the relation

n{ f)=np (mod 2).

7.2 Let G be a planar graph all of whose faces are triangular, and suppose
that the vertices of G are colored with three colors. Show that the number of
faces whose vertices are colored with all three colors is even.

7.3 An Eulerian circuit of a digraph G is a circuit which contains every
arc of G. Show that a graph G which does not contain isolated vertices has an
Eulerian circuit if and only if it is connected and for every vertex x the indegree
is equal to the outdegree, that is,

d™(x)=d*(x).

7.4 1If the digraph G has at least one vertex x whose outdegree d*(x)= 3,
then the number of Eulerian circuits of G is even. (Two Eulerian circuits are
considered to be identical if they induce the same circular permutation of the
arcs of G.)

7.5 1If a graph G is such that the degree of each of its vertices is even, then
the edges of G can be directed so that in the resulting directed graph each vertex x
satisfies

d~(x)=d"(x).

7.6 Show that a graph G has an Eulerian cycle if and only if it is connected
and each vertex has even degree. Prove that if G is connected and has 2k vertices
of odd degree, then it is the union of k walks which are disjoint with respect to
edges and which do not contain the same edge twice.

7.7 1 G=(X, U) is a directed graph, the complementary graph G=(X, U)

39
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is defined as follows: The arc(x, y) € U if and only if (x, y) ¢ U forevery x, y € X
with x #y.
Let h(G) denote the number of Hamiltonian paths of the graph G. Show that

h(G)=h(G) (mod 2).
This property remains true in the case of a nondirected graph with n>> 4 vertices.

7.8 Show that each tournament contains an odd number of Hamiltonian
paths.

7.9 Suppose that the graph G has all of its vertices ol odd degree. Show
that each edge of G belongs to an even number of Hamiltonian cycles.

7.10 Let G=(X, U) be a connected graph with m edges and n vertices.
Show that the number of spanning graphs of G such that every vertex has even
degree is equal to 2™ "3,

7.11 The set X of vertices of any graph can be partitioned into two classes
X, and X, (one of which may be empty) so that the subgraphs with vertex set
X, (X,) bave all their vertices of even degree. Show that this property remains
true if the degrees of the vertices of the subgraph generated by X, are even and
the degrees of the vertices of the subgraph generated by X , are odd.

7.12 Let C be a collection of pairwise distinct subsets of a nonempty finite
set X with n>2 elements. Show that the only collections C with the property
that every proper subset of X intersects an even number of sets from C are
P(X) and P(X}\{&}, where P(X) is the family of all subsets of X.
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Connectedness

8.1 Letd;<d,< ' <d, be the degrees of the vertices of a graph G, and

_ suppose that di >k for every k<n—d,— 1. Show that G is connected.

8.2 Let G be a connected graph with n vertices and 1 <k<n. Show that

" G contains a connected subgraph with k vertices.

8.3 Let G be a graph with n vertices, m edges, and p connected components.
Show that

p+mz=n.
8.4 Prove that in a connected graph G every two elementary walks of

maximal length have at least one vertex in common. If G is a tree, show that all
walks of maximal length of G have at least one vertex in common.

8.5 A graph G is said to be bipartite if there exists a partition of its set of
vertices,
X=AuUB,
such that each edge of the graph has one endpoint in A and the other in B.

Show that a graph is bipartite if and only if each elementary cycle in G has an
even number of vertices.

8.6 Does there exist a graph with 10 vertices whose vertices have the degree
sequence

1.1.1,3.3,3.4.6,7.9?
8.7 Letd,....,d,beintegers such that

0<d, < - <d,.

Show that these numbers are the degrees of the vertices of a multigraph with n
vertices if and only if

(1) d,+ - +d,iseven and
(2) dy<dy+ 0 +dyoy
8.8 Which numbers can be the number of vertices of a regular graph of
degree k?
41
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8.9 Consider a graph G with n vertices which does not contain a complete
subgraph with three vertices. Suppose further that for every two nonadjacent
vertices x and y there are exactly two vertices which are adjacent to both x and y.

Show that there is an integer p >0 such that n=1+ ("; '). Also show that the

graph G is regular of degree p.

8.10 Given natural numbers r> 2 and g >3, show that there exists a graph
G which is regular of degree r and with girth g(G)=g.

8.11 Let G be a regular graph of degree r with n vertices and g(G)=g.
Show that

n=l+r+rir=1+ " +r(r=1)¥"¥2  for g odd
and
nZ2{14+(r=1)+ - +(r-12"1} for g even.

8.12 Determine the regular graphs G of degree 3, with minimal number of
vertices, such that the smallest length of an elementary cycle is:

(a) g(G)=4;
(b) g(G)=5.

8.13 Every connected graph G contains at least one vertex x which has the
property that the subgraph G, obtained from G by suppressing the vertex x,
and the edges incident with x, is connected. Does this remain true if instead
of connectedness one considers strong connectedness?

8.14 A directed graph G is strongly connected if and only if for every subset
A of vertices, A #&, there exists at least one arc of G of the form (x, y) where
x € A and y ¢ A. Show that this statement remains true if instead of the arc
(x, y) one takes (y, x) where y ¢ 4 and x € 4.

8.15 Show that if a tournament G contains a circuit, then G contains a
circuit with three vertices.

8.16 For a tournament with n vertices, x,, ..., X,, let r; denote the number
of arcs which enter x;, and let s; denote the number of arcs which leave x;.
Show that:

8.17 Show that every tournament G contains a vertex x such that every
other vertex can be reached from x by a path with at most two arcs.

8.18 Every digraph G contains a set S of pairwise nonadjacent vertices such
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that every vertex x ¢ S can be reached by leaving [rom a vertex y € S and travers-
ing a path of length at most equal to 2.

8.19 A tournament T is said to be transitive if, whenever (u, v) and (v, w)
are arcs of T, then (4, w) is also an arc of T. Show that an increasing sequence
S5, <s5,< - <, of n2 1 non-negative integers is the sequence of outdegrees
of a transitive tournament with n vertices i[ and only il S is the sequence
0,1,....,n=1.

8.20 Show that the number C(n) of connected graphs with n labeled vertices
satisfies the recurrence relation
l n—1

Cm=2" —-'% k(Z) 20 Clk)

N =1
forn>2and C(1)=1.

8.21 Show that almost all graphs with n vertices have diameter equal to
2 for n— oo. This means that if d,(n) denotes the number of graphs with n vertices
and with diameter equal to 2, then
d,(n)

lim —%~=1.

n—w 29

8.22 Define a binary relation ~ on the set U of edges of a graph in the
(ollowing way: Let u;~u, if i=j or if the edges u; and u; arc found on the same
elementary cycle. Show that ~ is an equivalence relation on U.

8.23 An articulation point of a connected graph G is a vertex x such that
the subgraph G, obtained [rom G by suppressing the vertex x and the edges
incident with x is not connected. A connected graph G which does not contain
an articulation point is said to be 2-connected.

Show that the [ollowing properties are equivalent for a graph G with n>3
vertices:

(1) G is 2-connected:
(2) every two vertices of G belong to an elementary cycle;

(3) G does not have isolated vertices, and each two edges of G lie
on some elementary cycle.

8..24 Let G be a 2-connected graph. Il G contains two elementary cycles of
maximal length, show that these cycles have at least two vertices in common.

8.25 Consider a graph G and two of its vertices x and y. Let G—x—y
denote the subgraph of G obtained by suppressing the vertices x and ¥. Suppose
that G, and G, are two graphs with the same vertex set X and that [X|>4.

I[ the graph G, —x—y is isomorphic to G, ~x—y [or all choices ol vertices
x, y € X, show that the graphs G, and G, are identical.

8.26 Consider a chessboard with n rows and n columns (n odd). Can a
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knight make a tour of the board by passing once and only once through each
of the n? squares on the board and returning to the point of departure? (Euler).

827 Consider a graph G, consisting of a zigzag line of n hexagons (as illus-
trated in Figure 8.1 for n=5). This graph has p=4n+2 vertices and g=5n+1
edges and represents the molecular graph of a cata-condensed benzenoid
polycyclic hydrocarbon (a catafusene) with the molecular formula C,, 4 s Ha 4 4.
Forn=1,..., Sthese catafusenes are called benzene, naphthalene, phenanthrene,
chrysene and picene.

A perfect matching of G, is a matching which contains p/2=2n+1 edges.
Denote by K(n) the number of perfect matchings of G, (in chemistry this repre-
sents the number of Kekulé structures of the catafusene).

Prove that for any n>1

K(n)=F"+1.

Fig. 8.1

8.28 Let G and G’ be connected graphs. A set S of vertices of G is said to be
isometrically embeddable in G’ if there is a set S’ of vertices of G’ and a bijection
J15—8" which preserves distances, that s,

dg(x, y)=de(f(x), f(y)

for any x, y in S.
Prove that:

(a) if every subset of vertices S of a connected graph G with |S|<4 is
isometrically embeddable in a tree, then G itself is a tree;

(b) if G is a connected bipartite graph, then any set S of its points,
|S| <3, is isometrically embeddable in a tree;

(c) if every three points of a connected graph G are isometrically
embeddable in a bipartite graph, then G is bipartite.

8.29 Thecities Cy,..., Cy are served by n international airlines 4,,..., 4,.
There is a direct line (without stops) between any two of these localities, and all
airlines provide service in both directions. If N> 2"+ 1, prove that at least one
of the airlines can offer a round trip with an odd number of landings. Does this
property hold for N =2"?
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Extremal Problems
for Graphs and Networks

9.1 In agraph G it will be said that an edge u covers a vertex x if x is one
of the endpoints ol u. A set of edges forms a matching if no two have a common
endpoint. We denote by v(G) the maximum number of edges in a matching, and
by p(G) the minimum number of edges ol G which cover all the vertices of G.

Show that if G has n nonisolated vertices, then

v(G)+ p(G)=n.

9.2 Show that:

(a) If G is regular of degree k and has n vertices, then the number of
triangles in G and G is equal to

n nk
<3)— 7(71—1(—1).

_ (b) If a graph G has n vertices, then G and the complementary graph
G together contain at least

nin—1)n-79)
24
triangles.

93 Show that a graph G with n vertices and m edges contains at least
(4m/3n)(m —n?/4) triangles.

+1

9.4 Show that a tournament with n vertices contains at most (" ') circuits
with three vertices. Prove that this limit is attainable for n odd.

9.5 Show that a tournament with n vertices contains at least one
Hamiltonian path and at most n!/2"? Hamiltonian paths.

9.6 Show that every graph with n vertices and m> (n/4)(1 +/4n—3) edges
contains at least one elementary cycle with four vertices.

9.7 Show that if a graph with n vertices does not contain a complete sub-
graph with k vertices (k> 2) then it contains at least m={n/(k — 1)} vertices ol

45
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degree less than or equal to p=[(k—2)n/(k—1)], where {x} is the least integer
ZXx.

9.8 Inaset M containing 1001 people, each subset of 11 people contains at
least two individuals who know each other. Show that there exist at least 101
people each of whom knows at least 100 persons in the set M.

9.9 Let G be a graph with n vertices and without a complete subgraph with
k vertices. Show that the maximum number of edges in G is equal to

k=2 n?=r? [r
M(n, k)—k_—T 0 +<2)
ifn=(k—-1)t+rand 0<r<k-2.

The graph G for which this maximum number of edges is attained is unique
up to isomorphism. G is made up of k—1 classes of vertices. There are » classes
which contain ¢+ 1 vertices; the remaining classes each contain ¢ vertices.
Each vertex x is adjacent to all the vertices which do not belong to the class
which contains x. This result is called Turan’s theorem.

9.10 Suppose that a set M contains 3n points in the plane and that the
maximal distance between the points is equal to 1. Show that at most 3n? of
the distances between the points are larger than

1

NG
9.11 Given 2n points in the plane with no three collinear, show that the
maximum number of line segments which can be constructed with endpoints
in this set of points and so that no triangles are formed is equal to n2.

9.12 Find the maximum number of maximal complete subgraphs (with
respect to inclusion) in a graph with n vertices.

9.13 One wants to construct a telephone network connecting points in n
cities. Let c(u) be the cost of constructing the line for an edge u=[x;. x;] in the
complete graph G thus defined. It is desired to minimize the total cost of con-
structing the network. One must therefore find a spanning tree A of G such that
the sum of the costs associated with the edges of 4 is minimal.

Show that the following algorithm produces a minimal spanning tree of G:

(1) select the edge of G of minimal cost:

(2) among the unchosen edges, select an edge which does not form a
cycle with the edges already chosen and which has minimal cost.

Repeat step (2) of the algorithm until a set of edges of cardinality n—1 has been
chosen.

9.14 Suppose that all the (3) edges of the graph of the preceding problem
have different costs. Show that in this case the spanning tree of minimal cost is
unique.
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9.15 Denote by E the set of vectors x=(x, x5 .- ., x,) € £" such that
x;20fori=1,...,nand x;+ --- +x,=1. Show that if G=(X, U) is a graph
with n vertices then the following equality holds:

1 1
max Y XiXy=3 <1 - E)’

xeE [i fleU

where k is the maximum number of vertices of a complete subgraph of G.

9.16 Let G be a strongly connected graph. Associate with each arc v in G
a non-negative number ¢(u) > 0. If ¢, b are two distinct vertices of G an (a. b)-cut
is a set C of arcs with the property that every path from « to b contains at least
one arc from C.

Show that

max min c¢(u)=min max c(u),
D ueD C ueC

where D runs through the set of all paths D=(q, ..., b) and C includes the set
of all (4, b)-cuts of G.

9.17 For adigraph G=(X. U) let a. b be two distinct vertices of G, and ¢ a
function ¢:U—9 such that c(u)>0 for every arc u e U. Suppose that g is a
function g: X — % which satisfies the following two conditions:

(1) g(a)=0;
(2) g(y)—g(x)<clx, y) for every arc (x, y) e U.

The value of the function ¢ for a path D in the graph G is defined to be the sum
of the values of ¢ for all the arcs of G. that is,

cDy= 3y clw,
ue A(D)

where A(D) represents the set of arcs of the path D.
Show that

min ¢(D)=max g(b),
D g

where D =(qa, ..., b) runs through the set of paths from a to b (we assume that
there exists at least one path from a to b).

9.18 A digraph G=(X, U)is said to be a network if it satisfies the following
conditions:

(1) Thereisaunique vertex ¢ € X which no arc enters, 1.e., w ™ (a) =L,
where w ~(a) denotes the set of arcs which enter the vertex a.

(2) There is a unique vertex b € X which no arc leaves. that is,
w™*(by=¢. Here w™(b) denotes the set of arcs which leave the
vertex b.

(3) G is connected, and there is a path from ¢ to b in G.

(4) Thereisafunctionc:U-4 such that c{(u) >0foreacharcue U.
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Vertex a is called the source, vertex b the sink, and ¢(u) the capacity of the arc u.

A function f:U—& such that f(u)>0 (or each arc u is called a flow in the
network G with capacity [unction ¢ [denoted G=(X, U, ¢)]if the following two
conditions are satisfied:

(C) Condition of conservation of flow: For every vertex x#a, b the
sum of the flows of the arcs which enter x is equal to the sum of
the flows of the arcs which leave x, that is,

Y fw= Y flw forevery xeX\{ab}
)

uew ~ (x} uew * (x

(B) Condition of boundedness of flow: The inequality [f(u)<cl(u)
holds for every arcu € U.

For every set of vertices A= X define a cut
w”(A)={(x,y)|x €4, ye A (x, y) e U}
a cut is thus the set of arcs which enter the set 4 of vertices. Further let
o (A)={(x,y)|xeA, y¢A (xy)eU}

™ (a) is thus the set of arcs which leave the set A of vertices. The capacity of the
cut w~(A) is defined by

clw (A=Y clu)

uew ~ (A)
Show that:
(a) Y SwW= Y f).
ukw * (a) uew ~ (b)

Henceforth the common value of these two sums will be denoted
Jbe

(b) For each set of vertices A= X such that « ¢ 4 and b € A4, the flow
f» at the exit of the network satisfies

f= L Sw= Y fu<co (4).
uew ~(A) uew*(A)
9.19 Prove the Ford-Fulkerson theorem: For every network G=(X, U, ¢}
with source a4 and sink b, the maximal value of the exit flow is equal to the
minimal capacity of a cut, that is,

max fy= min c(w (A)).
J AlatA, beA
9.20 Consider the following algorithm for obtaining a maximal flow at the
exit b of a network G =(X, U, ¢). Assume that the capacity function cfu) >0 takes
on only integer values:

(1) Define the initial flow as having zero component on each arc of
the network, ie., f(u)=0foreachue U.
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(2) Determine the unsaturated walks from « to b on which the flow
can be augmented by the following labeling procedure:
(a) mark the entry a with [ +7;
(b) after marking a vertex x, proceed to mark
(i) with [+x] each unmarked vertex y with the property
that the arc u=(x, y) is unsaturated, that is, f{(u)<c(u);
(ii) with [ —x] each unmarked vertex y with the property that
the arc u=(y, x) has a nonzero flow, that is, f(u)>0.

1 by this marking procedure the exit b is labeled, then the flow f, obtained
at the current step is not maximal. Now consider a walk » formed of labeled
vertices (with the sign + or — respectively) which joins a and b; it can easily
be found by following the labels of its vertices from b to a. Denote by v the set
of arcs (x, y) where the marking of y has the sign + ; the arcs are thus directed
from a to b. Denote by v~ the set of arcs (x, y) where the marking of y has the
sign —. these arcs are directed from b to a.

Find the value of

uev*

e=min (min {c(u)= f(u)}, min f(u)).

From the method of labeling it [ollows that ¢> 0.

Increase by ¢ the flow on each arc u € v and decrease by ¢ the flow on each
arc 4 € v~. At the exit one therefore obtains a flow equal to f,+ & Now repeat
step (2) with the new flow.

If by using this labeling procedure the exit b cannot be marked, then prove
that the flow obtained has a maximal value f, at the exit; the set of arcs which
join the marked and unmarked vertices constitutes a cut of minimum capacity.
Show that this occurs after a finite number of steps.

9.21 The algorithm of the preceding problem does not have a finite number
ol steps and does not lead to the maximum flow at the exit if the capacity function
for arcs ¢: U— % has irrational values. To see this, let

a,="r".

where r=(/5—1)/2 is an irrational number less than 1 which satisfies the
recurrence relation

Ups 2 =0dp— 0y

[or every n20. Consider the network with 10 vertices illustrated in Figure 9.1.
It contains the arcs A, =(x,, y,) of capacity ay, 4;=(x;, y,) of capacity a,,
A;=(x3, y3) ol capacity a,. and 4,=(x,, y,) of capacity a,, together with the
arcs {y;. yy) (x;, ¥, (yi, x) for 4, j=1,...,4 and i#}, and the arcs (g, x;) and
(3, bYfori=1,...,4. In order not to overcomplicate the figure, two arcs in the
opposite senses (x, y) and (y, x) have been represented by a single nondirected
edge [x, y].
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All the arcs of the network other than A, 4,, 4, and A, have a capacity

equal to

Apply the algorithm of the preceding problem, using the order of the walks
[a, x1,y1,b], [a, x2, Y2, X3, ¥3, b1, [@, x5, Y2, Y10 X414 V3, X3, Y4 b], and 50 on—
that is, so that the flow f, always increases; it will be equal to ag+ay +a,+
ay+ -, and strictly less than the maximum flow max; f, =4c.

922 For a graph G, denote by v(G) the maximum number of edges in a
matching (a set of edges which has no endpoints pairwise in common); let 7(G)
be the minimum number of vertices of a support S of G (a set of vertices such that
every edge has at least one endpoint in S). If G is bipartite, show that v(G)=1(G)
by applying the Ford—Fulkerson theorem to a network constructed in a suitable
way from the graph G.

9.23 Let A=(aj)i=1,..pj=1...m b a binary matrix with n rows and m
columns. Show that the maximum number of elements equal to 1 which are
found in different rows and columns of the matrix is equal to the minimum
number of rows and columns which together contain all elements equal to 1
in the matrix. This result is called Konig’s theorem.

9.24 For a graph G with n vertices define the [ollowing two operations:

(«) delete an edge between two adjacent vertices;
(B) insert an edge between two nonadjacent vertices.
Let 8,(G) denote the minimum number of operations («) and/or () needed to

transform G into the union of two disjoint cliques K, u K, , where ny +n,=n
and n;, n, 20 (by definition K is the empty graph).
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Show that for any graph G with n vertices the following relation holds: -
3H(G) < [Hn—1)%],

and this inequality becomes an equality if and only if G is isomorphic to the
complete bipartite graph K, , where p, g=0 and p+g=n.
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Coloring Problems

10.1 Show that il each vertex of a graph G has degree at most equal to k,
then the chromatic number of the graph G satisfies the inequality

G <k +1.

10.2 Let G be the complement of a graph G with n vertices. Prove that the
following inequalities are satisfied by the chromatic number:

2Jn< GV + 4(G)<n+1,

n<(Gy(G)< [(%—1)2} .

10.3 Suppose that a planar graph G has a Hamiltonian cycle. Show that
the faces of all representations of G in the plane can be colored with four colors
so that each two faces which have a common edge are colored differently.

10.4 Draw anarbitrary number of lines in the plane so that no three of them
are concurrent. One can obtain a planar graph G by considering the points of
intersection of the lines as vertices of a graph and the segments between neigh-
boring intersections as edges of the graph. Show that

wGI<3.

10.5 Show that in a connected planar graph with n vertices and m edges
there are m—n+ 2 faces (including the infinite face) in every planar representa-
tion (Euler’s formula).

10.6 Show that every planar graph with n vertices has at most 3n— 6 edges

and every planar graph with n vertices which does not contain triangles has at
most 2n—4 edges.

10.7 Show that the graphs K and K ; ; are not planar.

10.8 Prove that every planar graph contains a vertex x with degree d(x)<5.
Construct a planar graph with the property that d(x)2 5 for every vertex x.

10.9 A planar graph G with n vertices and m edges has the smallest length

52
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of its elementary cycles equal to g(G)=¢g=> 3. Show that

g
<2 (n=-2).
m g—Z(n 2)

10.10 Show that each planar graph G has chromatic number y(G)<S.

10.11 Construct a graph G, with chromatic number y(G,) =3, and a graph
G, with chromatic number y(G,)=4, which do not contain triangles.

10.12 Consider an infinite graph G defined as [ollows: The set ol vertices
of Gis {{a, b)la, b € Z and a>0,b>0}; every vertex (a, b) is adjacent to all vertices
a+b, 1), (a+b, 2),...,(a+b,n), ..., and thus to all points having positive
integer coordinates on the line x=a+b.

Show that G does not contain triangles and that its chromatic number
1(G)=c0.

10.13 ([ G is a planar graph with n>4 vertices of degrees d,. d,,...,d,.
show that

d2< An+3)% - 62.

M:

i=1
Verily that [or every n> 4 there is a planar graph with all faces triangular such
that the inequality becomes an equality.

10.14 Let G be a graph with vertex set X of cardinality n and set ol edges U.
A J-coloring of G is a [unction

X410 L4

where A1 is a natural number such that il [x, y] € U, then f(x)# f(y).

Show that the number of A-colorings of the graph G can be expressed in the
form ol a polynomial of degree n in A [called the chromatic polynomial of the
graph G and denoted Pg(A)] in the [ollowing manner:

Poli)= % (=112,
vcu

where c(V) represents the number of connected components of the spanning
graph (X. V) of G.

10.15 Let G be a graph and e=[x, y] one of its edges. Denote by G —e the
graph obtained from G by suppressing the edge e and by G|e the graph obtained
from G by suppressing the vertices x and y and the edges incident with these
vertices; replace them with a new vertex z which will be adjacent to all vertices
of the graph G which were adjacent to either x or y. Show that

Pg(A)=Pg - (4) = Pg{A).
10.16 Denote by K, the complete graph on n vertices, by T, a tree with »
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vertices, and by C, an elementary cycle with n vertices and n edges. Verify that:
(a) Px (M)=AA=1)---(A—-n+1);
(b) Pr(A)=AA-1)""";
(€) P (Ay=(A—-1)"+(—-1)"(A-1).
10.17 Il G is a graph with n vertices, then its chromatic polynomial has the
form
Po(x)=x"—ay_ X" '@, x" "=+ (=1 gy x,
where ¢; 20 for every i. If G is connected, then ai>(’,.':i) fori=1,....n—1.

10.18 Show that for every graph G it is the case that the chromatic poly-
nomial Pg(A) has no roots in the interval (0, 1) and that

Pg(t+1)+#0, where r=\/52+1 .

10.19 The chromatic index of a graph G, denoted g(G), is the smallest
number of colors with which the edges of G can be colored so that each two
edges with common endpoints have different colors. If D denotes the maximum
degree of the vertices of the graph G, show that

q(G)=D or ¢(Gy=D+1.

This result is Vizing’s theorem.

10.20 Show that the chromatic index ol the complete graph K, is given by:

q(Kn)={

10.21 There are n players participating in a chess tournament. Each player
must play one match against each of the other n—1 players, and none plays
more than one match per day. Determine the minimum number of days neces-
sary to run the tournament.

n for n odd,
n—1 forneven.

10.22 A k-coloring of the vertices of a graph G is a partition of the set of
vertices into k classes, such that each class contains only pairwise nonadjacent
vertices. Show that k" ~* is the maximum number of k-colorings of the n vertices
of a graph G with chromatic number y(G)=k. The graph which has this maxi-
mum number of colorings is formed [rom the complete graph with k vertices
together with n—k isolated vertices.

10.23 Show that the number of k-colorings ol the vertices of a tree with n
vertices is equal to S(n—1, k—1) for every n22 and k> 2.

10.24 Let G be a graph with vertex set X and which does not contain a
complete subgraph with k+1 vertices. Prove that there exists a k-chromatic
graph H with the same vertex set such that

dy(x)=dglx),  xeX.
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Use this result to prove Turan’s theorem.

10.25 Let G be a graph with n vertices, m edges, and chromatic number
1(G)=k (1 <k<n). Prove that

m<Mn, k+1)

and that equality holds if and only il G is isomorphic to the Turdn graph with n
vertices, k parts. and M(n, k+ 1) edges.

10.26 Let G be a graph and Pg(4) its chromatic polynomial. G is said to be
chromatically unique if Py(4)=Pg(4) implies that the graph H is isomorphic
to G. Prove that Turan’s graph Ti(n, k), on n vertices and with a maximum
number M (n, k) of edges with respect to the property that it does not contain
any complete subgraph with k vertices, is chromatically unique for every
2€k€<n+1.

10.27 Prove that the number of k-colorings of the vertices of a graph G
is given by

1 & (k
= ¥ (=[] Polk—i),
k! i=0 I

where Pg(4) is the chromatic polynomial of G.

10.28 Let M(x,. y,)and N(x,, v,) be two points in the Euclidean plane E2,
It is known that the following definitions yield metrics {or the Euclidean plane:

do(M, N)=|x; = x| +|y; —ys]  (city-block distance),
dg(M, N)=max(|x, —xa|, |y, —ys|)  (chessboard distance).

Define the infinite graphs G4 and Gy as [ollows: The vertex set ol these graphs
is the set of points of E2, two vertices being adjacent if and only if their city-
block or chessboard distance is equal to 1. Prove that the chromatic number of
these graphs is equal to 4, that is,

XG4 =x(Gg)=4.

10.29 If a graph G contains no clique K, and y(G)=p=>3, show that G
has at least p+2 vertices. For any p> 3 construct a graph G with p+ 2 vertices
and without p-cliques such that y(G)=p.
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Hamiltonian Problems

11.1 Show that the complete bipartite graph K, , contains
n—1)!n!
Hamiltonian cycles.

11.2 Prove that the number of Hamiltonian cycles in the complete graph
K, which use & given edges (which pairwise have no common vertices) is equal to
(n—h—1)12"}

for every 0<h<<n/2.
11.3 Show that for n odd. n>> 3, the edges of the complete graph K, can be
covered by (n— 1)/2 Hamiltonian cycles without common edges.
11.4 Let G be a graph with n vertices x,,..., x, whose degrees satisfy the
inequality
d1<d2< ce S(l’".

Show that G contains a Hamiltonian cycle if any one of the following three
conditions is satisfied:

(a) d,>n/2 (Dirac);
(b) d,<p, d,<q implies that d,+d,> n for every p#g (Bondy):
(c) dy<k<n/2implies that d,_, > n—k (Chvatal).
11.5 Let G be a graph with n>2 vertices for which each vertex has degree

greater than n/2. Show that each two vertices of G can be joined by a Hamiltonian
walk.

11.6 If G is a regular graph of degree n with 2n+1 vertices, show that G
has a Hamiltonian cycle.

11.7 Let G be a k-connected graph which does not contain a subset formed
from k+ 1 pairwise nonadjacent vertices (k > 2). Show that G has a Hamiltonian
cycle.

11.8 Let G be a graph with n>3 vertices and m edges. If the inequality

n—1
>
m < 5 >+2

56
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is satisfied, then G contains a Hamiltonian cycle and there is a graph with
m=("7")+1 edges which does not contain a Hamiltonian cycle.

11.9 Let G be a graph with n vertices ol degree greater than or equal to k.
Show that:
{a) G contains an elementary cycle of length greater than or equal to
k+1;
(b) If G is 2-connected, then it contains either a Hamiltonian cycle
or an elementary cycle of length greater than or equal to 2k.

11.10 Let G be a graph with n vertices and more than (n — 1)k/2 edges where
k>2. Show that G contains an elementary cycle of length at least equal to k+ 1.

11.11 Let G be a digraph with n vertices such that the indegree d ~(x) and
the outdegree d”(x) of every vertex x satisfy the inequality

d~(x)>= and d*(x)>

NS
[N ] e

Show that G contains a Hamiltonian circuit.

11.12 Show that atournamentisstrongly connected if and only il it contains
a Hamiltonian circuit.

11.13 Let Py(n, k) denote the number of ways ol choosing k edges [rom the
set of the n—1 edges of a walk P of length n, such that these k edges generate
exactly j connected components on P. Prove that the following relation holds:

k=1\/n—k
Pyn, k)={ . .
Am b (1—1><1 )

11.14 Denote by H(n, k) [DH(n, k)] the number of Hamiltonian walks
[Hamiltonian paths] having k edges in common with a given Hamiltonian walk
[Hamiltonian path] in the complete graph K, [complete digraph K}]. Show that

ey S AN G IR TS AYE AR
H(n, k)_lgk ( 1) <k> 2 j=1 <j— 1>< .] ) 2’
DH(n, k)="'gk(—1)"*(,'(>("7l> (n—1i).

11.15 The cube G* of a graph G is defined as follows: G* has the same vertex
set as G; two vertices are adjacent in G* il and only il their distance in G is at
most 3. Show that if G is connected, then for any two distinct vertices x, y of G
there is a Hamiltonian walk in G? having x. y as its endpoints.
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Permutations

12.1 Let r be the smallest positive integer such that p"=e, where ¢ is the
identity permutation. Show that r is equal to the least common multiple of
the lengths of the cycles of the permutation p.

122 Verify that the number of permutations of n elements which have k
cycles is |s(n, k)|.

12.3 For a permutation p € S,,, let ¢(p) denote the number of cycles (in-
cluding the cycles of length 1) in the representation ol p as a product of disjoint
cycles. Show that the [ollowing equalities hold for all positive integers m and n:

1 v nrw)_<"+m—1)

m! 5 m

1 n
— c(p) —
m' Z Sgn(p)n P _<m)s

© peSm

where sgn(p) is the signature ol the permutation p.
124 Show that
1

xlxz...xp

)3

where the sum is taken over all integral solutions ol the equation

!
=% (S(n’ p)"

X+ X, =n
such that x,2 1 fori=1,...,p.

125 Let d(n, k) denote the number of permutations p € S, without fixed
points and which contain k cycles. Show that:
(@) dn+ 1, ky=n(d{n, K +dn—1, k—1)), where d(0, 0)=1;
(b) d(2k, k)=1x3x5x%x -+ x(2k—1);

(© dlnk)y=73 (—1¥ (n> c(n—j, k—j),
j=0 J

where c(n, k)=|s(n, k)| =(=1)""*s(n, k) is the number ol permuta-
tions p € S, which contain k cycles.
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12.6 Let S, denote the symmetric group of order n, i.e., the group of per-
mutations of the set {1,..., n}. Two permutations s, ¢ € S, are said to be con-
jugate if there exists a permutation g € S, such that s=grg™'. Show that:

(a) Conjugation is an equivalence relation.
{b) Two permutations s and r are conjugate if and only if they have the
same number m of cycles and their cycles have, respectively, the

same length n;fori=1,...,m.
(c) Suppose that the permutation ¢ has in its representation as a
product of disjoint cycles: 4; cycles of length 1,.... 4, cycles of

length k (4, +24,+ -+ + kA, =n). Show that the number of per-
mutations conjugate to ¢, or the number of permutations with the
same cycle structure as ¢, is equal to
n!
AN A
This is known as Cauchy’s formula.
(d) The number of equivalence classes with respect to conjugation

of two permutations is equal to the number P(n) of partitions of
the integer n.

h(ll) cery }'k)

12.7 Prove Cauchy’s identity:

1
=1.
c,+2:1§;-~'=n el eyl o 19 2
20
12.8 Choose at random a permutation of the set {1,...,n}. What is the

probability that the cycle which contains the number 1 has length k? (Suppose
that all permutations of these n numbers have equal probability. This assump-
tion also holds for the following two problems.)

12,9 What is the probability that a permutation of the set {1,..., n} chosen
at random contains the numbers 1 and 2 in the same cycle?

12.10 Select a permutation of the set {1,...,n} at random. What is its
average number of cycles?

12.11 Denote by P, the number of permutations p € S, with the property
that p?2 =e. Show that:

(a) Pn=Pn-—1+(n_1)P,,_2,WhCI'CPO=P]=1;
(b) P,=n! Y (11271

i+2j=n
t" t2
c P, —=exp|t++].
© ngo "n! p( 2)
12,12 Show that the minimum number of transpositions necessary for
writing a permutation p € S,, p#e, as a product of transpositions is equal to

n—c{p), where ¢(p) is the number of cycles in the permutation p (including the
cycles of length 1).
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1213 A set T={t,,...,t,—,} consists of n—1 transpositions of the set
X={1,...,n}. Associate with it a graph (X, T) with vertices 1,...,n whose
edges [i,j] are transpositions in the set T.

Show that the product f=1,1, " ,-, is a circular permutation of the set X
if and only if the graph (X, T) is a tree. Deduce from this that the number of
ways in which a circular permutation on n elements can be written as a product
of n—1 transpositions is equal to n"~2,

12.14 Denote by p(n, k) the number of permutations peS, of the set
{1,...,n} which have I(p)=k inversions [pairs i<j for which p(i)>p(j)].
Show that:

@ ¥ I(p)=4n! @ ;

peSn

{(b) p(n, ky=p (n, (;) - k> :

(¢) pln, ky=pin, k—1)+ pln—1, k) for k<n;
(d) pln+1, k)=p(n, k)+ p(n, k—1)+ -+ + p(n, k —n), where we define
pin, )=0for i>(;) or i<0and p(n. 0)=1:
€ Y pimkx*=(1+x)1+x4+x3) - (I4+x+x34+ - +x"71).
osk<(3)

12.15 Show that the number of permutations p of the set {1,..., n} which
have the property that there exist k elements j for which p(j)> p(i) for every
i<jis equal to |s(n, k).

12.16 Show that the expression d(f, g)=max;=,, . nlf(i)—g(i). where f
and g are two permutations of the set {1,..., n}, defines a distance on the set S,.
If one denotes by F(n, r) the number of permutations f with the property that
d(e, f)<r, where e is the identity permutation (ie., |f(i)—i|<r for 1<i<n),
show that

Fin, 1)=F,, the Fibonacci number.
12.17 Denote by a, the number of permutations p of the set {1,...,n)

which satisfy |p(i) —i|< 2 for every i=1,..., n. Show that a, is the element in the
first row and first column of the matrix A", where
1 1100
1 1.0 0 0
A=|0 1t 0 1 0
1 00 01
1 0 000

12.18 Find the number A(n, p
satisly the inequality

~

of permutations of the set {1,2,..., n} which

plky<k+p-1
fork=1,...,n
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12.19 An up-down permutation of the set {1.2,....n} is a permutation .
1 2 - n
ay a, 4
with the property
a, <da,, a,>as, ay<dg, Ay>ds,. ...
If 4, denotes the number of up~down permutations of the set {1, 2, ..., n},
show that the exponential generating function of this number is
o] A"xﬂ
Y —=secx+tanx,
n=0 N

where 4g=A4,=1.

12.20 A permutation p(1)p(2)---p(n) of the set {l....,n} is said to be
2-ordered if p(i)<p(i+2) for every 1<i<n—2, and 3-ordered if p(i)<p(i+3)
for every 1<i<n—3. Show that the number of permutations of the set {1,..., n}
which are both 2-ordered and 3-ordered is equal to the Fibonacci number F,
for every n21(Fy=F,=1and F,.,=F,+F,-., for n>1).

12.21 Let f(n) denote the number of sequences uy, u,, . . ., u, formed
from n numbers in the set {1, ..., n} and which satisfy the following inequalities:
U;<Ujys for every i=1,...,n—2,

Uy<Uijys forevery i=1,...,n=3.

Determine f(6).

12.22 A permutation p(1) p(2) - p(n) of the set {1, ..., n} is said to have a
fall at p(i) if p(i)> p(i+ 1), where 1 <i<n—1: by definition, every permutation
has a fall at p(n). The Eulerian number A(n, k) 1s defined as the number of per-
mutations of the set {1,...,n} having exactly k falls. Show that:

(a) An, k)=kAn—1, k)+(n—k+1)An—-1,k—1) for nx=2, and
A(n, n)=A(n, )=1forany n>1;
(b) A(n, k)=An,n—k+1);

© =3 A, k)<x+:—1> for n>1;
k=1
k-1
(@ A k=3 (~1¥ (" j 1) (k=)

12.23 Show that the number N(n) of permutations p € S, such that

1 2 “rron
2
b _<n n-1 --: 1)
satisfies N(4m)=N(dm+1)=2m)!/m! for m=1, and N(dm+2)=N{4m+3)=0
form=0.
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13

The Number of Classes
of Configurations
Relative to a Group

of Permutations

13.1 A ticket-punching machine of the Bucharest Transit System uses nine
perforation prongs arranged in a 3-by-3 array inside a rectangle ABCD. What
is the number of ways in which a ticket can be punched using all possible
patterns? The ticket can be put into the slot along edge AB with either of its
faces showing.

132 IfGc S, isa permutation group on theset X ={1,...,ntand x, y € X,
let x ~ y(G) if there exists a permutation f € G such that y= f(x). The relation
thus defined is an equivalence relation, whose equivalence classes are called
orbits of the group G.

If J,(g) is the number of cycles of length one of the permutation g or the
number of elements of X which are invariant under the permutation g, then the
number of orbits of a group G< S, is equal to

1
— ), Ag).

This theorem is due to W. Burnside.

13.3 How many convex polygons with k vertices can be formed from the
vertices of a regular polygon with n vertices? Two polygons with k vertices are
to be considered distinct if one cannot be obtained from the other by a rotation.

13.4 1In how many ways can one color with k colors the vertices of a regular
polygon with n vertices? Two colorings are considered distinct if one is not
obtained from the other by a rotation.

13.5 Using Burnside’s lemma (Problem 3.2) show that:

(a) The number of pairwise nonisomorphic graphs on n vertices is given
by the formula

62
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@ Na’
where the sum is taken over all non-negative integer solutions (d) of the equation

dy+2d,+ - +nd,=n, (N

gn=

and

Gd=%{ S ddik - ¥ d}

ki=1 kodd

where (k, ) is the greatest common divisor of k and /, and
Ny=1%d,! 2%d,! --+ nid,!. 2)
(b) The number of nonisomorphic digraphs with n vertices is equal to

Dy
h=Y 2
@ N
where the sum is taken over all non-negative mteger solutions (d) of equation (1).
Thus Dy=3%7 -, didi(k, )= Y s_ | di, where Ny is given by (2).

() A digraph is complete if every two distinct vertices x and y are joined
by an arc (x, y) or (y, x) or both arcs. The number of nonisomorphic complete
digraphs with n vertices is given by

3
SN
where Cy=4{}} ;.| dedi(k, )= Y| dx— Y, even ). The rest of the notation is
as above.

(d) The number of nonisomorphic complete antisymmetric digraphs
(tournaments) with n vertices is equal to

Cph=

where Ty=4{}, ., (k. Ddd,— 4., di}, and the sum is taken over all non-
negative integer solutions (d) of the equation

d1+3d3+5d5+=n (3)

13.6 Let X be aset of objects denoted 1,...,n and A4 a set of colors, which
will be denoted ay....,a,. Every function f:X—4 is called a coloring of the
objects in X, the object i being colored by f(i)fori=1,...,n. Let G be a group
of permutations of the set X. Set f, ~ f, (where f,. f, are two colorings) if there
exists a permutation g € G such that f;g= f5.

Show that the binary relation thus defined is an equivalence relation and
the number of classes relative to this equivalence is equal to

P(G;mym, ..., m),
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that is, to the numerical value of the cycle index polynomial of G for all variables
equal to m. The cycle index polynomial of the group G is defined by the equation

1
PG;xyy...,x)=—
IGIQEG

where A;(g) represents the number of cycles of length i of the permutation
g eGior 1<i<n. (G. Pdlya))

x{x(g) x?"” xi..(g)‘

13.7 The number of ways of coloring the six faces of a cube with m colors
(two colorings being considered distinct if and only if they cannot be obtained
from each other by a rotation of the cube) is equal to

He(m® 4 3m* 4+ 12m> + 8m?).

13.8 Determine the cycle index polynomial for the group of rotations of a
regular polygon with n vertices. Use this result and Pdlya’s theorem to obtain
another proof of the result of Problem 13.4.

In similar fashion, solve Problem 13.1 by using Pélya’s theorem.

139 Let f be a permutation of m objects which has order r, and let G=
{f, f3, ..., fr=e} denote the cyclic group generated by f. Show that the cycle
index polynomial of G is

] r r .
. kDA
P(G,xl.xz,-.-)=; > Tl Xty
(=1 k=1

13.10 Find the cycle index polynomial for the automorphism group of
the graph illustrated in Figure 13.1.

Fig. 13.1

13.11 Prove that the number of nonoriented, pairwise nonisomorphic
multigraphs having three vertices and m edges is equal to [(m+3)%/12] if
m#0 (mod 6) and to {(m+3)?+3}/12if m=0 (mod 6).

13.12 A Boolean function of n variables is a mapping f:B"—B where
B={0,1}. A Boolean function is called symmetric if it is invariant under all
permutations of its variables, that is, fix,,...,x,)=f(x,),.. ., Xpm) Tor any
bijection p of the set {1,..., n} onto itself. Prove that the number of symmetric
Boolean functions of »n variables is equal to 2"*1.
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Problems of
Ramsey Type

14.1 If the points of the plane are colored with three colors, show that there
will always exist two points of the same color which are 1 unit apart.

14.2 Show that if the points of the plane are colored with two colors, there
will always exist an equilateral triangle with all its vertices of the same color.
There is, however, a coloring of the points of the plane with two colors for which
no equilateral triangle of side 1 has all of its vertices of the same color.

14.3 Show that whenever the points of the plane are colored with two
colors, there will always exist an equilateral triangle of side 1 or ﬁ which has
all of its vertices of the same color.

14.4 Let T be a 30-60° right triangle with sides 1, ﬁ and 2. Show that for
any 2-coloring of the points of the plane there is a triangle congruent to T
which has all vertices of the same color.

14.5 Let ABC be an equilateral triangle, and let E be the set of all points
contained in the three segments AB, BC, and CA (including A, B and C). Deter-
mine whether, in every partition of E into two disjoint subsets, at least one of
the two subsets contains the vertices of a right triangle.

14.6 If three distinct integers are chosen, there will always be at least two,
say a and b, such that

a*b—ab?
is a multiple of 10.

14.7 Letay,a,,..., ae, beasequence of numbers. Show that it contains a
monotone subsequence with k+1 terms.

14.8 Let f be an integer-valued function defined on the set {1,...,2""!}
with the property that for i=1,...,2"7! one has 1< f(i)<i. Show that there
exists a sequence

l=q,< " <q,<2"!

65
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for which f(a,)< '+ < f(a,). However, this is no longer true if 2"~ ! is replaced
by 2" - 1.

14.9 Show that if nine points in the plane are selected so that no three are
collinear, then five of the points form the vertices of a convex polygon.

14.10 The graph G is formed from two odd cycles C, and C,, having vertex
sets A,,...,A,and By,..., B, respectively. The graph also contains all edges
of the form [4;, B;] for every 1 <i<nand 1 <j<m. Assume that the mn+m+n
edges of G are colored red and blue so that no triangle is monochromatic. Show
that the m+n edges of the cycles C,, and C, are either all colored red or all
colored blue.

14.11 Show that if the edges of a complete graph with no=(";“) vertices
are colored either red or blue, then there is either a complete subgraph with
p+1 vertices all of whose edges are red, or a complete subgraph with g+1
vertices all of whose edges are blue.

The smallest number n< n, with this property is called the Ramsey number
with parameters p+1 and g+ 1 and is denoted R(p+1, g+ 1) for every p,g=>1
(p, g integers).

14.12 Show that R(3, 3)=6.
14.13 Show that the Ramsey number R(k, k) satisfies the inequalities
22 < Rk, k) <2203,
forevery k> 2.

14.14 Leta,,a,,...,a.>1 be integers and k> 2. Show that there exists a
smallest natural number n=R,(a,,...,q,) called the Ramsey number with
parameters ay,...,q, with the following property: In any coloring with k
colors ¢y, ..., ¢, of the edges of the complete graph K, there exists an index
i, 1<i<k, and a complete subgraph with g; vertices which has all of its edges
of color ¢;.

14.15 If Ry(3)=R,(3,..., 3) show that
R,(3)<[kle]+1,
where equality holds if k=2 and k=3,
14.16 Show that R,(3)>2"+ L.

14.17 Consider an arbitrary partition of the natural numbers 1, 2,...,n
into k classes. Show that if n>ek!, then one of the classes will contain three
integers x, y, z (not necessarily distinct) such that

xX+y=z.

14.18 Consider a coloring with k colors of all the 2"—1 nonempty subsets
of a set with n elements. Show that there exists a natural number ny(k) such that
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for every n>ny(k) there exist two nonvoid disjoint subsets X, Y, such that
X, Y, Xu'Y have the same color.

14.19 Denote by K, the complete graph with a countably infinite number
of vertices; color its edges with r colors. Show that the graph K, contains a
complete infinite monochromatic subgraph.

1420 Let (a,).~ be an infinite sequence of real numbers. Show that it
contains an infinite subsequence which is either strictly increasing, strictly
decreasing, or constant.

14.21 Consider an infinite set 4 of points in space. Show that 4 contains:
(1) an infinite subset A, of collinear points or
(2) an infinite subset A, of coplanar points with the property that
no three points are collinear or
(3) an infinite subset A, of points with the property that no four
points are coplanar.

1422 Show that for every partition of the set of integers {1,2,...,9} into
two classes, at least one of the classes contains an arithmetic progression with
three terms.

14.23 Show that in every partition into two classes of the set M=
{1,2,...,256} there is a class containing a geometric progression with three
terms.

14.24 Prove or disprove: From the interval [1, (3" +1)/2] one can select a
set of 2" integers containing no arithmetic triple (three numbers in arithmetic
progression).

14.25 Show that the Ramsey numbers satisfy the inequality
1243

R(3, 1<
(3,7 5

for every positive integer 1> 2.

14.26 Show that in any coloring with two colors of the edges of the complete
bipartite graph G=K,,.1,2,+, there exists a monochromatic connected
spanning subgraph of G having 2p + 2 vertices.

14.27 Let f.(n) be the greatest integer m having the property that any
coloring with r colors of the edge set of the complete graph K, induces a mono-
chromatic connected spanning subgraph with at least m vertices. Prove that:

(@) folm)=n;

[%} if n2 (mod 4),
(b) fs(")=1n

s+1 ifn=2(mod 4)
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14.28 The Ramsey number R(F,. F,)for two graphs F, F, is the minimum
p such that every 2-coloring of the edges of K, contains a green F, or ared F,.
Prove that the Ramsey numbers for stars are given by the formula

m+n if m or nis odd,

R 1m: K"")={m+n—1 if m and n are both even.

1429 Let T, be a tree with m vertices where m — 1 divides n— 1. Show that
R(Ty, Ky y=m+n-—1.
1430 Show that the Ramsey number R(K,,, K, ) is given by the formula
R(K,, K )=(m=1n+1
foranym,n>1.

1431 If m>3 is a fixed natural number, find the smallest natural
number r(m) with the property that every partition into two classes of the
set {1,2,...,r(m)} contains a class with m numbers (not necessarily distinct)
X{,...y X sSuch that

x1+ e +xm..1=xm.
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Solutions

CHAPTER 1

1.1 (a) One must show that
[n/2} n 2 n 2 [n/2} t 2"
LA L))
[n/2] n 2 n 2 [n/2] n
A =k§0 {(k> +<k_ 1) } and  By=2 kzo (k>(k_ 1).

Starting from the identity (x 4+ 1)"(x + 1)"=(x + 1)?" and taking note of standard
properties of binomial coefficients, it can be seen that for even n, A, is the coef-
ficient of x” in the expansion of (x+1)?", and B, is the coefficient of x"~ ! in this
expansion. In fact, for even n one can write

we (=)
by R A Py
o)1= 751) ()

and the identity 1s established. For n odd, 4, and B, are different from these
binomial coefficients, and thus

N C M )
EMEY

Let

Thus in this case

Since

)
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it follows that the value of A, — B, is the same, that is, {1/(n+ 1)}(2"").

(b} Let
"o fn+k\ 1
n)= —.
s k;,( k >2k
It follows that f(1)=2 and
(ARSI AN AR /NS AN B AL S AW
f‘"*”‘[éo( K >2_k_k;,( K >?+k§o(k—l>ﬂ
2n+1 1
=f(n)+(n+l>ﬁ
+1"i2 n+l+k=1) L [2n+2) 1
2500 k=1 2T T\ n4l ) 2r?
=f(n+3f(n+1).

Thus f(n+1)=2f(n) for every n> 1, which implies that f(n)=2" [D. Beverage,
H-283, Fibonacci Quarterly, 2 (1978), 16.]

1.2 (a) Recall that the number of strictly increasing words ¢y ¢y " ¢
with ¢; <c,< - <¢ and ¢; e {1, ..., n} for every 1<i<k, is equal to (p). It
follows that ¢,_, € {k—2,k—1,...,n—=2}. Let 4, be the number of strictly
increasing words of this form with ¢, ., =¢g. One can then write

U4 2, =)

U 4,
q=k-2

Sincec; ¢, * + - ¢—3and ¢, ¢, are strictly increasing words with letters from the

sets {1,...,g—1}and {g+1,.. ., n}, respectively, one can conclude that

1))

By setting p=g—1 it is seen that k—3<p<n-3, and (a) follows from this
observation.

(b) The desired sum can be written
2n— 2n 2n—1 2n—2
= 3 = ()0 ()-
=(2n+1>_<2n)+<2n—1>+<2n—1)_(2n—2)+
0 1 0 2 1

2n+1 2n 2n—1
(7))

+(2n—1)_(2n—2>+(2n—3>_

0 1 2




=<2n+2> _<2n-+— 1>+<2n)+<2n>_<2n— 1>+
0 1 0 2 1
+(2n>_(2n—1>+(2n—2>+
0 1 0
=Spe1+ 25,4+ Sn- 1.
The numbers S, are therefore seen to satisfy the recurrence relation

Sn+1= —(Sp+Sn-1)

Since §,=0, S, = -1, S;=1, the proof of the proposition follows by induction
on n, and use of the recurrence relation last referred to above.
(c}) Differentiate (with respect to x) both sides of the identity

(1+x)"=1+x(’11>+x2(;>+
. n—1_ n n n
n(l +x) 1—(1>+2(2>x+3(3>x2+ .

Multiplying term by term, one obtains

n(1+x)2"‘1=i (’Z) x! i](j) x/t
i=o J=1

The proof of (c) is completed by equating the coefficients of x"~ ! on both sides
of this equation and using standard properties of binomial coefficients.

The result is:

1.3 One can write

1+Z<> —1+Z<>p‘i:p-1+pzlkzo<>

=1+ z {(p+1)y=p)=(n+1y.

p=1

1.4 Expand the expression (\/r;+ m=1)" by using Newton’s binomial
formula. If n is even, grouping terms yields

(Jm+Jm=1)"=A4,+ B Jmim—1). (1)

where 4,, B, are natural numbers, In the same way, one sees that

(Nm=Jm=1)=A,~B,J/mim=1), (2)

and term-by-term multiplication then gives
l=A2—m(m—1)B {3)
Thus be setting p=A2 and recalling (3), it can be deduced from (1} that

(Jm+Jm=1y=Jp+p—1.
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For n odd one has

(Jm+m=1)"=Cfm+Dpnfm— 1, @
and thus C, and D, are related by
1=mC?—(m—-1)D2. (5)
The desired equality is obtained by setting p=mC2.

15 (a) To justify the first identity consider two disjoint sets U and V
such that |U|=p, |V|=4g, UnV = The number of k-element subsets of U
is equal to (}), and the number of (m — k)-element subsets of V' is equal to (.2
Let Ac W =UuV bea subset such that |4] =m. Set |[AnU|=k: it follows that
|4~ V|=m—k, where 0<k<m. All the m-element subsets A of W are obtained
without repetition by carrying out the following procedure for k=0.1,..., m.
Take the union of an arbitrary k-element subset of U and an arbitrary (m—k)-
element subset of V. One finally obtains (})(,,7,) m-element subsets of W. Thus

veo (M(,%,) represents the number of m-element subsets of W, that is, (*7),
and this establishes the validity of the first formula.

Another solution starts by expanding the identity

(1+xP(1+x)=(1+x)"9

Expand by Newton’s binomial formula, Observe that identity (a) follows
from the identification of the coefficients of x™ in both sides of this polynomial
equation.

{(b) One can write

k)(n)_ k. nt ol 1
mMA\k) mik=—m)! ki{n—k)! m! (k=m)ln—k)!

_ ! . l-mt n) n—m
“Tmin-m)! (k-mln—k! \mA\n-k/

Thus the desired sum can be written

b S o S S oA G B G E

{c) The identity is established by induction on m. For m=0 both sides are
equal to 1. Assuming that (c) is true for m=0, 1,. .., p—1, with p> 1, it follows

that
- — 1) " =p-'1 ‘—1 (n) —1p<n)
k;o ( 1) (k) k;o ( }k k +( ) p

=(=1y"! (n-l)-H—l)" (")=(-1)ﬂ ("—1>.
p—1 p p

[t has thus been shown that (c) is true for m=p and hence it is valid for every
mz0.
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(d) It will be shown that both sides of the equation represent an enumeration
of the same quantity.
The left side can be interpreted in the following way: Choose k elements from a
set M with [M|=m elements in (}) distinct ways. Consider another set N (with
|N|=n elements) disjoint from M. Choose m elements from the kunion of the set
N and the k elements previously chosen. One can do this in (") distinct ways.
Itfollows that the number of ordered pairs of sets (X, Y) where X c M. Yc Nu X
with |X|=k, |¥|=m is equal to (})("."). If the result is extended to k which
varies from 0 to m, the number of all pairs (X, Y) will be equal to

5000

This problem can also be solved by first choosing the sets YA M and Y n N,
If |Y A N|=j, then 0<j<m and it follows that |[Y A M|=m~—j. Thus we can
choose Y so that |YAN|=j and |Y AM|=m—j in (), diflerent-ways. It
remains to choose the set X so as to satisfy

YA"McXcM,
since YaNuX and thus YAMc(NuX)nM=(NnM)u(XnM)=uvX
= X. But the set X can be chosen in 2/ ways, because for each of the j elements

of the set M \(Y n M) there exist exactly two possibilities: it belongs or does not
belong to the set X. It follows that the number of pairs (X, Y) with the stated

property is equal to
= (n\{m\ .
. 21)
1}—-20 <f )(l )

and this observation completes the proof of (d).

{e) One can write identity (d) as an equality between two polynomials in n
with rational coefficients. But (d) is valid for every natural number n, and hence
for a number of values greater than the degree m of either of the polynomials.
Thus the two polynomials in n are identical. It {ollows that equality results if one
replaces n by —n—1 on both sides of (d). The left-hand side becomes

B B (e
S Gy

The right-hand side is equal to

L= L e (2= E 6N

and this completes the proof of (e).
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The notation (z)=p(p—1)---(p—q+1)/q! will also be used for negative

values of p.
(1) By using (a) it follows that
G a)- 2 (G0 £ 0o
kg'o(k)(k><l?+q x>0 \k/\k jgo Jj\p+q—j
_ n IAYAAYAS
_120 <P+q_j) kgo (k>(k>(l)
A further use of (a) yields
2 WE0)- 2. () i
k>0 \k/\k/\J k20 (g=K)jlk=j)!
_ a\(a—i\_(a\(pta-J
=X ( )( >(q—k) (1)( q )

Thus the left-hand side of the desired identity becomes

n g\ pt+qg—j _ n!
j§0<P+Q‘j><j>< q ),-;Zo(n—p—q+j)!(q*j)!(p—j)!j!
_ nxfp\fn—p
_Jg:o <P><J><q—j>
_(n p\fn—p\_(n\(n
- <p> ;;Zo (J'>(q —j ) (P)(Q>
again by the use of (a).

(g) Identity (f) is an equality between two polynomials in n, of degree p+q.
This equality holds for every natural number n, and hence the two polynomials
in n areidentical. It follows that the two sides are equal if nis replaced by — 1 —n.

Since
(—1—n+k )=(_1)p+q<n+p+q—k)’
ptq p+q

= (7)
)

one can deduce (g) from (f). Finally, (h) follows from (g) by setting g=p.

p
k
p
k

and

1.6 Let S(I, m, n) be the sum of the left-hand side. By replacing

2n+2 with 2n+1 + 2n+1
n+k+1) U \nsk+l n+k /)



one finds that

2! 2m 2n+1 \
SU,myn+1)=2% (- (1+k)(m+k)(n+k+1) w

P
On the other hand, by using (1) it follows that
({+n+ 1)2m+1)S(, m,n+1)

AN/ m+1Y 2n+1
_ _ 1k
‘ZZ( 1) <1+k><m+k+1><n+k+1)
x(m+k+l(1—k+n+k+1)

P 2m+1\( 2n+1
XS vty e (i) [ERTRRE

om+1 \/ 2n+1
27 (~1f K .
*2) (- <I+k><m+k+1><n+k+1> (mtk+Dintk+1)

For [>0, one has
2i-1 2m+1 2n+1
— 1) =0
g( b <I—k—1)<m+k+1>(n+k+l> '
by replacing k with —k—~1 and observing that the terms of the sum can be
grouped in pairs with zero sum, and by using the standard formulas. In this

case the last representation of ({+n+ 1)(2m+1)S(, m, n+1) is symmetric with
respect to m and n, which implies that

(I+n+1)2m+ 1S, mn+1)=(+m+1)2n+1)S(, m+ 1, n). 2

The proof is now completed by induction on n. For n=0 both sides have the
value (3)(27). Assume the formula is true for all triples (I, m, g) with 0<g<n.
It then follows that
(I+m+1)(2n+1)
(I+n+1)(2m+1)
_ (+m+n+DI2D12m)!I(2n+2)!

C{Emlm+n+ Din+1+ D min+1)!
[P. A. MacMahon, Quart. J. Pure and Appl. Math., 33 (1902), 274--288; J.

Dougall, Proc. Edinburgh Math. Soc., 25 (1906), 114-1327. The case I=m=n
is due to A. C. Dixon (Messenger of Math., 20 (1891), 79-80).

S(, m, n+1)= - S, m+1, n)

1.7 Consider the expansion

(ax+b)”(1+x)“—<i <p>( p-1 x)( y <q) j>
= N Hax)P™ b Z S xd
i=o \ ! J=o \J

The coefficient of x” in the right-hand side is equal to

£(0)%) s
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But
{ax +b)P(1 +x)t = {x(a—b)+ b{1 + x)}7(1 + x)*

i ( >(a b)p lbixp l(1+x)q+x

and hence the coeflicient of x? is also equal to

£ ()7 oo

which yields the desired equality.

L

1.8 First prove the identity

2n
§ (2n> fm(l4+x)™ 4 Z ( ><2n><2n+z> (L4 )2 2
i=0 i i=1 21 H

and thereby (for x = — 1) obtain Dixon’s formula,

2n 2n\* L (2m\(3n (3n)!
() == ()i

Equating the coefficients of x? in the identity which is to be proved, one finds
that for I<p<2n

CY-GRsCEeGE)
G006

and hence identity (1) reduces to

G-

for every p=1, ..., 2n. In order to prove (2) use the identity of the preceding
problem with respect to the following values:

(I) a=0,b=-1,andg=12n,

(Il a=x,b=1+x,and g=2n-p.

Klag

But

In case I it can be seen that

E Ty

while in case II it follows that

A I S
i=0

A
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Multiplying both sides of (4) by (1 +x)*" and equating coefficients of x”, one
obtains '

SR )
)

and thus one can write

SO e () £ Q0T

By using (3) it is seen that the right-hand side is (p) , which establishes (2) and
hence Dixon’s formula. [See W. Ljunggren, Nordisk Mat. Tidskr., 29 (1947),
35-38.]

Another proof is based on Problem 1.6. By taking /=m=n it can be seen that

> (3n)!
(- < +k> e

_kzn 3__—n2"__k<2n3
L= <n+k> =07 X (=0 )

from which Dixon'’s formula follows.

[Ing!

But

But

1.9 (a) First note that

+x+x?)={(x+1)+x*}"

=(x+ 1)"+<'11> (x+1)"*1x?

+(;> (x+1)"2x*+ - 4x,

This implies that the coefficient of x" is equal to

_ n\/n—1 n\fn-2 n\/n—k
a0 G R (ol B g
nin—=1) nin—1)n—2)n-=13)
DY
nn=1)-(n—2k+1)

(k1)?

The exact form of the last term depends on the parity of n. This coefficient can

=1+
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2R n
@=L ey k)
(b) First show that ay=a,,_;. Then set x=1/y and multiply both sides of
the expansion by y*". It follows that

also be written in the form

(P+y+ 1) =aey+a3* '+ 0 +ay,.
Comparison with the first expansion yields a,=a,,_; for k=0, ..., 2n. Now
substitute — x for x and obtain

(I—x+xN'=ag—a;x+a,xt= - +a,,x¥"

By multiplying each side of this expansion by the corresponding side of the
expansion in the statement of the problem one sees that

4n
(L+x2+x4'=Y (= Daga—a1ae- 1+ +(— 1}aaq) X~
k=0

The expansion of the right-hand side must contain only even powers of x,
because the left-hand side also has this property. Thus the coefficient of x2"~!
in the right-hand side is zero or:

~(AgQan—1 = 010302+ Q202,_ 3~ " ** — 03y 1Go)
= —(apa, —a10,+ a3a3— "'+ —A3,-102,) =0,
which is (b).

(c) In order to prove (c) one substitutes x2 for x in the expansion of the
statement of the problem and obtains

(14+x24+x¥=ag+a;xt+ax* + -+ +a,,x*"

The coefficient of x2" in this expansion is equal to a,. Recalling the expansion
previously obtained for (1 +x2+ x%)" it can be seen that this coefficient is also
equal to

2 k 2
Aglyn=A1l3n_1 +0A3l3q_p— " * +0y,00=2a3 =20} +2a3~ -+ +(—1)"a?,

from which (c) follows.

(d) Multiply both sides of the equation in the statement of the problem by
(1—x)"to obtain

(1=x3=(1=x)"ag+a;x+axt+ -+ +a,,x*",

and hence

MY A (MY e o gy [T Lo
1—<1>x +(2>x +(-1) (n>,\
={1—<n>x+<n> X (1) (n) x"} (@o+a;x+ -+ +ayx".
1 2 n
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If p is not a multiple of 3, the coefficient of x? on the left-hand side is zero, but
if p =3k, this coefficient is equal to (— 1)(}).
On the right-hand side this coefficient is equal to

n n n
aP—<1> ap-1 +<2> Qp-2— """ +(_1)[J <p> do,

which establishes (d).
(e) Bytakingx=1and x= —l intheexpansion of (1 + x+ x?)" one finds that

Ag+a;+a,+ " +0a5,=3"
and
Ag—ay+a;—~ "' +dy,=1.

Adding and subtracting term by term, (e) is obtained.

(f) Toprove(f),leta=(—1+ iﬁ)/z, one of the cube roots of unity. It follows
that 22 =(—1—i/3)/2 and 1 +o+0a?=0. By replacing x with « one sees that
(1 +o+a?)"=0, and hence

Ag+a,0+a0+ <+ +a,02"=0.

After equating the real and imaginary part of the left-hand side to zero and
using the notation

S1=ao+aa+as+...,
S2=a1+a4+a7+...,
Sy=ay+as+ag+ ...,

it can be shown that

S+ 3,
-_— -—=0’
Sy 3
3
L (5,-50=0,

whence §; =S, =S5,. But §; + S, +S3=3", and hence (f) holds.
(g) Set x=1iin the given expansion to obtain

M=8;=S3+iS2—S4)
where
Si=ap+as+ag+ ..., S;=aj+as+ag+ ...,
Si=ay+ag+a; o+ ..., Ss=as+as;+ay + .. ..

By equating real and imaginary parts one obtains, by virtue of (e), the follow-
ing cases:

(1) n=0(mod 4) when S,=5,=S,=(3"—1)/4 and S, =(3"+3)/4;
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{2} n=1(mod4)when §;=S,=S5;=(3"+1)/4and S, =(3"—3)i4;
(3) n=2(mod4)whenS;=S,=S,=3"~-1)/4and S;=(3"+3)/4;
(4) n=3 (mod 4) when Sl =S3=S4=(3n+1)/4 and S2=(3n—‘3)/4

Thus three sums are equal and the fourth differs from them by one.

(h) Use induction on n, recalling that ay=a,,-4 for 0<k<n. For n=2,
it follows that ay=a,=1; a,=a;=2; a,=3 and the property is satisfied.
Suppose that the property is true for every exponent 2<m<n (n=2), and let
(1+x+x2 " =bo+ b x+byx?+ - +byyex? ™2 Since (1 +x+x2N*!
=(ao+a X+ +ay,x?"(1 +x+x?), it follows that b,=a,+a,_;+a,_, for
every 0<p<2n+2. Take a_,=a.,=a3,+1,=03,+2=0. If p<n or p=2n+2,
one sees immediately that b,>b,_, or b,>b,,, respectively, by using the
previously established recurrence relation and induction hypothesis. It remains
to show that

bn+1>bn and bn+l>bn+2'

The first of these inequalities can also be written a,, ; +a,+Gy— >0+ @y~ +
Gy O Gyy (> d,-,. But a,_,=a,., and the inequality becomes a,+, > a,. 1,
whose validity follows from the induction hypothesis. The second inequality is
true because b, ,=>b,.

1.10 Use induction on n. For n=1 we note that §o=S;= -+ =§,,=1 and
Sm+1=0and the formula is verified, since 1 +i=0 (mod m+2) and 0<i<m+1
imply that i=m-+1. Assume that the formula is true for every exponent
p<n—1. Consider the expansion

(T4x+ o X" =by+ byix+  + by X",
It follows that
Ao+ aiX+ = A X" =(bg+ by X+ b XTI x e +x™),
from which the recurrence relation
ag=b;+bi_,+ " +b_, (1)

is obtained, Here b;=0 for j <0 or for j>m(n—1).
By recalling the definition of the sum S, one is led to the recurrence relation

Si=TE+T;—1+-”+T;'—ms (2)
where
Ti=bi+bivimen+biv2mey+ "o
and in (2) the index of T is computed modulo m+ 2. Two cases must be analyzed:

(a) niseven, It follows from the induction hypothesis that the expression
forthesum S;is valid if p=n—1,and hence if n—1+i=0(mod m+ 2), thesum T,
1s smaller by 1 than the other sums, which have the same common value. Since
relation (2) holds, it follows that the sum S; [where j=i— 1 (mod m+2)] is one
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more than the other sums, which have a common value. Thus j=i—-1=—-n
(mod m+2). This means that j+n=0 (mod m+2) and S;={m+1"=1};
(m+2)+ 1. But the other sums are equal to {(m+ )" = 1}/(m +2), since S¢ +§, +
e+ S =141+ +1V=(m+1)" It follows that the property is true
for n.

(b) If nis odd. then from the induction hypothesis one can conclude that
the sum T; is greater by one than the sums with a common value. As in (a), one
can show that the sum §;, where j+ n=0(mod m+ 2) is smaller by one than the
sums with a common value.

Thus
.=(m+1)"+l _q
! m+2 '
but the other sums are equal to
(m+1Y+1
m+2

In both cases the expression for the sum S, is valid for n and hence the property
is true for every natural number n. If m=1, then Newton’s binomial formula

yields SO=<8>+<§> +<2>+ o
=)0
o0 -

The property just established implies that for every n. two of these sums are
equal, and the third differs by one. For m=2 one obtains property (g) from the
previous problem.

1.11 Recalling the rules for removing parentheses, one sees that the desired
coeflicient is equal to the number of ways in which k can be written as the sum
of two non-negative integers:

k=a1+a2

where 0<a,, a,<n—1. Two representations will also be considered to be
distinct if they differ in the order of their terms. If 0<k<n—1. these k+1
representations are O+k, 1 +(k—1),..., k+0. However, if n<k<2n-2, the
representations 0+ k&, 1+ (k—1),..., (k—n)+nand those obtained by permuting
two terms do not satisfy the condition a,, a, <n—1. Thusin this case the number
of representations is equal to

k+1=2k—n+1)=2n—k—1,
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Note that in both cases the coefficient of x* can be written in the form
n—in—k—1|.

1.12 The values a,, . . ., a, are obtained in the following manner: Let a,
be the largest integer x which satisfies the inequality

()

Denote by a, the largest integer x such that

e

Finally, a, will represent the difference

o8- (e

It will be shown that a;>a,; the remaining inequalities a, >a;> - >a,
can be established similarly. The fact that a,> 0 follows from the definition of
a,-. First note that

<a1+1>>n and similarly n—<a1>>< 2 )
r r r—1

Thus we can make:

a+ly_(a > % that is 4 > ®
r r r—1/ T A\r—1 r—1/

This inequality implies that a, >a, (by use of the definition of the binomial
coeflicients).

Suppose that there exists a representation of n as a sum of binomial coef-
ficients different from that given in the statement of the problem

O R R I

and with (a,....,a)%#(by,..., b,). One can suppose for example that a; > by,
since if a, =by, the corresponding terms can be reduced, and this procedure
can be repeated for a, and b,.

Since by >b,> - -+ >b,20. it follows that by —izb;,, fori=1,...,r—1
and hence

() (=0

In view of (1) this last inequality implies that

()G (0) ®
r r r—1 l
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()

and thus inequality (2) implies that

by +1 < b, N by—1 +”'+<b1—(r-—1)> 3)
r S r—1 1

By applying the recurrence relation for binomial coefficients it follows that
b, ~1 b, —1
by+1 b, + by =b1 s (O
r r r—1 r r—1 r—2
=.”=b, +b1—-1 +_“+b,—(r—1) +<b1-(r—l)‘
r r—1 1 0

which contradicts inequality (3).
Thus the values ay, . . ., a, are uniquely determined and the result is proved.

Since a; 2 by + 1, we see that

1.13  The identity can also be written

(x+y)2ﬂ= Z <2n—k‘—1

k=1

The coefficient of the term x2"~™y™ obtained by expanding (x + y)2" with the
help of Newton’s binomial formula is equal to (2":'). On the right-hand side,
recalling the expansion of (x+3)* and the standard binomial formulas, one
finds that this coefficient is equal to

= (2n—k~—1 k k
alr, m}=k§1 < n-1 )[(n—m) * <m—n>]'
Il n=m, then

amm=2 3 2n—k-1 -2 2n-2 N 2n-3 I n—1
k=1 n—1 n—1 n—1 n—1
[(2»1—1) <2n—2> <2n—2> <2n—3)
=2 - + - +
n n n n
(7)-6)-G2)]
+ —| )+
n n n—1
- 2n—1 _ 2n
n n)’
and the equality of the coefficients is established.
If for example m< n—1, then (m"_n)=0 and it must be shown that

by Gy R

) ok Yy R+ p)k.
n—1
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2 . . . .
But (2":'"‘) is the number of strictly increasing words ¢, ¢, * €gpoml€; <Cy<

<C3.-m) formed with letters of the alphabet {1, 2, ..., 2n}. Denote by 4, the
set of those words with the property that ¢, ;=k+ [ for k=1, ..., n. Since
m<n—1, we obtain n—m+122 and thus k+ 1> 2, from which it follows that
k=1.

Similarly 2n—-m—(n—m+1)=n-1, and thus the maximum value of k+1 is
2n—m—(n—1)=n—m+1<n, since the word is strictly increasing and m>1.
But if m=0, the coefficient of x2" in both sides is equal to 1 and the equality is
thus verified. 1t follows that the set of strictly increasing words ¢,¢; " Capm
formed with letters of the alphabet {1, ..., 2n} can be written U, _, 4. Thus

2n
<2n—m>= = Zl 44 @)

where the sets A, are pairwise disjoint.

If ¢,—m+1=k+1, then the letters ¢y, . . ., ¢,—,, are chosen smaller than
Co-m+1, and thus ¢; - ¢,-,, is a strictly increasing word formed from letters
of the alphabet {1,...,k}. The word ¢p—pm+ 3 " Can—m IS @ strictly increasing
word of length n—1 formed with the letters of the set {k+2,...,2n} of cardi-
nality 2n—k— 1. Thus the word ¢, * - * ¢,.,, can be chosen in ( * ) ways, and the

m)

- . . n m . . .

word Cy—m+ 2" Can-m CaN be chosen in (2""_"1 !y distinct ways, which implies
that

N ) B

Identity (1) now follows by the application of (2).
If m=n+1, one obtains (,,f,,,) =0, and thus, by making the change of variable
p=2n—m<n—1,(1) can be written

él <2nn_ —k 1_ 1)(*? f p> - (2'722 p)’
£ )0

2™ in this case. [L. Toscano, Boll. Soc. Math.

One also sees that a{n, m)=(]
Calabrese, 16 (1965), 1-8.]

or

1.14 One can write

n-—-1 _ (n=1)!
( L >(k+l)!_(—n—k—1)!(k+1)

(n—1)! n! (n=1)!

Sm—k—y ke D =r e - n—k=2)!

for 0< k< n—2. The desired sum then becomes
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=1\ ! n! (=0 | el
kgo( k) (k+1)!= kzol:(n—k—l)!—(n—k—Z)!]n +n!

N

="i‘ n! "_I_k_"‘z (n=1! .
k=0(n'—k—1)! k.—.o(n—'k—'Z)!

< =1 n~k i~ (n_'l) n-1-k
=" +k-—1 (n—k-1)! 5 kzo(n—k 2]'n
=n".

[J. Riordan, Ann. Math. Statist., 33 (1962), 178-185.]

1.15 The n, objects in the first box can be chosen in (, ) ways. the n, objects
in the second box can be chosen from the n—n; remammg objects in ("], )
ways, etc. The total number of arrangements is equal to

n\{n—ng\(n—n,—n, R—Hy— """ —Np_y n!
ny nq n, n, nlnglooong!

1.16 Consider the product
(aj+a+ - +ap)ai+ad+ - +a}) @i +a5+ 0 +a))

= Z (611 alz . aln;)(all an . aé"l) o (a;‘ akz e a;"v).

where the upper indices do not indicate powers, and

(i, 0y in bu o Ulky, koo k)
is an ordered partition of the set {1, ..., n}, which may contain empty classes.
By taking note of the upper indices of each parenthesis in the last sum indicated,
one sees that it represents an arrangement of the set of objects {I,...,nlinp
boxesyi,yz ..., ¥y, Suchthat y, contains n, objectsfor k=1, ..., p.Infact,ifone
takes objects iy, .. ., I, in box yy,..., objects ky, ..., k,, in box y,, then such

an arrangement is also obtained. By using the rules for removing parentheses,
it turns out that these are altogether

n!
nylngl. . ong!
arrangements of n objects in p boxes which contain ny, ..., n, objects respectively.
Take a} =a?= -+ =a=aq; for every 1 <i< p; the sum under consideration
becomes
n
Sy ( > atdy. .. ape.
Myeinps0 gy e oy 1Ty
n+ rtnp=n

where the upper indices now indicate powers. This follows from the fact that
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for each representation of nin the form n=n;+ + -+ +n,, there are
n
T

1.17 According to Problem 1.19 there are (';‘:11) representations of m as the
sum of & positive integers. Let s; denote the number of terms equal to 7 in a sum
of this type. It follows that s; + -+ +s,=h and s; +25,+ *+ +ks,=m, where
k represents the largest term of the sum.

If the numbers s; having this property are fixed. then the number of ways in
which m can be written as a sum of h positive terms such that s; terms are equal
to ifor i1 is equal to the number of arrangements of a set of h objects into &
boxes, such that the kth box contains s, objects. This last number is given by

h
Sty o -y Sk

Thus the proposed identity is true, since it has been shown that both sides are
equal to the number of different representations of m as the sum of & positive
integers.

1.18 Let N={1,...,n}, R={1,...,r}, and C(N, R) the set of increasing
functions f:N—R. Identify the increasing function f with the increasing word
byby - b,, where b= f(i)for i=1,...,n Since S is increasing, it follows that
1<bh <hy g - b, <rfor 1Kign.

Consider a mapping

terms equal to aj'a? - - az.

F:C(N, R)»P,(X),

where P,(X ) is the family of n-element subsets of the set X ={1,2,...,r+n—1}.
The function F is defined by the equation

Fbyby - by)={by, by+ 1. bat+2..., by+(n—1)).

Because b;<b,< - <b,, it follows that b, <b,+1<b;+2< " <b,+
(n—1),and hence the image of a function f under F is in fact an n-element subset
of X.

MU bbby b,#cy05 - ¢, are both increasing words, then there is an index
i such that, for example. by =c, ..., b;_y=c¢;-; and b,<¢; where 1<i<n,
This implies that b;+(i—1)<¢;+(i—1) and b;+(i—1)¢ F{c, " c,). One can
conclude that F(b, -+ b,)#F(c; - ¢,) and thus the mapping F is injective.
If Yo X satisfies |Y|=n. take Y={y;, ..., y,} and 1<y; <y;< - <y, <
r+n-—1.

Let b;=y;—(i—1) for every 1 <i<n. Then b;<b,< -- £b, and b; € R for
every 1 <i<n. Using the definition of the function F, one finds that F(b; - -+ b,)
={yy, ..., ¥n}, from which it follows that F is surjective.

Since F is bijective, it can be inferred that the number of increasing functions

fiN—»R
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is equal to |P(X)|=("""""=[r}"/n!.

n

1.19 Define the partial sum
p
Sp= 0. Uk
k=1

for every 1< p<n—1. Each representation of m as a sum of n integers corre-
spondstoa word sys, " 5,—y, SINCE Uy =S¢, Uy=m—S,—, and u, =S, — S for
2g<kg<n—-1.

If u; 20 for every i, it follows that

0<s <5, 7 €5 Smy

hence the desired number is equal to the number of increasing words of length
n—1 formed from letters of the set {0, 1,..., m} of cardinality m+ 1, that is, the
number of combinations of m+ 1 things taken n~ | at a time with replacement
(see Problem 1.18), and hence to

[m+1]""1 =<m+n—1>

(n=1)! m
If u;> 0 for every i, then the word s, * ' * 5, is strictly increasing, since
1<s; <8< <§pySm—1.

It follows that the number of ways in which m can be expressed as a sum of n
positive integers is equal to the number of strictly increasing words formed from
n—1 letters of the alphabet {1, 2, ..., m~ 1} and thus has the numerical value
(2

1.20 The multinomial formula implies that

n
(X1+X2+"'+-xp)"= Z < >x’1"...x;".
LTI ()

Ryyeo,npz0

nyt+ o +np=n
Hence the number of monomials in the expansion of the polynomial
{(x;+ - +x,)" is equal to the number of representations of » in the form

n=ng+ - +n,

where each n; is a non-negative integer, and the representations are considered
different if they differ at least in the order of their terms. From the previous
problem, one can conclude that this number is also equal to the number of
combinations n+ 1 take p—1 with replacement. Tt follows that the number of
terms is equal to

(n+1)(n+2)"'(n+p—1)_(n+p—1)
(p—1)! p—1 )

For p=2 there are (":1)=n+1 terms; this can also be shown by using
Newton'’s binomial formula.
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o f(x)=2{<xgl>+<le>+"'+(X;1>}

If m<n, it is the case that (7)=0. This together with the formula for the sum of
binomial coefficients implies that f(x)=2" for every 1 <x<n-+1, x an integer.

The highest-degree term of the polynomial f(x)is contained in the expansion
2(’:1)=2{(x— 1)-+(x—n)}/n!, and thus has degree n. Since the polynomials
f(x) and P(x) are both of degree n and take the same values for n+1 distinct
values of x, it follows that they are identical. Thus

P(n+2)=2{(”gl>+(”41’1>+ +(”:l>}=2(2"+1—1)=2"+2-z.

[M. Klamkin, Pi Mu Epsilon, 4 (1964), 77, Problem 158.]
1.22 Let the left-hand side be denoted a,. Then

i ant" = i mt™ k= ti L k=——tk—-=r"(1—t)‘2"
n=0 ’ m=0 de\l—t (1_t)2k .

Expanding (1 —t)~ 2 by Newton's generalized binomial formula, one sees that
the coefficient of " in the expression (1 — )~ 2* {s equal to

(_”"_k<-2k)_(n+k—1)(n+k—2) k12K (et k1)

n—k (n—1)! TRk—=Dln-k)!
n(n? =12+ {n? —(k—1)%}

(2k—1)!

1.23 The coefficient of x” in the expansion of (1 +x+x*+ )" will be
equal to the number of ways in which r can be represented as a sum of n non-
negative integers:

F=ry+ry+ 0 41,

(n+r'— 1).

It follows from Problem 1.19 that this number is equal to

1.24 The formula
1 x? x"
log——=x+—+ """ 4+—+
1-x 2 n
implies that 1/n is the coefficient of x” in this expansion. But log{l/(1 —x)}
=log(l+x+x2+ - ). and hence the coefficient of x" in the expansion of this
logarithm coincides with the coefficient of x” in the expansion
(x+ - +x")?

log{l+(x+x%+ + +x"}=(x+x>+ -+ +x")— et

F(=1yt ("+_+_’Q+
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Now consider powers smaller than or equal to n. It turns out that the coef-

ficient of x" in the expansion (— 1)?*!(x+ - -+ +x"¥/p is equal to
IRIRRIe <f'1+ +fn>l
j1$ A ’jn p

where the sum is taken for j;2 O withj, + -~ +j,=pandj; + 2/, + - - +nj,=n.
(This deduction requires the use of the multinomial formula. See Problem 1.16.)
However, this coefficient is equal to

Z (__1)-/1““" Fintl (jl +]2+ e +Jn—1)‘ )
Jitjabat
By substituting for p the values p=1, ..., n, the sum on the left-hand side of the
statement of the problem is obtained. [J. Sheehan, Amer. Math. Monthly, 77
(1970), 168.]

1.25 For natural numbers n; and n; such that n;zn;+ 2, one can show that

(L)
G0

The recurrence relation for binomial coefficients further implies that this is
equivalent to (Z[)>(,”,). The last inequality follows from the fact that
n;~1>ny. It implies that the desired minimum is attained when the numbers
ny,...,m satisfy the inequality —1<n—n;<1 for every i, j=1,....k ie, r
numbers are equal to t+1 and k—r numbers are equal to ¢t=[n/k]. Similarly,
in order to obtain the maximum one must show that there do not exist two
numbers n;, n; which are both greater than 1, since, replacing them by n;+1
and n;—1 respectively, one would obtain a larger sum. Thus the maximum is
attained for a representation of nin theformn=(n—-k+ 1)+ 1+ -+ +1,

or

1.26 Consider the parts my, m,, ..., m; in the representation of n in the form
n=my+ - +m

which maximize (for fixed k) the products indicated in (a) and (b). We show
that these are as nearly equal as possible, that is,

for every i, j=1, ..., k. Infact, if the contrary is assumed, then there are two
indices i and j such that m;Zm;+ 2. In this case, one can write

(m;—U(m;+ 1) =mm;+m;—(m;+ 1) >mm;,

which contradicts the maximality of the product mym, ... m,. In the same way
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(3

and this is equivalent to (m;—2)(m;+1)>mm;—1). By reducing terms in the
same way one sees that m;>m;+1 and the inequality is true by hypothesis.

Thus the product
my \(m; my
202/777\2

cannot be a maximum, and this observation completes the proof of inequalities
(1).

Now consider the case (a) for an arbitrary value k. One finds that max
(my, ..., m)<4, since in the contrary case one obtains 5< 3 x 2, and this con-
tradicts the maximality of the product under consideration. In the same way
one cannot have m;=m;=4 since 4 x4=16<3 x3 x 2=18. There do not exist
three numbers m; equal to 2, since 2x2x2=8<3x3=9. Note that 2x2=4,
and thus almost all numbers my, ..., m; are equal to 3. It may be that a single
number m;=2, two numbers are equal to 2, or a single number is equal to 4.
Thus, denoting by A(n) the maximum value in case (a), one can deduce that

3n/3 for n=0 (mod 3),
An)=14x3""93 for n=1 (mod 3),
2x 37723 for n=2 (mod 3).

Now we proceed in a similar manner for case (b), by first showing that
max (my, ..., m) <7 Infact, if there is an m, > 8, then

m (5 m—5

)2 ( 2 )
which is equivalent to m? —m < 10(m—5)(m—6), or 9m* — 109m + 300> 0. This
trinomial has two real roots in the interval (3, 8), which establishes the given
inequality. Thus if there exists an m;> 8, then the product of the binomial coef-
ficients from (b) cannot be a maximum, since one can replace the part equal to
m; by two parts equal to 5 and m;—5 respectlvelgf and the product of the bi-
nomlal coeficients therefore increases. Smce( (2) ( )( ,and (2 )>(2( ),
it follows that for n< 7 the desired maximum is equal to (3).

1f n238, in the case of the maximum it follows that max (m,, . .., mJ<6,

since in the opposite case there exists an m,=7. But relation (1) implies that
there must exist at least one number m; which is equal to 6 or to 7. For m;=6,

(LN

Similarly one finds that

w0 <CIEIE)-o

it can be shown that
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and thus the maximum cannot be obtained for (b).
Further observe that at most two of the numbers n1; can be equal to4 or to 6
in view of the inequalities

s 9 H2N
NERAREES

If n> 8. neither of the numbers m, can be equal to 2 or to 3. For example, suppose
that there exists an m; =3, It follows from (1) that there must also exist a number
m; €{2, 3.4} and hence

) -
AR

In conclusion, almost all numbers m; are equal to 5, but at most two of them
are equal to 4 or to 6, so that relation (1) is satisfied.
Let B(n) denote the maximum in case (b). Then:

B(n)=<;> for n<7,

and for n> 8 the following identities hold:

(1) Bn)=10"forn=0(mod S) and m;= -+ =m;=35;

(2) Bn)=15x10""%5 for n=1 (mod 5) and m;=6. my= """
=m,=3;

(3) B(n)=225x10""125for n=2 (mod 5) and m; =m,; =6, my= - -
=m,=35;

(4 B(n)=36x10""8" for n=3 (mod 5) and m=m,y=4, ny= -
=m,=5;

(5) Bn)=6x10""%Sforn=4(mod S)andm, =4, m,= -+ =m,=5.

Consider

k "
max max |[{,}
lskgnng+ - +ng=ni=t h
It can be shown that for n sufficiently large, the maximum is attained for a

representation of n which satisfies (1). Also almost all the numbers m; are equal
to 2h +o(h). The function o(h) satisfies the relation

1 @:

1
h—wlin h 2
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[1. Tomescu, Discrete Mathematics, 37 (1981), 263-277.]
For example, for h=3 almost all numbers m; are equal to 7 for n sufficiently
large.

1.27 Using the standard formulas for binomial coefficients, the inequality

becomes
ny=x\ =y 2h
h=x J\ h=y )" \x+y/

Since n, =3k and n, 2 3k, it is sufficient to show that

Gy

Let x+ y=k (constant) where 0< k< 2h. Then

3h=x\(3h=y\ (3h—x\3h—y
h—x )\ h—y )\ 2h 2h
(Bh—x)3h=y)3h—x—1)3h—y—-1) - (h—x+1)h=y+1)
(@h))? '
By grouping the factors two by two in the order in which they are written
it can be observed that their sum is constant and equal respectively to 6h—k,
6h—k—=2,...,2h—k+ 2. Thus the products become minimal when the factors

differ to the largest extent possible among themselves.
One can distinguish two cases:

(a) k< h.In this case the products of the two factors become minimal simul-
taneously for x=0,y=k or x=k, y=0. Let x=0, y=*k. In this case it is sufficient

to show that
3nN\(3h—k 2h
P .
h h—k k
3h>> 2h —max 2h S 2h
h h) o \k/)T\k)

and hence the inequality is established in this case, since (3,,"_',"‘)2 1.

(b) k>h. Here the products of the two factors become minimal simul-
taneously for x=k—h, y=h (or x=h and y =k—h), when one shows that

(500

Recall the standard formulas for binomial coeflicients. It suffices to verify that

4h—k 2h
P .
2h—k 2h—k

But
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But 4h~k>=2h, so k<2h, and the inequality follows from the monotonicity
of the binomial coeflicients. The prool also establishes that equality holds
only when k= 2h, that is, for x=y=#.

1.28 Let X be a set with nk elements, and
X =A1 vt U Ak

a partition of X in which the sets 4,,..., 4, each contain n elements. The
number of p-element subsets of X is equal to (":).

We show that the left-hand side of the equality under consideration also
represents the number of p-element subsets of X. Consider a p-element subset

YcX and thesets YnA,, Ynd,, ..., Y4, It follows that 0<|Y n4|<n
foreveryi=1,..., k Let o; denote the cardinality of the set of numbers equal to i
in the sequence |Y n4,|,|Y n4,|,...,|Y n 4. It follows that

oy +20,+ 0 o, =|Y|=p.

If the numbers &, a5, ..., , 20 are fixed, then it is possible to select j elements
in o; sets among A4, ..., 4, in ('J'.)“J ways for j=1,2,..., n. The union of these
elements is the set Y. On the other hand, one can select a; sets from among
Ay, ..., Ay, a4 sets from the remainder, and so on, in

s (s )

k! (k—oy)!  (k—oy— =, y)!
Colk—oy)! aplk—ay—ag)! a{k—( o +a)!
k!
Tl k=g e o)}

distinct ways.
Thus the number of p-element subsets of X can be written as the sum of the

numbers
k! n\*: n\*
oyl k—{oy + e e L n
over all representations p=a; + 2z, + ' ** +na, where the «; are non-negative
integers. If oy =p and oy, = -+ =0, =0, then k>a;+ - +a,, or k=p. For

p=»k—1 one obtains an identity due to I. M. Voloshin (J. Combinatorial Theory,
Al2(1972), 202-216).

1.29 (a) We prove equality (a) by induction on n. For n=1 both sides are
equal to x+ y+ 1. Differentiating with respect to y, one sees that
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¢ n n—1
;,—-(x+y+n) =n(x+y+n)
Y

=n{x+(y+1)+(n-1)}"!
J « (n k=1(. 1 v _ p\n—k
o S (k) x(x+kF Yy +n—k)

"k=0

—Z<> (x+k}Hn—k)(y +n—ky=*1

k=0

=n Z (n—1> x+k)k 1{(y+1)+(n_1)_k}(n_1)_k.

By the induction hypothesis the two right-hand members of these equalities
are equal.

In order to prove the first Abel identity it is sufficient to show that (a) holds
for a particular value of y, such that (y +n—k)"~* is defined for k=n, and hence
for y#k—n. Choose y= —x~n. The right-hand side vanishes, but the left-
hand side is equal to

i() (x+ k¥ Y —x—k)" xi() — 1 x+ k)"
K=o

wex (M (n=1Y

Gl )kx f

n—1 n n
n=j _1n-kkj

0< J )X kgo( ) <k>

-1\
(” , )x""n!S(j, n=0,
0 J

since the Stirling number of the second kind S(j, n)=0 for j=0, ..., n—1.
{b) The left-hand side of identity (a) can be written as follows:

I lI
x
(] L}
LA

n

r
n

J

y () (x+kfYy+n—k)" % Yy+n—k)
K=0
=i <Z) X(X+k}k ly(y+n_k)n—k—l

+y (:) x(x+ Yy +n—ky k" n—k.

k=0

Again by using (a), the second term of this sum is seen to be equal to
n-1 n—1
2 o XX T+ D+ (= D= D

=nx+(y+1)+n-1)"t=nx+y+n"L
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Thus

n

S <Z> x(x+kF Ty Fn=k T T = (x4t y 4+ —n(x+y+n)T!

k=0
=(x+yx+y+nL,

from which (b) follows by dividing both sides by xy-.
(c) If(L/x)(y+n)""t+(1/y)x+n)"""issubtracted from both sides of identity
(b), then

n—-1

> <Z> (x+ k)~ Hy+n—k) ¥ 1=

k=1

1
. {x+y+m" ' =(y+n"" 1

1
+}—) {(x+y+n"'—(x+n""1}
By taking the limit on both sides as x—0 and y—0. (c) is obtained.

1.30 Let y=0 in the first Abel identity, and equate the coeflicient of x
in both sides.

1.31 1If fi(n) and fy(n) are solutions of the recurrence relation
Sfin+2)=af(n+1)+bf(n), 1)

it will follow that for every two real numbers C,; and C, the function h(n)
=Cy film)+ C;, f5(n) is also a solution of equation (1). In fact, since fi(n) and
Jo(n) satisfy (1), one can conclude that

C1in+2)+ Cy f3(n+2)=C{afi(n+ 1)+ bfi(n)} + Co{afs(n+ 1)+ bf3(n)}
=a{C, filn+ 1)+ C, foln+ D} +b{C, fi(n)+ C1 f5(n)},

or h(n+2)=ah(n+ 1)+ bh(n). This is equivalent to saying that A(n) satisfies
relation (1).
Now we show that if r, is a root of the quadratic equation

rP=ar+b, (2)

then the sequence 1, ,, 7%, ..., %, ...is a solution of equation (1). Let f(n)=r1;
then f(n+1)=r{"! and f(n+2)=r,"2 Substituting these values in (1), one
sees that

it i=aritt+bry,

since a simplification of # yields r?=ar, +b. The assumption b+#0 implies
that r; #£0. If the characteristic equation (2) has two distinct roots r; #r,, then
Sfi(n)=r7 and f,(n)="r% are solutions of equation (1).

Recall that for all real numbers C, and C, the function f(n)=Cri+Car}
is a solution of the recurrence relation (1). Now we show that every solution of
(1) has this form. First observe that every solution of (1) is uniquely determined
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by its initial values f(0) and f(1). It is thus sufficient to show that the system
ol equations

Ci+Cy=f(0),
Ciry+Cory=f(1),

has a solution for every choice of f(0)=b, and f(1)=b,. The solution of the
system, when r; #r,, is given by

S =r, f(0) C,= ri f(0) f(l

C1= .
ry—7r, Fy—7,

and thus the proof of case (a} is established.

However i r;=r,, then from the system of equations one finds that
C,+C;=f(0) and C,+C,= f(1}ry. This latter system is, in general, incom-
patible. Now we show that in this case equation (1) also has the solution
f>(n)=nr7 in addition to fi(n)=r]. In fact, if the quadratic equation

ry=ar+b

has a double root, it follows [rom Viéte’s relations that a=2r,, b= —r?, and
thus equation (2) can also be written

r2=2rr—ri. (3)
The recurrence relation (1) thus has the form
fin+2)=2r, f(n+1)—rif(n). (4)
Verify that [ ,(n)=nr] is a solution of (4). Observe that
Hin+D=(n+2r1*2 and  foln+D=m+ Dt
and thus (4) becomes
(n+ 2t i1=2n+ )" 2~ nri* 2,

which is an identity.

Thus fo(n)=nr] is a solution of recurrence relation (4). One can conclude by
similar reasoning that f(n)=C, fy(n)+ C, f5(n)=r{(C;+ C;n) is a solution of
(4). The constants C; and C, can be chosen so that f(n) satisfies arbitrary initial
conditions for n=0 and n=1. In fact one obtains the system

Cy=f(0),
riCi+Cy)= f(1)

which has the solution C, = f(0) and C,={f(1)—r, f(0)}/r,. Thus the general
solution in case (b) has the desired form. In general, for a linear recurrence
relation with constant coeflicients of the form

Sint+ky=a, fin+k-1)+ - +a,f(n (5)
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the characteristic equation can be written
)’k =a, )’k— ! + o+ ay.

If the roots of this equation are ry, . .., r; and their multiplicities are respectively
mi, ..., ms, where my+ - +my=k, one can show similarly that the general
solution of (5) has the form

f(n)='—21 (Ciy+Cian+ - +C,-_,,|In"‘"1)r;‘.

The constants C, 4, ..., C;,, for I<i<s are uniquely determined by assuming
that the general solution f(n) satisfies the initial conditions f(0)=b,, . . .,
flk=1)=by .

1.32 Let a, equal the number of ways of making the purchases described
in the statement of the problem. In the first instance there are three possibilities:
the student buys a bun and thus there still exist a,— , possible purchases with the
n—1 remaining dollars. He buys an ice cream, and thus he can spend the rest
of the money in a,_, ways. Similarly there are a,_, ways of spending the rest
of the money if he has bought a pastry. It follows that

an=an—1+2an—2

for initial values a, =1, a, =3 (two buns on two consecutive days, an ice cream
or a pastry on the first day).

In order to solve this recurrence relation one must use the characteristic
equation (see Problem 1.31)

r?—r=2=0,
which has solutions r; =2, r, = — 1. The general solution has the form
a,=C 2"+ Cy(=1)",
where C, and C, are determined by the system
2C,-C,=1,
4C,+C,=3.
Thus C, =%, C,=1, and
a,=42" t+(=1)}.

1.33 Cover the rectangle with dominoes by starting from the side AD of
length 3. One obtains one of the cases of Figure 1.1, In the last two cases, a

A A A A A—W/M
D D D D| —V //ﬁ D

Fig. 1.1
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A B ,?
|

b c D21 c

Fig. 1.2

B

square with side 1 remains uncovered in the 3 x 3 square with side AD. It can
be covered in a unique way by the striped domino. Thus
U2n+2)=3U02n)+2V{2n-2), (1)

where V(2n) denotes the number of ways in which one can cover the figure
consisting of a rectangle ABCD of sides 3 and 2n to which one has added a
rectangle with sides 2 and 1, by attaching its long side to the side AD of the
rectangle.

From Figure 1.2 it follows that the additional domino can be covered in two
ways, and hence

V(2n)y=UQ2n)+ V(2n—2). 2)

Now in (1) use the expression for V(2n—2) given by (2) to obtain U(2n+2)
=3U02n)+2U(2n—2)+2V(2n—4). From (1) it follows that 2V (2n—4)= U(2n)—
3U(2n-2), and thus the relation becomes U(2n+2)=3U(2n)+2U(2n-2)+
U(2n)—3U(2n—2). This establishes the linear recurrence relation

U2n+2)=4U@2n)— U2n-2). (3)

By a simple argument one can deduce that U(2)=3 and U(4)=11. The charac-
teristic equation of the recurrence (3) is r2 —4r+ 1 =0, with roots r1_2=2i\/§,
and thus the solution of the recurrence (3) is

U(2n)=C1r'1' +C2r;

The constants C, and C, are determined by recalling the values U(2) and
Uy

U2n)=C,(2+J3)"+ C,(2-J3)",
where
V3t and Cz————-\/g_ :
23 2J3

[I. Tomescu, E 2417, American Mathematical Monthly, 80(5) (1973), 559-560.]

=

1.34 Consider a word of Jength n— 1 formed from the letters of the alphabet
A, such that a and b are not adjacent letters. One can then form a word of length
n which satisfies this condition by placing in front of the word:

(1) the letter c or d or b if the first letter is a:
(2) theletter ¢ or d or a if the first letter is b;
(3) any of the four letters g, b, c. d if the word begins with ¢ or with d.
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Each word of length n which satisfies the conditions of the problem can be
obtained from a word of length n—1 by performing these operations. Let x,
denote the number of words of length n which start with a or with b, and let y,
denote the number of words with first letter ¢ or d which satisfy the given
conditions. The following recurrence relations hold:

Xp=Xn-1F2Vn-1,
Y¥n=2Xp-1+2yn- 1
By adding the equations term by term one sees that
Xt Yn=3p-y FVn=1)F Vo1 =X+ Yo )+ Xm0+ 30— 2)
Now calculate z,=x,+ y,. which satisfies the recurrence relation
2,=3z,_+2z2,_,.

One obtains z; =4 and z, =14, since the words of length 2 which satisly the
given conditions are precisely the 42 =16 words of length 2 with the exception
of the words ab and ba.

We use the general method given in Problem 1.31 to solve this recurrence.
The characteristic equation r?—3r—2=0 has roots r1.2=(31\/ﬁ)/2, and
hence there is a solution of the form

In= CI r'l' + CZr’éi
where the constants C; and C, are determined by the initial conditions:
z,=4 and z,=14,

Solving the system

c, 3+‘/ﬁJrcz 3_;/ﬁ=4.

2
1343417 . 13-3J17
, +2‘/_+C2 2~/_=14,

yields
C,=@ and CZ=E.
2J17 217
Thus the solution of the problem can be written in the form
) _Jﬁ+5<3+JT7 n J17-5 (3= 17V
WY 2 >+2Jﬁ< 2 >

1.35 By utilizing the recurrence relation for binomial coefficients and
observing that (";"):0 for k>[n/2] one can deduce that

e [

_ n—1-=k\ , n—2)—(k—1) k=1
—Z( L >z+zz< 1 )z .

k>0 k21




This yields the recurrence relation
=0y +20,-, 1)
with initial values a, =a,; = 1. The characteristic equation of this recurrence is
tl—r—z=0

with solutions r, =(1+./1 +4z)/2 and r, =(1 — /1 +4z)/2. If z# —4, the general
solution of recurrence relation (1) is

a,=Cr} +C,ry (2)
where C, and C, are determined by the system
Cl + CZ = 1,

1+ J1+4z 1—J1+4z
Cl ——_*_"FCZ———:I
2 2
Therefore
c __1+\/1+4z
! 21 +4z

and thus from (2) it follows that
1 {(1-}-\/1-}-4:)"“ (1—#1—{-42)"”}
J1+4z 2 2 '

Ifz=~%onehasr, =r, =% and hence, according to Problem 1.31, the general
solution of recurrence relation (1) is

a"=r’{(C‘+C2n), (3)

where Cy =a,=1 and C,=(a, —r,a,)/r; =1. After making these substitutions
together with r, =4 in (3), one finds that

c _~/1+4z—-1
N TR

a,=

n+1
a":——zn— fOr Z= —‘%

136 Let S(n k; xyy ooy X)=(x;4 " +x)" =Y Xy 4+ +x- )"+
Y(xy+ - +x4-,)"— -+ ; then the desired sum is S{x,..., X)) =aeS(n, n;
Xi,oooy Xp)+a1Sn—1, ni Xy, ..., X)+aSn—2, n; X, X))+ 0+
a,S(0, n; x,...., x,). Since e*=1+x/1!4+x2/214 ..., it can be seen that the
expression for the exponential generating function is

o z’l
Sn,k,'x s, X _=e(x1+-~'+xk)z_ e(x1+--~+xk_l)z+ e(xl+---+x,‘_z)z
T Stnkix . n)k 5 Y

._(exlz_l)(exzz_l)...(esz_l)

C(xaz ) \xpz (x2)? m(xkz (uz)®
’(13* T ><—1T+ T Tt
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By equating the coefficients of z* on the two sides of this equation forn=1,...k,
one can conclude that S(n, k; x4, ..., X)=0for 0<n<k and S(n, n; xy,...,x,)
=nlx, " x, Thus S,(x,....x,)=aoS(n,n; xy,...,x,)=aon!x; - x, [L.
Carlitz, Fibonacci Quarterly, 18(1) (1980), 85.)
1.37 Let
PilXys oy Xim gy Xy oo Xpd=P000 Xm0 X gy, X)

be the polynomial obtained from p by replacing the variable x; with 0. It [ollows
that the value of the polynomial z*p for x;=0 is equal to

k-1

ZkP’x,=o= pit+ 2p; (1)

for k> 1, where z°p; =p, by definition.

In fact, the () combinations of the n variables taken k at a time can be
written as the union of the (::11) combinations of the n variables taken k at a
time which contain x;. and those (";1) combinations of n variables taken k at a
time which do not contain x;. Thus one can write

Hp=2p+2ip, (2)

where z4p is the sum of all the polynomials which can be obtained from p by
replacing k of the variables (including x;) x,,..., x, with zero, and zp is the
sum of all those polynomials which can be obtained from p by replacing k of the
variables X, ....X;_y, Xj<1,. . -, X, With zero, in all possible ways.

From (2) it follows that

ZkPIx.=o=z'iP|x,=o+z’ipix,=o=z'ip+Z’§Pt=zk_lpi+2kl’i,
which is equivalent to (1). Thus (p—z'p+2z2p— )| =0=pi—(pi+2'p)+
(Z'pi+ 22p) = (22pi+ 2p)+ - +(=1)"" 12" 2p,=0,since 2" " Ip;=2"p;= * -+ =0.

Therefore the monomial x,x,''*x, divides the polynomial p—zip+ -,
since the latter vanishes for x,=0 when 1 <i<n. Since p—z'p+ - has degree
at most equal to m, it follows that

0 form<n

_1+2_...=
pmzpxzp ¢X;...x, lorm=n

However, the polynomial z*p with k>1 does not contain any term of the form
Xy ' X,, from which it can be inferred that ¢ is the coefficient of x; - - - x, in
the representation of the polynomial p.

If p(xy, ..., X)) =(x; + ** +X,), then the coefficient of x, - " x, for n=k is
equal to c=n!/{(1!)"=n! by the multinomial formula (Problem 1.16). On the
other hand, the numerical value of the polynomial p~z'p+ -+ for x;= -+
=x,=11isequal to

"_n—in.k__u"_in.k
Far (e ()

Using the results previously obtained, one can show that this expression is
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equal to 0 for 0<k<n and is equal to c=n! for k=n, [rom which Eulet’s
identity follows.

1.38 Consider the left-hand side of the identity as a polynomial in n. The
constant term is then equal to

p P p NP e s -1\ p —n\?
—<1><—1)+<2>< 2P (=) (p)( )
=p1’—<’1’) (p—l)ﬂ+<’2’)(p—2>ﬂ— (=1 (pf1)=p!-

(Use Euler’s formula, Problem 1.37.)
Similarly it can be shown that the coefficient of n” is equal to

- o)

the coefficient of n* for 1 <k<p—1 is equal to:

i () rasenr

If p—k=m, then 1<m<p—1 and thus the coefficient of n* is equal to

T ——
=(—1 (y’;) 5mp=0,

1.39 The identity will be established by mathematical induction on n.
For n=1 it reduces to the identity 1/x—1/(x+ 1)=1/x(x+ 1). Suppose that the
proposed identity is true. Replacing x by x +1 yields

G ) S

x+1 x+2 x+n+l (x+1)  (x+n+1)’

since m <p.

. +(_1)n

Subtract this relation from the original equation to obtain

5D (%)

4o —1yr+t
X x+1 +(=1

n+1

n+l/ n! l_ 1

x+n+1 (x+1) - (x+n\x x+n+l
_ (n+ 1!
Tx(x+ 1) (x+n+1)

by virtue of the recurrence relation for binomial coefficients, that is, the identity
in the statement of the problem for n+1.
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CHAPTER 2

2.1 Subtract from the total of 40 students the number who prefer mathe-
matics, physics, and chemistry respectively:

40—-14—-16—11.
The students who prefer mathematics and physics are subtracted twice, and

thus they must also be added once.
A similar procedure for the two other pairs of subjects yields the number

40-14—-16—114+7+8+5

The students who prefer all three subjects were subtracted three times and after
were added three times. In order to obtain the number of students who did not
prefer any of the three subjects it is necessary to subtract once the four students
who had a preference for all three subjects. The final result is

40-14—-16—-114+7+8+5-4=15.
2.2 The proof uses induction on g 2. For ¢=2 the formula becomes

|A VA=A, +|4;]| - |41 "4,

L]

which can easily be verified.
Suppose the formula is true for each union of at most g — 1 sets. It follows that

{0 VA =14,0  UA [+ |4 = 14,0 oA, A
Applying the distributive property for intersections of sets, one has
Ay A )N A=A nAYU(A; 0 AU - U(A- N A,

and from the inductive hypothesis it follows that

lAyo - wAl= Y [Al= Y A+ (1Y

1gi<qg 1gi<j<gq

fia

HAd= T lAnags -1

<i<q

q
N A,-’,
(=1
by using the idempotent property of intersection in the form
q-1 q
(AinAINANA)=AinA;NA, ..., N (Andy=) A.
i=1 i=1

By regrouping terms, one obtains the formula of inclusion and exclusion for
unions of g sets, The formula is called the Principle of Inclusion and Exclusion
because of the alternating signs of the right-hand side.

23 Let PcQ={1,2,...,q} be a fixed set with |P|=p. The number of
elements which belong to all the sets A; with i € P and do not belong to any of
the sets A; with j € O \P coincides with the set of elements which belong to the
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set M, , A; and do not belong to any set
An() 4, A for jeQ\P.
ieP ieP

By applying the Principle of Inclusion and Exclusion one finds that the number
of elements which belong to all 4; with i € P and do not belong to any A; with
j€ O\\Pisequal to

N A,’— jey\P(A,.niQ’ Ai>}=

N A,-\—

N A,.\— >

m\+z

ieP ieP KopP iekK KoP ieK
IKl=p+1 Kl=p+2
— Z (_I}IK!—IPI m A,
il
KoP ieK

Sum these numbers with respect to all the subsets P—Q with |P|=p elements:

Z Z |k| |1P| m A; Z Z (__UIKI-!PI mAi

|IPl=p KDP ieK ‘ KcQ PcK ieK }
i{Ki>piPi=p

by changing the order of the summation.
The index set P< K with |P| =p and |K|=k can be chosen in (¥) ways for each
choice of K, and since |, 4, does not depend on P, it follows that the desired

number is equal to
q
S (-1pr <k)
k=p P/ kco

1K=

N A,-~‘
ieK

2.4 Let A, denote the set of natural numbers less than or equal to n which
are multiples of p;. It follows that

n n
Ajl=—; |ANnA;|=—,
I ‘ Pi | : }| Pipj

since the numbers p; and p; being prime are also relatively prime.

The natural numbers which are less than or equal to n and which are prime
to n are numbers in the set X =1{1, ..., n] which do not belong to any of the
sets A, for 1 i<q. Thus

on)=n—|A,u " VA,

="“i A+ Y lAna]— -+ (=1

=1 1<i<jgq

s

n n
+ Y e —
i 1<|<J<quPJ plPZ"'pq

I
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2.5 Let 4;denote the set of the (n—1)! permutations which have i as a fixed
point, and apply the Principle of Inclusion and Exclusion to find the number of
permutations which have at least one fixed point. This number is equal to

10y

n
Ao ud= Y 4l Y [AinAl+ o+ (=1)
i=1 lgi<jgn

But|4, nA;,n A, |=(n—k)!,sincea permutation of the set 4; N+~ " A4;,
has fixed points in the positions iy, i5, . . ., iy, and the other positions contain a
permutation of the n—k remaining elements. The latter set of permutations
has cardinality (n—k)!. But k positions i, . . ., i, can be chosen from the set
of n positions in (;) ways. and thus

,Q A =(;’>(n—1)!—© (=24 - +(= 1! <:>

n n LN
,-91 A; =n!—<l) n=1)14+ - +(=1) (n)

[rom which the given expression for D(n) follows.

Thus lim,..,, D(n)/n!=1/e, and hence for large n the probability that a per-
mutation of n elements chosen at random has no fixed points is approximately
equal to 1/2.7.

Since the p fixed points (0<p<n) can be chosen in (;) ways and the other
n—p points are no longer fixed, it follows that the number of permutations in
S, with p fixed points is equal to (;) D(n—p). One uses the fact that for every
choice of p fixed points there are D{n— p) permutations of the remaining objects
without fixed points, if, by definition, one takes D(0)=1.

Diny=n!-

2.6 By Problem 2.5, D(n) can be expressed as
D(n)=n!<1— LI Gl )
1! n!

In order to obtain the expression for E(n), let A; be the set of even permutations
p € S, such that p(i)=i. Since there are 4 n! even permutations in S,. it follows
that

Eny=4in!- U ‘
n n
=inl=Y 4|+ Y ldingl--+ (=10 A,.‘.
i=1 I<i<jgn i=1

Using |4; nA;,n - N A, =4n—k)!, one can show analogously that

E(n)=%n!—<?)%(n—l)!+<§) n=2)1— - 4(=1)"! ( " )-H—l)"
n—1

=3D(m+(~1)""n—1)}.
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2.7 Letn=plyp% - ply, where py,..., p, are pairwise distinct primes. The
result can be proved by induction on i;+i,+ - - +i,. If iy=1 and i,= -+
=i,=0, then n is a prime and the sum of the left hand side of the equation
becomes ¢(1)+ o(n)=1+n—1=n, and the equality is satisfied if, by definition,
©(1)=1. Suppose that the property is true for all numbers for which i, + - --
+i,<r~1, and let n be a natural number such that i, + -+ +i,=r. Let

Dy=1{phpy...pit|0<j,<iy~1,0<),<iy, ..., 0, <),
Dy={pip% - plt|0</3<is oo, 0y iy}

It follows that D, v D, represents a partition of the set D of divisors of n. Thus,
using the inductive hypothesis, one can write

Y oldy=73 od)+ 3 (p(d)=£+pil’ _r:_ (1— L):n,
din deD, deD, P pt P1
since, il a and b are relatively prime, then p(ab) = ¢{a)o(b). (Gauss).

2.8 Suppose that a square matrix of order 3 satisfies the given conditions.
By adding 1 to all its elements one obtains the matrix

a, by ¢
aZ bZ CZ )
as by ¢

where a; +b;+ ¢y =r+3, ay+b,+c,=r+3, and so on. Using the result of
Problem 1.19, r+ 3 can be written as a sum of three positive numbers in (';2)
ways. Thus by completing the first two rows of the matrix in all possible ways
one obtains (’;2)2 matrices. The elements of the third row are now determined
from the condition that the sum of the elements of each column must be equal
to r+ 3. However, one must eliminate the case when there are negative or zero
elements on the third line. Observe that the following relation holds:

by+cy+by+cy=r+3+a,. (1)

If a; <0, the minimum value for a, is r+3—=2(r+1)=1—r, and thus by using
(1), it follows that the sum of any two of the numbers b,, ¢, b,, ¢, is smaller
than r+ 3. It follows that the matrix will be completed correctly in row 3 (except
for the element a,), with elements that are greater than zero. Suppose that a, <0.
In this case one can generate all matrices of the indicated form with row and
column sum equal to r+ 3, for which the unique nonpositive element is a,, by
writing the number r+3 + a5 as a sum of four positive numbers. Again by using
Problem 1.19, it can be seen that for a;=0, — [, ..., —r+1, the number of
solutions of equation (1) is equal to

()0 Q-CO--0-()
el -GG
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Thus if one of a;, b1, ¢ is negative or zero (in this case two of them cannot
be zero), the number of matrices which do not satisfy the given condition is equal

to (";”). Thus the desired number of matrices is equal to (' 3%)?~3("}*

).
4 .
These matrices are also called magic squares. Sometimes one also requires
that the sum of the diagonal elements be equal to r. [P. A. MacMahon, Com-

binatory Analysis 11, Cambridge University Press, Cambridge, 1916.]
2.9 Since

Din) 1 1 (=1
R TRS TR T

it can be seen that this expression is the coefficient of ¢" in the expansion

n!

-t

¢ _ S 24 ...
l—z_<1—ﬁ+i_ )(H—H—t + )

These two recurrence relations can be obtained by a straightforward calculation.

210 LetY={y....,y.r.andforevery ) <i<mlet 4, be the set of functions
from X to Y for which y; is not the image of any element in X ;

It follows that s, ,=m"—|4; VA, U -+ LA, since the total number of func-
tions from X to Y is equal to m". By using the Principle of Inclusion and Exclu-
sion one can verify that

m m
Sm=m"— 3 Al+ Y |AnA— o+ (=0 ) A4
i=1 1gi<jg<m i=1
But A, is the set of functions defined on X with values in Y \{};}, and thus
|A|=(m—1y, and A;n 4, is the set of functions defined on X with values in
Y \{»:, ¥;}. Thus |4;n 4;|=(m—2)". In general,

|4, NA,N N A =(m—k)", where 1<ij<i,< - <i,<m
Since there are (}) subsets of indices K= {1...., m! with |K|=k, it follows that
each sum

N 4|
KCI veo..m) lieK

11
Ki=k

contains (’,'(') terms, each of which is equal to (m—k)". This implies that

_"_m R RV m N ... —1yn-1 m
Spm=m <1>(m 1)+<2)(m 2) +(=1) (m—l)

For m=n. s, , represents the number of bijections /: X —Y with [X|=!Y|=n.
Hence s, ,=n!, or

n.'=n"—<?) (n—])”+<;> (n=2)"— - 'f’(—l)n_ln.
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If n<m, there does not exist a surjection from X to Y and thuss, , =0.
2.11 LetZ={y,,..., ). Then, in the notation of the preceding problem,

Sume=m"—]A;0 " VA,
=mﬂ—@ (m—l)"+<;> (m=2"— - +(=1y(m—r)".

For r=m one can conclude that s, ,, » = Sy m, since Z=Y.

2.12 The number of words which use all 2n letters of the alphabet A4 is equal
1o

(2n)! _(2n)!

@y 2
[Identical letters can be permuted among themselves in (2!)"=2" distinct ways,
to yield the same word formed with the 2n letters of A.] Let A; denote the set of
words formed with the 2n letters of 4 for which the two letters denoted a; are
adjacent. It follows that the desired number is equal to

(2n)!

—zn——iAluAZU"'uA,,L 1
In order to evaluate |4, v -+ U A,|, apply the Principle of Inclusion and
Exclusion:
\AIU"'UA"\=Z\A1)— z \A,ﬁAJ\"‘
i=1 1gi<jgn
+(=1)kt y A, NALN A+
1< <iggn
(=1 ) A 2
i=1

One proceeds to calculate in the general case the number of elements in
A, nA;,n - n Ay, and show that this number does not depend on the choice
of indices 1 <i; <i;< -+ <i,<n If a word belongs to this set, it means that it
belongs to each of the sets 4;. 4,,, . . ., A;,, and thus the letters a;, a;; a;,,
a;,; ... a,, a;, are adjacent. The words for which these k pairs of letters are
adjacent are obtained in the following manner: Form all words having 2n—k
letters taken from an alphabet obtained from A by suppressing one copy of each
letter from q;, a;,, . . ., a;,. Then in each word thus formed. repeat the letters
a,..., a;, by adding the letter a;, immediately after itself for j=1,..., k. It
follows that
2n—k)! 2"2n—k)!

n-e mA1k|= (2!}11—1( - on . (3)

|4

it
Since the indices iy. . . ., i, satisfy

1<i; < <j<n,
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they can be chosen in (;) ways, and hence the number of words which do not
contain two identical adjacent letters can be written using (1), (2), and (3) as

2n)!  (n\22n-1)! n> 2X2n-2)! +(— 1y2"n!
2" —<1> 2" +<2 2" r

2.13 Every digraph which does not contain a circuit has at least one vertex
x at which no arc begins [i.e., d*(x)=0] and at least one vertex y in which no
arc terminates [i.e.. d7(3)=0]. Denote by 4; the set of digraphs with n vertices,
which have labels from the set {1,...,n} which do not contain a circuit, and
which have the property d "(i}=0. It follows that

an=lA;uA,u - v4,

=‘._ZI 1A1|— Z |AinAj|+"'+{—l}"_l

1gi<jgn

N A,b.
i=1

But

i Z 'A“ﬁ e nAlk‘=<:> zk("_k)an—kv

since the number of subgraphs with n— k vertices labeled from theset {1,...,n} \\
Yy, ..., iy and without circuits is equal to a,_,, and since the vertices iy, . .., i,
have the property d*(i;)= -+ =d™(i,)=0, that is. they can be joined by arcs
having a uniquely determined orientation to the other n—k vertices in (2" ¥
=2"r=k ways,

Thus each term of the given sum is equal to 2¥"~¥g,_, and the sum contains
(z) such terms. This observation yields the recurrence relation for the numbers a,.

Using the given formula one finds that a, =1, a,=3, a; =25. These values
can also be obtained by direct computation. [R. W. Robinson, New Directions
in the Theory of Graphs, Academic Press, New York-London. 1973, 239-273].

2.14 LetAg(n; 1™ denote the number of arrangement schemes of n identical
objects in m pairwise distinct cells; it follows that Ag(n; ™) =("""""). In fact, if
the empty cell is included, this number represents the number of ways in which n
can be written as a sum of m non-negative integers. Using Problem 1.19 one
can show that this number is also equal to ("™™ ™ 1)

In order to obtain the expression in the statement of the problem. one
should first arrange the A, groups of one object, then the 4, groups of two
identical objects, and so on. The result is

Ag(l™ 2% o e 1M = Agll 1M Agl2; 172 - Aglng 1)

_(mY (me N2 (mn— 1N
RN! 2 n '

In order to obtain the expression for the number of arrangement schemes
which do not leave any cell empty, apply the Principle of Inclusion and Exclu-
sion. Denoting by S; the set of arrangement schemes which leave the cell i



empty. it follows that

A(li.l . n/l,,; lm)=A®(1).| P n/'.,,; 1M)_

0

=Agllh -t 1M =Y S|+ Y |SinS—
i=1

1gi<jdm

+(=1"

iE

_Ag(l)., R n).,,; 1m)_(r1n> Ag(ll‘ A n;l,,; 1m—1)

_,_(';) Ag(li' . n""; 1m—2)__

This is equivalent to the expression sought, since N7, S;=2¥ and (})=(,-4)
[P. A. MacMahon, Combinatory Analysis 1, Cambridge University Press,
Cambridge, 1915.]

2.15 The number under investigation is of the form A(1*t 2%z .- p#»; 1),
For example, for the number 150=2 x 3 x 53_ one has

aza= () GG G0 G-

factorizations as a product of three natural numbers. If some factors equal to 1
are allowed, then g admits Agx{1*' - +n**; 1™ factorizations as a product of
m factors,

2.16 We show that the number M(p, g) represents the number of edge
coverings of the set of vertices of the complete bipartite graph K, ,. Suppose
that the union of two sets which generate the graph K,, is XuY where
X=ix;... .,xpyand Y =1y, ..., y,;. Denote by 4, the family of sets of edges
of the graph which cover the vertices of X, and by 4}, the family of sets of edges
which cover the vertices of X and do not cover the vertex y; fori=1,...,q.

Each vertex in X can be covered by edges in 27— 1 ways, since the endpoints
of these edges in the set Y form a nonempty subset of Y. [1 follows that

|4, =(29—1)7.

Thus M(p, q)=|4,/—|U}_, 4} By using the Principle of Inclusion and
Exclusion it can be shown that

q
04

q i
=S = T il

1<i<jgq

— q a-1 _ 1y _ q q=2 _ 1\ - q(qj
(1)(2 1) <2>(2 17+ +(~1) 1)

and thus M(p, g4) has the given meaning. Since the graphs K,, and K, , are




1y

isomorphic, it follows that M{p, g)=M(q, p). [1. Tomescu. J. Combinaiorial
Theory, B28(2) (1980), 127- 141.]

2.17 From Newton’s binomial formula one obtains

k k )
Fd=(x—1+D= Y ; (x =1y

t=0

and

TR0}

Since the polynomials x* for k=0, ..., nare of different degrees, it follows that
they are linearly independent and therefore the above representation is unique.

Thus
" (k\[i ‘
r=zo<i><]{>(—1)l_j=§kvi' (1)

where the Kronecker symbol is defined by J, V= 1 for k=j and §, ;=0 for k#].
Hence the numbers a,=(%) and b =(—1)*"'("), defined for 0<i, k<n, form
two square matrices A and B of order n+1. Let a denote the column vector
with n+1 components a, ..., a,, and b the column vector with n+ 1 components
bg,....b,. The problem states that a=Ab implies b= Ba. But (1) shows that the
matrices A and B are inverse to each other, that is, AB=1,.,. Thus by left-
multiplying the equation a=A4b by B, one finds that Ba=(BA)h=1,,,h=b.

218 Ifm=u,+ - +y,andy;22for 1 <i<n,itfollowsthatm—n={u; - 1)

* +(u,—1)and y;— 12 1for 1 <i<n. Thus by the Problem 1.19 the number

of such representatlons is equal to (", "] "). Let 4, denote the set of representa-

tions m=u, + - +u, where u; =1, ...,y 2L =1 w21 ... u, = 1.

Because the number of represematlons for which u,2 1 for 1 <s<nis equal to
("2 ). it follows that

("o )=(0m)-10, 4
()L ey

Kl =1

M A

0

by applying the Principle of Inclusion and Exclusion. Since M, 4; is the set
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of representations of m as a sum of n parts uy, . . ., u, such that u,=1 for any

k e K, it follows that
m—i—1
An=
tQ‘ l' (”_i"l)

and the set K may be chosen in (}) ways such that |K|=i. One thus finds that
Nk Al=0if K={1,...,n}, because m>n+1, and hence one can assume that
i<n-—1. The last equality becomes

—n—1 n—1 —i—=1
N vy
n—1 <o if\n—i—1
219 Let A=(a;)ij=1,....n and B=(b;); ;=1.. .. . be two compatible n-by-n
matrices and suppose that a;;+b;;#0. In this case at least one of the terms is
nonzero, say a;;, and thus x;< x; for 1<i, j<n. It follows that A+ B is a com-

patible matrix.
Let AB=C=(CU),")'=1

n» and suppose that ¢;; # 0. Since

.....

n

Cy= Z apby,s

there exists an index k such that a;,#0 and b,;%0. Thus by definition x;<x,
and x, < X;, and by transitivity x; < x;. It follows that the matrix Cis compatible.

Let A be a compatible nonsingular matrix of order n. By renumbering the
elements of V one can assume that x,<x; implies i<j. Thus 4 is upper tri-
angular, which implies that detA=[]i., a;#0. It follows that a;#0 for
i=1,....n

Let B=(b;j)ij=y.....n=A"", and suppose that B is not compatible, that is,
there is an element x; which is not less than or equal to x; and such that b;;#0.
Choose an index i which is maximal relative to this property for a fixed index .

Since x; is not less than or equal to x;, we have i>j and thus

n

Z aikbk‘;:O.
k=1
But g;;b;;# 0, which implies the existence of an index k # i such that ayb,;#0
or ay+0 and b,;#0. Since 4 is compatible, it follows that x;<x, and thus
i< k. From the convention for choosing the index i, it follows that b, ;#0 implies
X, <Xx;. By transitivity one finds that x;< x;, which contradicts the hypothesis.
Thus B=A4"" is compatible.

220 Let Z=(z;)ij=1.....» be an n-by-n matrix such that

{1 ifxi<x_,'.,
ij=

“UT10  otherwise.

The conditions imposed on the function u can be written in matrix form as
MZ=1, where M =(my);;=1.....» and m;;=pulx;, x;), and [ is the identity
matrix of order n. In fact, one can write
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n
Si = Z My Zy; =myZ;+ 0=1,
k=1

since my=z;=1 and my 0 implies x,< x,, and hence z,;=0 for k+1i. Further-
more, s;;= y=; MuZx;=0 for x; which is not less than or equal to x;, since
my# 0 and z,;#0 imply that x;< x, and x, <x;; thus x;< x;, which is contrary
to the hypothesis.

For x;<x, one has s;=3_ .. ... m
imposed upon the Moebius function.

Since z;=1 for i=1, .. .. n. it follows from the solution of the preceding
problem that the matrix Z is nonsingular and similarly that M=Z""' is a
compatible matrix. Thus the desired function u(x, y) is defined by the matrix
zZ L

Since M is compatible with the partial order relation defined in V; it follows
that u(x, ¥)=01if x is not less than or equal to y. Thus. from the fact that s;;=1
and s5;;=0 for every i#}j, one can conclude that the function u defined by the
matrix Z ! satisfies the last two conditions imposed on the Moebius function.

=0 by use of the third condition

2.21 Observe that the function u can be obtained inductively as follows:
wa, a)=1, and if u(a. y) is defined for every y such that a< y <b, then from the
equation

one obtains the value
wla, by=— 3 ua,y).
agy<h
Thus u(a, x) can be calculated for every x which satisfies a<< x< b, using the

previously calculated values for elements which lie between a and x.

(a) Now we show that u(X. Y)=(~—1)"""'¥ for every X c Y = §. By defini-
tion set u(X, Y)=01if X & Y. In fact, the function thus defined satisfies

ISR (|B|_|A><—1)"
ACYCHB k=0 k

1 for A=B,
“)10 forBoAand B+A.

¥
px, y)=p <;>

where u{x) is the number-theoretic Moebius function defined as follows: If
the decomposition of k into prime factors has the form k=p{' p%* - - - pi*. where

(b) We show that
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Pi.. .., P, are pairwise distinct primes. then
=1 ey == =0, =1,
“(k)_{o otherwise.

We see that ula, a)=(—1)°=1.1fa# b and a| b it follows that

Y opa y= Y u<5)= Y uld).

alyld alylb \A/ dibla
Letb/a=k=p% - - p%. Then

S oud)= Y Wps,pi, " Pis

a1k lgip< o <igsr

the rest of the terms are zero by definition of the function u(k). Thus

S d)=¥ (:>(—1)’=o.

dik

Also, it follows from the definition of the function u(k) that wa, b)=0if a does
not divide b.

(c) In this case every interval of the form
[a, b]={z|a<z<}]
is a chain (totally ordered set). Now calculate u(a,, a,) for the chain
4, <a,< - <a,.

By definition u(a,, a;)=1. Considering the interval [a,, a,], one sees that
ulay, ay)+play, a,)=0 and thus p(a,, a,)= —1. For the interval [a,, a;] the
following equation is obtained:

play, a,)+ play, az)+ play, as)=0.
from which it follows that u(a,, a3) =0. For every i 3 one can write
play, ay)+play, a))+ -+ + play, a;) =0,
and hence
ulay, azy= - =p(a,, a,)=0.
Thus the values of the Moebius function are given by
‘ 1 ifx=y.

ulx, y)=-\ —1 if(x, y)is an arc,

0 otherwise.

222 Ify<x,thend . ..z x)=0. [t follows that

Y Uz =Y T px)f(0=Y ) Y oz x)=f(x).

z€<X I€x y€z y<x
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In fact. in terms of the matrices M and Z introduced in the solution of Problem
2.20, it remains to show that

ZM =1,

but this equation is satisfied because M =Z"".
Another solution is the following: Let f=(f(xy), ..., f(x,) and g=(g(x;).
.., glx,)). The definition of g can also be written

g=fZ.
this implies that f =gZ~' =¢gM, which is the desired relation.
2.23 For every function f :B—C where |C|=x and x is a natural number,
let the kernel of the function f be the partition p of B defined as follows: The

elements b; and b, of B belong to the same class of p if and only if f(b;)= f(b;).
The number f(p) of functions f :B—C which have the same kernel p is equal to

fp)=x(x=1) - (x~k+1)=[xTs

where k=¢(p) is the number of classes in the partition p. In fact, from the defini-
tion of the kernel it follows that the desired number is equal to the number of
injective functions defined on a set with k elements and taking its values in a
set with x elements, that is, [ x];.

Let

Fip)= 3 flg).
qsp

It follows that F(p) represents the number of functions f :B—C which have as
their kernel a partition g of B such that g<p. Thus g can be obtained by taking
the union of some classes of p, which implies that

F(p)=x",

since the desired number is equal to the number of functions on a k-element set
and with values in an x-element set. It is thus the case that

Z [X]dq) =x“P\

asyp

By using the Moebius inversion formula one finds that

Z XCW)“’( q. P) = [X]c(p) .

qsp

Let p=1 in this formula, for which the number of classes ¢(p)=n. This
equation can also be written

k; xk Y ulg =[xl

1 clq)=k

For k=1 the coefficient of x in the left-hand side is equal to (0, 1), since the only



118 Problems in Combinatorics and Graph Theory

partition ¢ with ¢(g)=1 is the partition 0, while the coefficient of x in the poly-
nomial

[x],=x(x—=1)(x=n+1)

is equal to (—1)""'(n—1)!. Since this identity holds for all positive integral
values of x, it follows that the two polynomials in x are equal and hence u(0, 1)
=(-1""Yn-1). [R. W, Frucht, Gian-Carlo Rota, Scientia, 122 (1963),
111-115.]

224 Let U=Z—-1I=(uyh =1,...

1 ifx<xy,
U= .
Y10 otherwise.

The element in row i/ and column j of the matrix U" is of the form

T i Uy Uk, =0

for every 1<i, j<n, since a nonzero element in the given summation would
correspond to a walk of elements of I/ of the form

Xp< X, <X, <7 <X, <X

But ¥ has only n elements, and hence such a walk does not exist. One thus
obtains the matrix identity

(I+UW{I=-U+U?=U3+ -+ + (=1 tU Y =I+(=-1y"tU=],
and therefore
I-U+U?2-U3+ - =1+ ) t=Z"' =M,

thatis, M is the matrix which defines the Moebius function of the set V. It follows
that

n

wo, =3 (=1yufy,

s=1

where u§; is the element of the matrix U* located in the row which corresponds
to 0 and in the column which corresponds to 1 of V. Finally one finds that

(s) _— - — —
Ug)y = Z - Hoi Mg, Ui 1= Z I=p;.

[C T i) 0<x“<---<x“_l<x

since the remaining terms are zero according to the definition of the matrix U.
225 Apply inductiononnz2. Iif n=2then S, ~S,<|4, U4, <S;, or
|A1|+|A2|—|A1 ﬁA2|<|A1UA2‘<‘A1|+|A2|

The right-hand side of this relation is obvious. and the left-hand side is a con-
sequence of the Principle of Inclusion and Exclusion.
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Suppose that Bonferroni inequalities are valid for each n—1 subsets of X.

One can see that

U 4

=1

+ |An‘ - U (Aln An)

1<n

n=1
i

U A,.‘=
i=1

By the induction hypothesis, if 4 is even one can write

n-1
U 4

-1

h
< Z (_1)1(—1
k

N A,-‘

i=1 =1 KCi{l,.... n-1!|iek
IKl=k
and
h-2
—-J 4nd)< Y (—1F > N 4nA4,
i<n k=1 Kcit..... n—1} [iek
IKi=k
One can thus conclude
n h-1
U A< T (=1F71S
=1 k=1

If h is odd one can deduce in a similar manner that

n h-1
U A=Y (=DFLS,,
k=1

which completes the proof.

CHAPTER 3

3.1 In order to obtain the terms which contain x* in the expansion of [x],

one must multiply the factor x from k — 1 parentheses among (x — 1), (x=2),. ..

{(x—n+1) by n—k constant terms in these parentheses.
Let K={i,, {5, ..., i be a set of numbers, and use the notation

PKY=T] i;.
j=1

It follows that the numbers s(n, k) can be written in the form

s(n, k)=(—1)""* y P(K).
pPCit, ... n—1
IPI=n-k

and this sum contains (:',:,fj terms.

»

In order to obtain the coefficient of x* in the expansion of [x]" one must
multiply n— k constant terms from the factors (x + 1), (x +2)....,(x+n~1) and
add the numbers obtained from all (',":,1() choices of the constant terms. By using
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(1) one finds that the coefficient of x* in the expansion of [x]" is equal to

that is. it is |s(n, k)|.

3.2 Part(a)is called Vandermonde's formula. Tt can be proved by induction
on n. It is clear that the assertion is true for n=1. If (a) holds for n<m— 1, where
m=2, then

x+)lm=[x+3ln-1(x+y—m=+1)

= Z ( >[V]k[)]m k-tlx—k+y—m+k+1)

m-1

= Z <m; )[x]kﬂ[)']m-k-x*":go (m;l) DLl ¥k

k=0

Z[( (") et
- 5 (7) e

Part (b) is called Norlund’s formula and can be proved analogously.

3.3 In order to prove (a)let X and Y be two sets having n and m elements
respectively. Every function f:X — Y can be considered to be surjective if one
changes the codomain, that is, if f: X— f(X)={f(x)|x € X} Y. Thus the
total number m" of functions from X to Y is equal to the number of functions in
the union of the sets

Ae={1 XY | |f(X) =k}
for k=1,..., m; these sets are pairwise disjoint. It can be seen that |4, =(})s.

=()k!S(n, k) (Problem 3.4), since the set f(X) with k elements can be selected
from Y in (}) ways. Hence

=y (':) K1S(n, k)=
1 k

k=

mim—=1)-- - (m—k+1)S(n. k)

1

[Eng ki

k

[m]Sn, k) for nzm,
1
since [m],=0 for m+ 1< k<n. It must be shown that the polynomial x"—Y ¢ _,
S(n. k)[x]x is identically zero.

But this polynomial has degree at most equal to n—1, since [x],S(n, n)
=x(x—1) - (x—n+1) contains the term x", but the other terms in the sum
do not contain x”. The resulting equality, which is valid form=1.2...., n.shows
that this polynomial of degree at most n—1 has at least n distinct roots, and
hence is the zero polynomial.

[Eng B
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The same argument can also be used to prove (b) by considering monotone
functions f :X —R where | X|=n, |R|=r, and the set R is totally ordered. Every
monotone function f: X — R is in one-to-one correspondence with an increasing
word of length n: f(x,)f(x;)  * fix,), where X=I{x,, ..., x, and f(x{)<
Six)< € f(x,), and the number of these increasing words—called com-
binations with replacement of r take n—1is given by the formula

@=r(r+l)--'(r+n—1)

n! ol (Problem [.18).

Ifthe number of distinct letters in the word f(x,) - f{x,) is k(1 <k < n), then
these k letters can be chosen from the set R in (;) ways. The number of increasing
words of length n with exactly k letters is equal to ( ;). In fact, if these k letters
are a; <a, < ' <, then the increasing words have the form ¢, c; "¢,
whereci=cy= """ =¢;,1=0a,,0,=C 41 = """ =Cpymy1 =gy v, G =Ciy_ 41
= =a, and 2<i; <i,< ' <j.,<n Thus the number of increasing
words of a length n with exactly k letters is equal to the number of sequences

n—1

2y <ip< v < <, that s, it is equal to (;_,). It follows that

[*1" & [(ry(n-=1
) <k><k—1>’

or
~onlfn—1
n —3 —
=3 g (k_ 1) [
This equality is valid for every r> 1. which implies (b.
34 To every surjection f of the set X={x,,...,x, onto the set
Y={y1,.... yms there corresponds a partition of the set X into m classes, namely

PG NICN B G Y VR VY Ay TN}

The order of writing the classes is not taken into consideration, and hence there
are m! surjective functions from X to Y which generate the same partition of
the set X. In other words, if the elements of Y are permuted in m! different ways,
then one obtains m! different surjections by starting with the given surjection
/. However, all of them will generate the same partition of X into m classes.
Two surjections which differ by a permutation of the elements of Y cannot
generate different partitions, and furthermore every partition of X into m classes
can be obtained in this manner. It follows that

1 1 mt m
Sin,m=— s, n=— —1) m— k)",
(nm= =y L (=1} Jom=
Consider the set consisting of the S(n. m~— 1) partitions into m—1 classes of a
set with n elements xy, ..., x,. One can obtain S(n. m—1) partitions into m
classes of a set with n+ | elements x4, ..., x, 4, by adding to each partition a new
class consisting of only the element x,.,. The element x,.; can be added to



122 Problems in Combinatories and Graph Theory

each of the already existing m classes of a partition of {x,,..., x,} in m distinct
ways. These two procedures yield, without repetitions, all the partitions of the
set {Xxy, ..., Xx,} into mclasses. It follows that S(n+ 1, m)=S(n, m = 1)+ mS(n. m).
This recurrence relation allows one to compute the numbers S(n, m) line by line,
by using the values S(n, 1)=S(n, n)=1 for every n and Sin, m)=0 for m>n. The
values for n<5 are given in the following table:

H
(%)}

S(n,m)l m=1 2 3

n=1 l { 0 0 0 0
2 1 1 0 0 0
3 1 3 1 0 0
4 ] | 7 6 1 0
5 1 15 25 10 1

3.5 Consider the set of the S(n+1, m) partitions of a set X with n+1
elements into m classes. For every such partition suppress the class which
contains the (n+ 1)st element. One thereby obtains a partition of a k-element
set K into m—1 classes where m—1<k<n. In fact kz2m—1, since the m—1
remaining classes each contain at least one element.

The partitions into m—1 classes thereby obtained are pairwise distinct,
since otherwise the partitions of the {n+ 1)-element set X into m classes would
not be pairwise distinct. In this way one obtains all the partitions of all subsets
Kc X ([K|zm—1)into m—1 classes. In fact the partition (K); ¢;¢m-, of K was
obtained from the partition K, UK,u *+* UK,,_; U(X \K) of X by suppres-
sing the class X \ K which contains the (n+ 1)st element.

The n—k elements which form a class, together with the (n+ 1)st element, can
be chosen in (,”,)=(}) different ways. It follows that the number of partitions
into m classes of an (n+ 1)-element set is equal to

n
S+, m= Y (Z) Stk, m—1).
k=m-1

The recurrence relation for the numbers B, can be obtained analogously by
suppressing the class which contains the {n+ 1)st element in a partition of an
(n+ L)-element set. One can find in the same manner a partition of a k-element
set (0< k< n). The n—k elements which are contained in the same class, together
with the (n+ 1)st element, can be chosen from the set X \{x, .} in () distinct
ways.

The term 1, corresponding to the case k=0, occurs when the partition of X
consists of a single class.

3.6 Starting from a partition of a set X of type 1¥: 2¥2 - *s one can obtain
a permutation of X by writing the elements of X in the order in which they
appear in the classes of the partition. One first writes the classes with one
element, then the classes with two elements, etc. Since the order of the elements
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in a class and the order of the classes in a partition are not significant. it follows
that the same partition generates (1)t (21)k2 - - - (n!)*» different permutations of
the set X by permuting the elements in each class. For each of these permutations
one also obtains k, ! k,!. .. k,! permutations by permuting the classes with the
same number of elements among themselves. It is easy to see that in this way
one generates without repetitions all the n! permutations of the set X. from which
it follows that

Part(1® 2%« - pkas (1 key - - - (n1)ok,  =n!.

Let p be a permutation of the set X = {1,...,n} of type (¥ - - - #* written in
increasing order of the length of its cycles. By suppressing the parentheses which
enclose the cycles of p one obtains a word of length n formed {rom all the letters

of the alphabet {1,..., n}. The number of such words is n!.
But the same permutation generates k! k,! - k,! 1% 2% - n¥~ different
words, since the k; cycles of length i (1 <i<n) can be permuted in k! k,!

different ways. On the other hand, a cycle of length i can be written in i different
ways by taking as the first element of the cycle each of its i elements. In this way
one obtains the 1% - - n*» other possibilities of generating distinct words of
length n. One thus finds (without repetition) all n! words of length n formed
from the numbers 1., . ... n. It follows that

Perm(1% 2k« phns ) Thig U ok 1= !,

3.7 Use the identities of Problems 3.2 and 3.3 to express the polynomial
[x+3], in two different ways:

n n

K 7k
[x+31.= D s(n Kx+yf=Y s k) _Z < )Vy -

k=0 k=0

n n k n—k
[x+y1= ). (:) X3 Tn-i= 3 (Z) ._ZO sk, x* 3. stn—k, ).

= k=0 j=0

Equating the coefficients of x'y’ in these two expressions yields the first identity.
In order to obtain the second recurrence relation one must expand (x + )"

n k k
(x+yr Z Stn, k [X+)']k=kzo S, k) Y. <i>LXJf[_1']k-f.

i=0

('\_+),]n=i (:) xk}.n—k=i (Z) Z [Y], Z S(n—l\ ] [)]
k=0 i=Q

k=0 Jj=0

In this case equating the coefficients of [ x],[ ¥]; produces the desired result.

3.8

n

[xT,= Y s(n, k)x i s(n. k) Z Stk. m[x71,n

k=0 m=0
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and

n k
Z (n, K)[x]e= Z Stn, k) Y. sk, mx™.
= m=0

Equating the coeflicients of [x], and x" respectively in these expressions gives
the identities in the statement of the problem. One can equate these coefficients
since the families of polynomials (x"),5 o and ([x],)s» o €ach form a basis for the
vector space of polynomials with real coefficients, and thus every polynomial
can be uniquely expressed as a linear combination of these polynomials.

3.9 The proof uses induction on n. For n=1 the property is immediate.
From the table of Stirling numbers (Problem 3.4) it can be seen that the property
holds for small values of n, by referring to each line of the table.

Suppose that the property holds for every i<n. Thus M(i)< M(j) for every
1<i<j<n Let k be an index such that 2<k< M(n). It follows from the recur-
rerce relation

Stn+1, k)=S8(n, k—=1)+kS(n. k)
that
Sn+1, k)~ S(n+1, k—1)={S(n, k—1)=S(n, k—2)}
+k{S(n, k)—S(n, k—1)} +S(n, k—1).

The right-hand side of this equation is positive by the induction hypothesis.
Suppose that M(n)+2<k<n+ 1. By using the recurrence relation

S+ 1,)= Y (;') S, k—1),
1

j:
one can conclude that

n

Stn+ 1,k =Stm+1,k=1)= Y, (j) (S(j, k= 1)=S(j, k=2)}.

i=1

The induction hypothesis now yields S(j, k—1)< S(j, k —2), since M(j)<M(n)
for every j<n. It follows that S(n+ 1, k)< Sin+ 1, k— 1) for every M(n)+2<k<n
+ 1. Thus the sequence (S(n, k)=, ... » 1s unimodal, and M(n+ 1)=M() or
M{n+ 1)=M(n)+ 1. No examples are known of sequences (S(n, k)), which have
two equal maxima for n>3.

3.10 The proof of (a) follows from equating the coefficients of x* in the
expansions:

Z nk)‘<—.|a) V| b-i(x—a,_,)

=["il sgn—1. k]x"" (X—a,-,).

k=0

In the case of (b) one can equate the coefficients of (x | a), in the expansions
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i San, K)x |a)=x"=x""""+ x= Z Son—1, k)x | a)lx — a, + ay),

in view of the fact that (x | ak(x —a) =(x | @)+ ;.
For (c) equate the coefficients of x* in the expansion

(X y (1)"=

1 1 a, a
2 (XIa)n+1=(;+;3+;3+ ---)(XIGJM-

The proof of (d) is obtained by iterating recurrence relation (b) for different
values of n.
Recurrence relation (e) follows from repeated application of (a) for decreasing
values of n.
In order to establish (f) one can write
k

= Z Saln, k)(x | a), = Z Sdn, k) S sk, mxm
= k=0 m=0
Z <Z Sain, K)sqlk, m)>

[L. Comtet, C. R. Acad. Sci. Paris, A275 (1972), 747-750.]
311 Let fy=3 _, Sin, k)t" and observe that

fo= Y 4Sn—1 k=D+aS,n—1, k)}t"=th_ 1 + atfy.
nzk
Thus
_ﬁc—xf___”_ fot* __w non_
h={ge™ Tican (=an f"‘n; G =1

312 Let X={x,..., x,}. The set of partitions of X into k classes which
contain at least i elements can be written in the form P, U P,, where P, repre-
sents the set of partitions of X into k classes which contain at least i elements
for which the element x, belongs to a class with more than i elements, and P,
represents the set of partitions with the same property for which x, belongs to a
class with exactly i elements.

It follows that Sin, k)=|P,|+|Pa|=kS{n—1, k) + (72 )Sin—1i, k—1), since
the partitions in P, are generated, without repetition, by starting from the
partitions of the set {x,, ..., x,-} into k classes of cardinality greater than or
equal to i. One then adds, in turn, x,, in & ways to each class. The partitions in
P, can be obtained by considering all the ({Z ) subsets of X of cardinality i
which contain x, as a class of the partition. To this one adds, in turn, the
Si{n—1i, k=1) partitions of the n—i remaining elements in k—1 classes of cardi-
nality greater than or equal to i.

In order to justify (b), consider the set of all functions f :{x,, ..., x,}—
{1,..., k} such that | f 7 }(s)| =j, for every 1 <s<k. It is clear that the number of
such functions is equal to the number of arrangements of a set of n objects in
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k boxes such that the sth box contains j;objectsfors=1, ..., k, which by Problem
1.15 is equal to n!/j, ! - - j!. By summing these numbers for all solutions of the
equation j, + - +jy=nwith j;2ifors=1,..., k, one obtains the number of
surjections f which satisfy |f ~(s)|> i for every s=1, ..., k. This number must
be divided by k!, since the order of classes in a partition of X is immaterial.

3.13 Every partition into two classes X = Au B is completely determined
by the set A, which is taken to be different from X and &. Thus the number of
choices for A4 is equal to the number of subsets of the n-element set X minus two.
It follows that S(n, 2)=(2"—2)/2=2"" 1 —1, since the order of the classes in a
partition is not taken into consideration.

Analogously, every partition of an n-element set X into n—1 classes contains
a class with two elements and n— 2 classes with one element. The two elements
can be chosen in (;) ways.

In order to prove (c), first show that the exponential generating function of
the Stirling numbers of the second kind is equal to

In fact one has
ePX=1+p;‘<+p2x2+ <+ and i(e"—l)":i i (—1)""’<k> er,
2! k! k! S p

and thus the coefficient of x" in this expansion is equal to

i i (=1)e-» <k> K=§(_n’___k_)’
k! = p/n! n!
in view of the known expression for the Stirling numbers of the second kind
(Problem 3.4).
Thus k!S(n, k) is the coefficient of x" in the expansion of (¢* — 1), multiplied
by nl. It follows from this that (I/nD){1 - 118(n, 2)+21S(n, 3)=3!S(n, )+ - -}
is the coefficient of x" in the expansion of the sum of the series

Cml=He = 1)+ e — 1P —HeF = 1)+ - - (1)

Since x—3x2+4x3—ix*+ -+ =In(l +x), one can conclude that the sum (1)
is equal to In(1 4+ ¢* — l)=x, which establishes the identity for n>?2.

3.14 In order to obtain an expression for c(n, 3) one must determine the
number of ways in which one can express X =A4uBuC where 4, B, C are
nonempty and each element of X belongs to two of the sets 4, B, C. In fact each
element x € X can belong to the sets 4, B, or C in (2] =3 ways. In this way one
obtains 3" expressions for X in the form AuBu C, three of which do not satisfy
the given conditions, since they correspond to situations in which either 4, B
or C isempty. Thus the number of bicoverings of X with three classes is equal to
(3"—3)/3!1=4(3"""' — 1), since the order of the sets A, B, and C is not taken into
consideration. [L. Comtet, Studia Sci. Math. Hung., 3 (1968), 137-152.]




3.15 Consider a new element z ¢ X, and in each partition of the set X U {z}
suppress the class which contains the element z. One obtains in this way all the-
partial partitions of X without repetitions, except for the case in which the
partition of X U {z} consists of a single class. The desired number is thus equal to
Bn+1 -1

3.16 Let(a,),.~ be a sequence of real numbers, and denote by f(x) the sum
of the series Y 7, a,[x], for those values of x for Wthh the series is convergent,
Now define the operator L by the relation L(f(x o @n, if this series is
convergent.

We show that if g(.\')=Z:=O a,x" and if the operator L is defined for the
function g, then L(g(x))=> _, a,B,, where By=1. In fact, in view of Problem

3.3 one obtains the partial sums

5, = 2:0 ’Z:: z:: [x]eS(n, k)= i <§ S{n, k)> [xI

where [x]g=1. Thus

L{g(x))= lim f: < a,S(n, k )-— lim <Z": S(n, k))
k=1

m—=o k=0 m“’tn 0

m

=lim ) a 2

m—=o© n=0
In order to obtain the desired formula consider the Taylor series expansion

tx  t2x? "x"
exp (tx)=e" 1+ + + o+
2! n!

+

Substituting ¢'=u+1 and using Newton’s generalized binomial formula
yields

or=(uriy=Y oy
n=0 N
It follows that
€GO ul‘!
Le™)= ) —=e“=exp(e'—1)
n=0 Yl!

By equating the two expressions for L{e'*) one obtains the expression for the
exponential generating function of the numbers B,,.

3.17 The Bell number B, represents, by definition, the total number of
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partitions of an n-element set and thus can be written in the form

AN E}
B
=
=
Il
e
v
x
>

since S(n, k) =0 for k> n. In view of the expression for the Stirling number of the
second kind (Problem 3.4) it follows that

;n

_v Ll i (KN 5/ -
s g 5 v (=R R

The difference between the number of partitions of an n-element set into an
even and an odd number of classes is equal to

n k] =% k
Z (~1)*S(n, k)= Y. (=1)S(m k)= —U*‘J(’f)j"
1

k= k=1 k= ! j=
O ‘x’ (_1)J]n
S .§ T

3.18 A subset S=X can be put into correspondence with a binary word
a, a, - a, with a;=1 i i € S and a;=0 otherwise. If S does not contain two
consecutive integers, then the binary word associated with the set S will not
contain two neighboring 1’s. In this way a bijection has been defined between
the k-element subsets of X which do not contain two consecutive integers and
the set of binary words of length n, k of whose letters are 1 and n— k of which are
0, and which do not contain two neighboring 1's. In order to count the number
of elements in the latter set one can consider n— k digits equal to 0 and indexed
from 1 to n—k. To these one must add k digits equal to 1 so that no two U’s are
adjacent. Each digit 1 can be characterized by the index of the 0 which precedes
it. Thus one must choose k pairwise distinct integers from the set {0, 1,...,n—k}.
Itis possible to do thisin f(n, k)=(""%"") distinct ways. To the set {1,. .,n—k}
of indices of digits equal to zero Ihe number 0 has been added, which cor-
responds to the case in which the digit 1 occurs in the first position of the word
a, a, - a,.

It follows that F,. represents the number of subsets of X which do not
contain two consecutive integers. This includes the empty set, which cor-
responds to a word with n positions equal to 0. The summation which defines
F,. contains nonzero terms for n—k+ 1=k or k<[(n+1)/2].

In order to prove the recurrence relation satisfied by the Fibonacci numbers,
observe that every binary word of length n which does not contain two consecu-
tive ones has 0 in its last position or 01 in the last two positions. The words
which remain after eliminating 0 or 01 have length n—1 or n—2 respectively
and do not contain two consecutive 1's. Thus there exists a bijection from the
set of binary words of length n which do not contain two consecutive 1's onto
the union of the disjoint sets formed from binary words of length n—1 or n—2,
respectively, which do not contain two consecutive ’s. Thus F,=F,_,+F,_,
foreverynz2,and Fy=F =1.

'\.

1 g
x

1 &
) —

e e)

1J:

1
€

u'[\/] R

j=1
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3,19 In order to find the expression for the number [*(n, k), observe that
the subsets which contain the number »n cannot contain either n—1 or L. The
number of such subsets is equal to f(n— 3, k— 1), and there are f(n— 1, k) which
do not contain n. In both cases it is assumed that the sets do not contain two
consecutive integers modulo n+ 1.

For example, the subsets which contain the number n are obtained from the
S(n=3, k—1) subsets of X \{1, n—1, n} which have k—1 elements and do not
contain two consecutive integers. [n this case the number » is added. In view
of the fact that every k-element subset of X which does not contain two consecu-
tive integers modulo n+ 1 belongs to the union of these two disjoint sets of
k-element subsets which do not contain two consecutive integers, it follows that

* _ _ n—k—1 n—k
S (n,k)—f(n—3,k—1)+f(n-—1,k)—( r—1 >+< L >

()= )

The Lucas numbers can be expressed as a function of the Fibonacci numbers
as follows:

L=Y f*nk=3% {fn—1,k+f(n=3 k=D}

k20 k>0
=Y fin=1,k+ Y f(n=3 k=1)=F,+F,_,.
k>0 k21

Thus one can write
Ln+1=Fn+l+Fn—1=Fn+Fn—1+Fn—2+Fn—3=Ln+Ln-l

fornz2.Onefinds that L, =1 and L, =3. With L,=2, by definition, the recur-
rence relation for the Lucas numbers yields the {act that L, =3,

3.20 First we show by induction on » that

U 1\t (F,., F,
= (1)
10 F, F,_,

fornz1.Forn=1 one finds that Fy=F, =1 and F, =2 and thus (1) is satisfied.
Supposing that (1) holds, one can show that

1 1n+2_ F)H-l Fn 1 t _ Fn+1+Fn Fn+1 . Fn+2 Fn+1

1 0/ \F, F,., )\l 0/ \F, +F,., F, ) \Fuey F, /)
and thus (1) is true for every n. By equating the determinants of the matrices in
both sides of (1) one obtains the desired recurrence relation.

3.21 Itisclearthat the number u, is also equal to the number of representa-
tions of n as a sum of the numbers 1 or 2. Two representations are considered
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to be distinct even if they differ only in the order of their terms. For example:
2=1+1,
3=24+1=142=1+1+1,
4=242=2414+1=1424+1=14142=14+14+1+1.

The first term is 1 or 2. In the first case the number of representations is equal
to u,.,, since the remainder of the terms are equal to 1 or 2, and their sum is
equal to n—1. In the second case the number of representations is equal to
U,-,. It follows that

Up=Up_1 +Up_ (1)

with initial values u, =1, u, =2. If one takes u, =1, the result is the sequence of
Fibonacci numbers, and hence u,=F,,.
In order to solve equation (1) one can use the characteristic equation

rl=r+1,

which has solutions r, =(1 +J§)/2 and r2=(1—\/§)/2, and thus the general
solution has the form

un=C1r’1' +C2r’55

where the constants €, and C, are determined from the initial conditions
uo=1and u; =1. One thus obtains the system

C,+C,=1,
1 5 1-4J5

It follows that C, =(\/§+ 1)/2\/5 and C2=(\/§— 1)/2\/5, and hence

i v

raiee G

forevery n20. If one sets f(x) =Z:’=O F,x", then it follows in turn that

u,=F,

Y=Y Fooix” and x¥(x)= Y F,ox",
na=1 =2

and in view of (1) one has

S =xf(x)= X f(x)=Fo+(Fy=Fo)x+ ) (Fy~Fnoy=F,-)x"=F,=1,
n=2

from which it follows that
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3.22 Since the sequence of Fibonacci numbers contains arbitrarily large
terms, it follows that there exists an index m such that F,, <n<F,,, ;. Continuing
in this way one finds that

0Kn=Fp<Fpsi—Fp=Fpn_,.

Ifn—F,,>0,thenin view of the fact that 1 is a term of the Fibonacci sequence,
one can find an index s<m—2 such that

F,<n—F,<F,,,.

As before, it follows that 0<n—F,,—F,<F,_,.
Ifn—F,—F;=0, the proof is finished. Otherwise repeat the same argument.
and after a finite number of steps the desired representation is obtained

n=F,+F+F,+ - +F,,
where the indices of two consecutive terms of the sum differ by at least 2.

3.23 The Catalan number C, is defined as the number of ways in which one
can insert parentheses into a nonassociative product of n factors written in the
order xy, X,, . .., X,. If there exists a unique pair of parentheses which is not
contained in other parentheses. then this pair contains in its interior the product
of the factors x,, . ... x, which remain outside of the factor x,, or it contains
in its interior the product of the factors x;, . . ., x,_,, which remain outside of
the factor x,. If there are two pairs of parentheses which are not contained in
other parentheses, then these pairs contain the product of the factors x;, ..., x;
and Xy qs - - -+ X, respectively where 2<k<n~2.

In a product of k or n—k factors respectively one can insert parentheses in
C, or C,_ ways respectively. This yields the following recurrence relation for
the Catalan numbers:

n-1

Cn= Z CkCn—k,
k=1

where C, =1.
As in the statement of the problem, let

f(x)=C1X+C2X2+ v +Cnx"+
It follows that
n—1
SU)=Cix?+(C,Cy+ C,C)x*+ - +<Z Ckcn_k> X"+ =f(x)=x,
k=1

in view of the recurrence relation and the fact that C, = C, =1.
The solution of the quadratic equation

Hx)=f(x)+x=0

yields f(x)=(1+/1—4x)/2. In the sequel let x<4%. Since f(0)=0, one must
take the minus sign in front of the radical. Thus

_1=y1-4x

f(x) 3
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Now expand the function /1 — 4x in a power series in x, using the generalized
Newton binomial formula for real exponents, which has the form
ofoe—1)
2!
-1y (a=k+1
+oc(oc ) k‘(a * )a""‘x"+ R

(x+af=a"+ad"" 'x+ a4

where a>0.

This series converges for every x which satisfies |x| <a. If « € R is a positive
integer, then only a finite number of terms of the series are different from zero
and the resulting expansion is precisely the binomial formula named for
Newton. (This formula was not actually discovered by Newton. Mathematicians
from Central Asia such as Omar Khayyam knew it much earlier. In western
Europe, Blaise Pascal also used the result before Newton. However, Newton
proposed the generalization to noninteger exponents.)

In order to expand (1 —4x)'/2 in a series of powers of x, let y= —4x, a=4%,
and expand the binomial (y+1)}2. It turns out that the coefficient of x" is
equal to

%(—%)(_%)'"'(%_n+1)(_4)n=(_1)n—1 LH_IX:"X X(2n_3)(_1)n22u
n! 2 n!

_ 2n-2)! .,

T2 n=1)n!

_ @Qn-2)! 2<2n—2

T Tan=D)n—=1!  n\n—1/

However, C, is the coefficient of x" in the expansion of f(x), and hence one
obtains the coefficient of x" from the expansion of (1 —4x)!/? by multiplying by
—4. Thus C,=(1/n)(>" ).

3.24 Determine the number of sequences of letters which contain the letter
a k times and the letter b m times, and which have property (P): For every i,
1<i<m+k the number of letters ¢ among the first i letters of the sequence is
greater than or equal to the number of letters b. It is clear that the number of
these sequences is nonzero if and only if the condition k= m >0 is satisfied. The
number of sequences of letters which contain the letter a k times and the letter
b m times is equal to P{m, k)=(m+k)!/m!k!=("';"). If one determines the
number of sequences which do not satisfy (P), then the desired number is
obtained by subtracting this number from ("';k). It will be shown that the
number of sequences formed from m letters b and k letters a which do not satisfy
(P) is equal to Pim—1, k+ 1)=(:f';). It is equal to the number of sequences
formed from m—1 letters b and k + 1 letters a. The proof of this property follows.

Consider a sequence formed from m letters b and k letters a and which does

not satisfy (P). There exists a position numbered 2s+ 1, where s> 0. such that
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the sequence under consideration contains the letter b in position 25+ 1. In
front of this position there are an equal number s of the letters a and b.

Now consider the smallest index s with this property, and add the letter a
in front of the corresponding sequence to obtain a sequence of m letters b
and k + | letters a. The first letter of the sequence thus obtained is a, and among
the first 25+ 2 letters there are an equal number of a’s and b’s. Interchange the
letters a and b in the first 2s+2 positions of the sequence. The total number of
letters of each kind does not change, and one obtains a sequence with m b’s and
k+1 a’s whose first letter is now equal to b.

In this manner one has associated with each sequence of m b’s and k d’s
which does not satis{ly (P) a sequence of m b’s and k+ 1 a’s which begins with
the letter b. This mapping is injective, as follows immediately by considering
two different sequences which do not satisfy (P) and which differ in the pth
position, where p<2s+1or p>2s+1.

It will be shown that in this manner it is possible to obtain every sequence
formed from m b’s and k+ 1 a’s and which begins with b. Thus the mapping is
also surjective.

Now consider a sequence which begins with b. Since m<k and hence
m<k+1, it follows that there exists a position numbered 2s such that the first
2s positions of the sequence contain an equal number s of the letters a and b.
In front of the first position with this property interchange a and b and suppress
the first letter a. One obtains a sequence of k a’s and m b’s which does not satisfy
(P).

Now apply the indicated mapping to this sequence. The result is the
original sequence. Thus in virtue of this bijection the number of sequences
with m letters b and k letters a which do not satisfy (P) is equal to the number
of sequences with m letters b and k+ 1 letters a which begin with b. If the first
letter b is suppressed, one obtains all sequences consisting of m — 1 letters b and
k+ 1 letters a. The number of such sequences is equal to

k
Pim—1, k+1)=<::>.

It follows that the number of sequences which satisfy (P) is equal to
(m+k>_(m+k>_k—m+l <m+k>
m m—1 k+1 m /)
For k=m=n—1 one has
e (70)

It is clear that this number represents the solution to the problem, since if 1
is replaced by a and —1 by b. then condition (1) expresses the fact that the
number of @’s is at least equal to the number of b’s in the first k positions for
1<k<2n—2. Condition (2) expresses the fact that the number of a's is equal to
the number of b’s and both numbers are equal to n—1.
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3.25 It will be shown that there exists a bijection from the triangulations of
a convex polygon with n+1 vertices to the set of parenthesized products of n
factors in the order x4, x,, ..., X,.

Let A, A, - A,+, be a polygon with n+1 vertices, and traverse the sides
of the polygon from A4, to A,, and so on. until 4, ,, is reached. One obtains a
parenthesized product of n factors by using the following rules:

(1) When traversing a side, write a new factor x;in the order xy, ..., X,.

(2) When one arrives at a vertex which is incident to some diagonals
of the triangulation, write a number of closing parentheses equal
to the number of diagonals which have an endpoint at this
vertex and whose other endpoint has been traversed. Write a
number of opening parentheses equal to the number of diagonals
which are incident to this vertex and whose other endpoint has
not been visited.

In this manner it turns out that for the triangulation of the convex polygon
with eight vertices illustrated in Figure 3.1. one obtains the following product
of seven factors:

(X 1(((()( 2x3)x4)x 5)X 6))x7_

It is clear that this correspondence is injective. In order to show that it is
surjective, consider a parenthesized product of n factors in the order x, .. ., X,.
This product contains n—2 opening parentheses and n—2 closing parentheses.
Each opening parenthesis corresponds to a unique closing parenthesis. For
each pair of opening and closing parentheses consider the first letter x; which
occurs to the right of the opening parenthesis and the first letter x; which occurs
to the left of the closing parenthesis. Draw the diagonal 4;4;.,.

Since each pair ol parentheses contains two factors in its interior, and since
the parentheses are correctly placed, it [ollows that the n—2 diagonals of the
polygon constitute a triangulation for it. Now apply the indicated corre-
spondence to this triangulation. The result is the original parenthesized product
of n factors, which establishes that the transformation is a bijection.

Thus the number of triangulations is equal to the Catalan number C, (Euler).

A
Az

Aj

Ag

Ag
Fig. 3.1
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3.26 Consider the lines x=k, y=I/ in a rectangular coordinate system
where 0<k, I<n are integers. One now studies the points of intersection of these
lines in the first quadrant which occur on or beneath the line y=x.

For each increasing function f:{1,...,n}—{1,..., n} construct a path in
this network as follows: Suppose that one is at the point M(i. f(i)). Go to the
point M,(i+ L. f(i)) by a horizontal segment: then follow vertical segments until
one arrives at the point M,(i+1. f(i+1). If fli+ D)= f(i). it {ollows that
M,=M,. Otherwise the displacement involves an upward movement. since
S+ D> fi).

By effecting this displacement fori=1, ..., n—1 one obtains a rising path in
the network with endpoints (1, 0) and (n, f(n)). Also join the origin with the
point (1, 0) by a horizontal segment, and if f{n)<n, join the point (n, f(n)) to
the point A(n, n) by a sequence of vertical segments. This yields a path with
endpoints O(0, 0) and A(n, n).

For the example illustrated in Figure 3.2, the increasing function f is defined
as follows: f(l}=f(2)=1, f(3)=2, f(4)= f(5)=4. The corresponding path is
indicated by a heavy line.

It is clear that in general this path consists of n horizontal and n vertical
segments. There are no descents from O to the point A(n, n), and the path is
situated beneath the line y=x. One has therefore defined a correspondence
between the set of increasing {unctions f:{l,..., n}={l,..., n} which satisfy
the condition f(x)<x for every x=1,..., n and the set of paths with endpoints
O and A with the given property. This mapping is a bijection. In fact, it is injec-
tive because distinct functions correspond to distinct paths.

In order to show that it is surjective, let d be a path with the given property
and endpoints O and 4. Define an increasing function as follows:

Jdi)=max{j|(ij)ed}

for every i=1, ... n In this case the image of the function f; under the cor-
respondence is exactly the path d, which shows that the correspondence is a
surjection.

p A(5,5)
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To count the rising paths of length 2n with endpoints O and A(n, n) which are
situated beneath the line y=x, observe that there is a bijection from the set of
these paths to the set of sequences (x;, x,, . .., X,,) with x;=1 or x;= —1 for
1 <i<2n which satisfy the conditions

() x4+ - +x,=0foreveryk=1,...,2nand
(2) X;+ +X2,.,=O.

In order to define this correspondence one traverses a rising path d from O
to A. The path d can be written as a sequence of segments of length 1, d=(s,, 54,
.., S2a), where the order of the indices indicates the order of displacement of the
segments from O to A. The sequence associated with the path is obtained from
the sequence (sy, . . .. S,,) by writing 1 in place of each horizontal segment and
—1 in place of each vertical segment. In this way one obtains the following
sequence for the path illustrated in Figure 3.2:

(1, -1, L1, -1,1,-1,-1,1, =1).

Condition (1) expresses precisely the fact that the path d cannot pass through
points which are located above the diagonal, and condition (2) implies that
there are n horizontal and n vertical segments. The path must therefore ter-
minate in the point A.

It follows from Problem 3.24 that the number of sequences of I'sand —1's
with the given properties is equal to

1 (2n
R

This observation ends the proof.

3.27 For n=4 the number of solutions is equal to 2. Now let n> 5. A vertex
v, of the polygon can be chosen in n ways. Join the two vertices which are
adjacent to v, by a diagonal d,. Consider the triangle which has side 4, and a
vertex in common with the polygon which is different from v,. It must have a
side in common with the convex polygon. Thus the third side must be one of the
two diagonals which join a vertex located on d, with one of the neighbors of
another vertex on d,. Thus a second diagonal d, can be chosen in two ways.

Similarly, if dy, ..., d; (i< n—3}have been chosen, then there are two possible
choices for d,. ,. There are thus n 2"~ * ways of selecting a vertex x, and a se-
quence dy, ds, . . ., d,— 3 of diagonals with the desired property.

Each triangulation obtained in this manner has two triangles which contain
two adjacent sides of the polygon, and hence each is counted twice. It follows
that the desired number is n 2" ° for every n> 4.

3.28 Let fi(n+1) denote the number of sequences with n+1 terms and
ay=j. Itfollows that fin+1)= f;_ ((n})+ f;. ((m) for j=1 and fon+1)= fi(n).

It will be shown by induction on k> 1 that for every k <n the following rela-
tion holds:
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Joln)= Z Ak jfi-2iln =k, (1)

jski2

where A, ;=()—(,%,) for 0<2j<k In fact, for k=1 relation (1) be-

comes fy(n)= fi(n—1), which has been seen to be true. Now under the assump-
tion that k<n—1 and (1) holds, replace fi-,;n—&) by fi.qj-(n—k~1)
+ fio2j+1{n—k=1)in (1). It follows that

fom= Y Apsy jfirr-2; (n=lk+1)),
where
k

-()-05)05)-05)
@*(1_1) [(151%(;52)}

k 1
(“) <k+> for 0<2j<hk+1,
J j=1

and hence (1) is true for every 1 <k<n—~1.
If n=k+1in (1), then

Apryj=Agj+ A j-o

k
n)= A = .
folm= 2. A ([k/2]>
[L. Carlitz, Math. Nachr., 49 (1971), 125-147.]

3.29 Leta,=jand |a;~a;+ <1, and denote the corresponding number of
sequences by g;(n+1).

It is easy to show that go(n+ 1) =go(n)+g,(n) and gn+1)=g,_(n)+g,n) +
g;+1(n) for j= 1. Similarly, the fact that

k>0

(1 +x+xynt! =[ Y cim, k)x"] (1 +x+x?),
yields

cm+1, k)=clm, k—=2)+cm, k= 1)+c(m, k),
where ¢(m. k)=0 for k< 0. One thus finds that

goln =goln—1)+g,(n—1)=2go(n—2)+2g,(n —2)+ g,(n—-2)
=4g45n—314+59,(n=3)+3g,(n—=3)+g;(n=3)
Ogotn—4)+ 12g,(n—4)+9g,(n—4) +4gn—4)+ gyln—4)
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In general,

goln)= Z By gk jin— k) (1)

fer
for every 0<k<n~—1.

Relation (1) can be proved by induction on k. It has been seen that (1) is true
for k=0.1.2. 3, 4. Supposing that (1) is true for all values k<p<n—2, it will be
shown that

pt+1

goln)= 'Zo Bp+1,jgp+1-j(”‘l?—1)- (2)

Infact, if one replaces k by pin (1) and replaces g,_ j(n—p)byg,_1_ j(n~p—1}+
gp-jin—p=1)+g,-;+1(n—p—1)forj=0,..., p, then one obtains an expression
of form (2) where the coefficients B, ; are given by the recurrence relation

B,,1j=B,j-2+B, ;-1 +B,; (3)

It will now be shown that B, ;=c(k, j)—c(k, j—2) for every 0<j< k. In fact,
for k=1 the equation is satisfied, since B, o=c(1, O)=1 and B (=c(l, 1)=1.
Suppose that the equation holds for every k< p and every 0<j < k. It follows that

Bps1j=Bpj-2+Bp -1+ By,
=C(pa]_2)"C(P,J"4)+C(P’]"' 1)—C(p,]_’3)+C(P7])‘('(Psl"2)
=C(P+ L])”C(P“" 1’.]'_2),

in view of the induction hypothesis and the recurrence relation satisfied by the
number c(m, k). One can thus write

k
= -Zo {c(k, j) = clk, j—2)}gx— j(n—k)

for every Ok <n-—1. By taking n=k + 1, one finds that
k

k
olk+1)= Z {ctk, jy—clk, j= 2} ge-;(1)= Y {clk, j)=c(k, j—2)}

= i=0

=clk, k) +c(k, k+ 1)
for every k20, since g, - {1)=1. [L. Carlitz, Math. Nachr., 49 (1971), 125-147.]

3.30 It was shown in Problem 3.24 that the number of sequences (xy, X2,

, X»,) with terms equal to +1 which satisfy the conditions x; + +*+ +x,20
for every 1<k<2n and x;+ '+ +x,,=0 is equal to {1/(n+1) ( "). Observe
that there exists a bijection from the set of sequences x=(x,, x,,. ... X,,) to the
set of sequences a=(ay, a,. ..., ds,+,) Which satisfy the given conditions. The
mapping is defined by f(x)=aif

a, =0, a,=x;=1, a3=x;4+x5, ..., G+1=X;+X3+ " +X

[or | <k<2n, and hence a,,.,=0.
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3.31 Consider a sequence which satisfies the condition of the problem, and
suppress all terms equal to n. One obtains a sequence of k terms, where 0<k<r,
which satisfies the given condition. For i=n the condition implies that the
number of such sequences is zero for r=n. Start with a sequence consisting of

the numbers 1.. ... n—1, of length k, with the property that at most i—1 terms
are less than or equal to i for i=1, ..., n—1. One can insert r—k new terms
equal to n so as to obtain a sequence (x,, ..., x,) with 1< x;<n which satisfies

the same property. However, the r — k terms which are equal to n can be inserted
in (;) ways, which corresponds to the (,”,)=(;) possible ways of choosing the
positions occupied by r— k terms equal to n in a sequence of r terms.

Now start with all the sequences of length k=0, ..., r composed of the
numbers 1, ..., n— 1, which satisfy the given property. By inserting r — k terms
equal to n in all possible ways, one obtains, without repetitions, all the sequences
(xy, ..., x,} with 1 <x;<n which satisfy the same property. This implies the
recurrence relation

r

fin,r)= Z <1:>f(n—1,k) for Igrgn—-1, (1)

k=0

where f(n, r) represents the desired number of sequences.
It will be shown by induction on » that

S =(n—rn"". 2)

If n=r it has been seen that f(n, r)=0, and this coincides with the value given by
{2). Let n>r, and suppose that f(n—1, k)=(n—1=k(n—1)}"" for every

k=0,...,n—1.1In view of (1) it follows that
finn=73% (r) fin—1, k=3 <r>(n—1—k)(n—1)""1
k=0 k k=0 k

5 (" 1 =~ (7 _p-t
3 (6=, (s
=pn" - ’Z

k=

r—1 =t
’ 1<k_1>(n 1)

=n"—m " t=(n—rn""! foreveryr=1,....n—1.
However, for r=n it has been seen that formula (2) is also true. Thus (2) is true
for every nzr. [H. E. Daniels, Proc. Roy. Soc., A183 (1945), 405-435.]

332 If [f~1)|=k>1, then these k elements can be chosen in (}) ways
and for the rest of the elements the function f can be defined in S,_, ways.
One thus obtains the recurrence relation

" (n
Sn= Sn— 1)
£ ()



r rovtems in compinatorics and Graph Theory

or

; (n k) for nxzl.

Thus the exponential generating function is
it ZS X

28(x)= _-1-+-Z<iki "_)>x"
n= k=

n=0 0

=1+ <,§;o % x'")(kizo %’;)

=1+ s(x)e*

and hence s(x) =1/(2—¢”). Expand s(x) in a power series:
1 1 1 g /e*Y & 1 2 k'x"
=3 Tmp Ty L (7) =L L

from which the expression for S, follows by identifying the coefficients of x”
in the two sides.

3.33 First determine the number U, , of ordered systems consisting of k
linearly independent vectors from V. As the first component of such a system
one can choose any of the ¢" — 1 vectors other than 0 in the space V. Each vector
v#0 generates a subspace of dimension one which contains g vectors. There
thus exist ¢" — g vectors, each of which together with v forms a system of two
linearly independent vectors and thus can be chosen as the second component
of the system. Let w be one of them. The pair {v, w} generates a two-dimensional
subspace which contains g2 vectors. Thus there exist g"—q? vectors which are
linearly independent of v and w, and any of them can be chosen as the third
vector of the system. Continuing in this way, one has

Une=(@"=1)q"—q) - ("= q" 1.

Each system consisting of k linearly independent vectors generates a k-
dimensional subspace of V. Conversely every k-dimensional subspace has U,

ordered bases. Thus
[n} - U"‘k
kg Uex

and the formula follows by simplification.

3.34 The properties can be obtained by a direct calculation. By passing
to the limit as g—1 in (b) and (c) the results are well-known properties of
binomial coefficients.

3.35 The given equality can be proved by counting in two distinct ways the
number of linear transformations of an n-dimensional vector space V, over a
finite field GF(q) to a vector space Y over GF(q) with ) vectors.
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Let {x,,..., x,} be a basis for V,. The image of an arbitrary x; can be any
of the vectors in Y, and these n images uniquely determine a linear transforma-
tion. There are thus y” such transformations.

It will be shown that the right-hand side of Cauchy’s identity counts the
number of linear transformations f:V,—~Y by taking into consideration the
dimension of the subspace Ker(f) consisting of the vectors in V, whose image is
the zero vector in Y. By Problem 3.33 there exist [}, subspaces V, of ¥, of
dimension equal to k.

Let zy, ..., Znky Zu-ge1y ..., 2, b @ basis for ¥V, such that z,_,.,, ..., Z,
generate the subspace V. A linear transformation f:1,—7Y has Ker(f)=V,
if and only if it maps the vectors z, 4+,. - . . , 2, into the zero vector in Y and
the n—k remaining vectors z,,..., Z,—; into a linearly independent set of
vectors in Y. The vector z, can have as its image in Y any of these y vectors,
other than the zero vector, the vector z, can have as its image any of the y
vectors which do not belong to the linear subspace with dimension 1 generated
by theimage of z,, and so on. One therefore obtains (y—1)(y—¢q) - - - (v —¢" " **!)
linear mappings f:V,—»Y which have Ker(f)=V, and dim(V,)=k. Thus
0<k<n When k=0thereare(y—1)(v—q) - (y—q"~!')such transformations,
and when k=n there is a unique transformation which maps all vectors in V,,
onto the zero vector in Y.

For fixed y this establishes that the equality holds. Since y can take on an
infinite number of values, it follows that the equation is a polynomial identity
in the variable y. [J. Goldman, G.-C. Rota. Studies in Applied Mathematics,
XLIX(3) (1970), 239--258.]

3.36 For k=1 one has f(n, 1)=1; for k=2, a;=n and a,—a, is an even
number, and hence f(n, 2)=[(n—1)/2]. One can prove (a) by induction on n.
This formula is valid for n=2 and n=3 for all k=1, if by definition (8)=1.
Suppose (a) is true for n<m—1. It is clear that f(m, ky=N,(m, )+ N,(m, k),
where N,(m, k) is the number of sequences, satisfying the same conditions. for
which a, =1and N,(m, k) is the number of such sequences with a, > 2. It follows
that N,(m, k)= f(m—1, k), since the sequence

I<ay<ay<+ <agp=m—1,

where aj=a;— 1 for 1<j<k, satisfies the same conditions and this mapping
is one-to-one. For m—k=0 (mod 2) it turns out that N,(m, k)=0, and for
m—k=1(mod 2) it can similarly be shown that N,(m, k)= f(m—1. k—1). Now
consider two cases:

(al) m—k=0(mod 2). It follows that

k=1

by the induction hypothesis. If m—k=0 (mod 2) then m+ k=0 (mod 2), and
hence

flm, k)= fim=1, k= (f‘m+ k—4v21>
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([m+k—3]>
m+k—4 m+k—3 X 2

l: 3 :|—I: 5 :|and f(m, k)= 1 .
(a2) m—k=1(mod 2), whence m+ k=1 (mod 2). In this case

fim k)= fm—1,k+ fim=1.k—1)
_(Um+k—4wﬂ)+<nm+k—sya>

k—1 k=2
_([m+k=3)2]-1 . [m+k=3)2]-1
- k—1 k=2
_(lm+k=3)12]

B k-1

and hence (a) is also true for n=m. It is easy to see that the numbers f(n, k) for
k=1 generate a zigzag line in the Pascal triangle of binomial coefficients. We
denote their sum for k2 1 by G, and prove that

Gn+2=Gn+1+Gn (1)
for any n> 2, Suppose first that n=2p, p integer. It follows that

{5 R

But
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where (:)=1 is the last term of G, ,, and so (1) is established in this case. For
n=2p+1 one has

o5 T )15
Cor=(g)o (D)o 73 ) (3)r .
os(g (13

and (1) may be proved similarly.

Since G,=1=F, and G;=2=F,, it follows that G,=F,_, for any n>2,
Recurrence relation (1) may also be proved directly from Pascal’s triangle in
both of the cases when »n is even or odd.

CHAPTER 4

4.1 Suppose that neither (1) nor (2) holds. Then X contains at most a
pairwise distinct objects and there are at most a copies of each of these. Thus
X has at most a?<n—1, objects which is a contradiction.

4.2 The krows and k columns on which the rooks are found can be chosen
in (});) distinct ways. The intersection of the k rows and k columns forms a
table with k2 squares, on which the k rooks can be situated in k! ways in positions
so that no rook can attack another.

In fact, the k rooks are found in k different columns, but the rook in the first
column can bearranged in k different ways on the k rows; the rook on the second
column can be arranged in k—1 different ways in k — 1 rows other than the row
on which the rook in the first column is stationed, and so on. The result is that
there are k! possible arrangements,

Thus the total number of possible arrangements is k!(7)().

4.3 Each of the 19 numbers in A belongs to one of the following 18 pairwise
disjoint sets:

(1}, {52}, {4, 100}, {7, 97}, {10,941}, .. ., {49, 55},

Thus there exist two distinct integers in 4 which belong to one of the pairs
{4,100, ..., {49, 55} and which therefore have their sum equal to 104. [W. L.
Putnam Competition of 1978, American Math. Monthly 86(9) (1979), 752.]
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4.4 Consider theset {k+1,k+2,....2k+1}, which contains k+ 1 numbers.
The sum of each pair of distinct numbers selected from this set lies between
2k + 3 and 4k + 1, and is therefore not divisible by 2k + 1. The difference of each
two different numbers lies between 1| and k and is therefore not a multiple of
2k+ 1. Let the number sought be denoted n(k). It follows that n(k)= k + 2.

Let 4 be a set which consists of k+ 2 integers. If there are two numbers in 4
which have the same residue modulo 2k + 1, then their difference is divisible by
2k +1, and A satisfies the given condition.

In the opposite case, all the k+ 2 remainders of the numbers in 4 modulo
2k+1, are pairwise distinct. Thus the set of remainders is a (k+ 2)-element
subset of the set {0, 1,..., 2k}. One can also consider the remainders as forming a
(k+2)-element subset of the set M ={—k, —(k—1),..., —1,0,1,..., k}, since
every integer p=(2k+1)g+ m, where g is an integer and m € M. However, for
every choice of k+ 2 numbers from M, there will exist two among them whose
sum is zero, since otherwise one would have [M|>2(k+ 1)+ 1 =2k + 3. Thus 4
contains two numbers whose sum is divisible by 2k+ 1. But |A|=k+ 2, from
which we deduce that n(k)< k+ 2. From the two opposite inequalities one can
conclude that n(k)=k+ 2.

4.5 Sum the given inequality for j=1,..., n to obtain
|4l +nlANC|+]Cy = n*
If one further sums over i=1, ..., n. then
(M
Finally by summing on k it is seen that n|]M |+ 2n|M|>n* and thus [M|>n3/3.

The lower bound is attained if n=0 (mod 3).
Suppose now that [M|=n?/3, and define a partition of M,

M=AlvAlu - vAdluAlu - UAZU - uAdTUALU - UAT,

such that [Af|=n/3 for every 1<i, j<n. Let 4,=U"_, 4}, B;.=U"_, A/, and
Ci=\U'_| Al - 1 imean - The partitions (4)), (B)), and {C). 1<i<n, satisfy the
1denuty |A;~ B +]4; an|+|B N C,|=n, since for every i, j, k the following
relation holds:

+2n|Cy| 2 n’.

n
40 Byl =|4,n = [B;n Cl=5.

Thus in this case min [M|=n?/3. [1. Tomescu, E 2582, American M athematical
Monthly, 83(3) (1976), 197.]

4.6 First we show that f is idempotent if and only if the function ¢:Y =Y
is the identity function, where Y =f(X) and g(x)=f(x) for every x € Y. In fact,
if [ is idempotent, it follows that g(x)= f(x) for XE€ Y, and thus there exists
z € X such that x= f(z), and one can write

=fx)=f(f2)=f(z)=x,
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and thus ¢ is the identity function. But if ¢ is the identity function. then

Sf)=f(y)=g(y)=y=f(x)

for every x € X, and hence f is idempotent.

Let |Y|=k. Then 1<k<n.

The set Y =X can be chosen in (;) ways; the restriction of the function f
to Y is the identity function, and the number of functions h: X \Y =Y is equal
to k" Since f is the identity on Y, it follows that f is uniquely determined by
its restriction h to X \Y. This latter observation completes the proof of the
formula for i(n).

One can also show that the exponential generating function for the numbers
i(n) is exp(x€”).

Observe that

2 xJ n+1
exp(xe*) exp(x+1'+ﬁ+ +—+ >
_ x? ¥ ‘ 1 2 a3 2
=1+{x+ 757+ T\ +
1
+__' x2 x3 n
|\ x+ T+t +

! x+x2+x3+ Ll I+ =4+
k! 2! TR T TP

is precisely

1 n—k 1 n— k
KRt~ n'(k)k

This implies that the coefficient of x" in the expansion of exp(xe®) is in)n!.

4.7 The proofis carried out by induction on m. For m=1 the statement is
obviously true. Let m2 2, and suppose the property holds for m—1, with the
antichains of the union being pairwise disjoint. Let P be a partially ordered set
which does not contain a chain of cardinality m+ 1.

A chain will be said to be maximal if its element set is not a proper subset
of the element set of another chain, and an element x of S will be said to be
maximal if y < x for every element y in S which is comparable with x.

The antichain M consisting of the maximal elements of P is nonempty, since
the maximal element of an arbitrary maximal chain is contained in M. Tt follows
that the partially ordered set P \M does not contain a chain of cardinality m.
Suppose that P\M contains a chain x;<x,< ‘' <x,, of cardinality m.
Then there exists z € M such that z> x,,, since otherwise one has x,, € M and
this contradicts the fact that x, e P\M. Thus x;<x,< ' <x,<z is a
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chain of cardinality m+ 1 in P, which contradicts the hypothesis. Since P \M
does not contain a chain of cardinality m, it follows from the induction hypothes-
is that P \M is the union of m—1 pairwise disjoint antichains. These, together
with M, provide a partition of P into m antichains. [L. Mirsky, American Math.
Monthly, 78(8) (1971), 876-877.]

The dual of this proposition also holds for any partially ordered set P. It is
called Dilworth’s theorem: The smallest number of chains into which P can be
partitioned is equal to the maximal number of elements in an antichain.

4.8 Each partition P, with 1 <k<n—1 has k classes and is obtained from
P, ., by combining two classes into a single class. Thus, if P, P,_4,..., Py, are
fixed, then the partition P, can be chosen in (’”;1) ways. The number of chains

of length n is equal to
k1N (n=1Dinl
n ( 2 >—?

k=1

4.9 Supposethat N, E;=Candlet E, ={xy,...,x,}. Sincex, ¢ Nj_ E,,
thereexists a set F; € Fsuch thatx; ¢ F;fori=1,...,r It followsthat E,nF;n
- nF, =, which contradicts the hypothesis. In fact, if, for example, x; € E,
Fin -+ nF, then x;€ E, and x, € F;, but by construction x; ¢ F;.

4.10 Let the family S; =(X \X)); ci<,. [t follows that all the sets of S, are
pairwise distinct subsets which are distinct from subsets of S. In fact, if there
exists an index i such that X \X; e S and X, € S, then (X \X ) n X, =, which
contradicts the definition of the family S. One can thus conclude that 2r <|P(X )|
=2" or r<2""*, and thus max r<2"" ' The upper bound is attained if
Y =X \\{x} for an element x € X and if S is the family of sets { ¥;u {x} | Y;= Y}.
In this case |S|=|P(Y)|=2""'.1f 4, Be Sthen AnB#¥,sincexe Aand x € B
and hence x € AnB. [G. Katona, Acta Math. Acad. Sci. Hung., 15 (1964),
329-337.]

4.11 Fix asubset C € F. The function f:F— P(X )defined by f(4d)=42C
is injective. In fact, if 4, 8 C=A4, 2 C, then from the properties of & one can
infer that A, =(4,2C)2C=(4,2C)2C=A4, and thus 4, =A4,. It follows
that the number of sets of the form 4 & C, where A4 runs through the family F,
is at least equal to |F|=m.

4.12 Let S={1,..., n}, and denote by 4, the set of families of nonempty,
pairwise distinct subsets of S which do not contain the element i € S. Since the
number of families of nonempty pairwise distinct subsets of S is equal to
2271 it follows that

Am)=2"" —]4,0 - U4,

By applying the Principle of Inclusion and Exclusion one finds that

n

|[dyu - udl=Y JAl- Y A4+,

i=] lgi<jgn
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Since |M,, 4]=22""""1, where |K| =k, the formula {or A(n) follows immedi-
ately if one takes into account the fact that the set K can be selected in (}) ways
as a subset of S. [L.. Comtet, C.R. Acad. Sci. Paris, A262 (1966), 1091 -1094.]

4.13 Let A=(S;}; <<« be an irreducible covering of the set S. It follows
from the definition that each subset S; contains a nonempty subset T, of S.
consisting of elements which do not belong to the other subsets of the covering.

Let T= U';=1 T;. It follows that the subsets T, ..., T, form a partition of the
set T.If | T| =1, one sees that k<i<n and all irreducible coverings of S can be
obtained without repetitions in the following way (for every ): For each of the
(7) choices of T as a subset of S, consider the S(i, k) partitions Tyu -+ U T,
of T. Each of the n—i remaining elements belong to a family of subsets chosen
from among S; \Ti, ..., S, \T, which contains at least two sets. and thus the
number of possibilities is 2 —({)—(§)=2%—k—1. From this observation the
formula for I{n, k) follows.

The expression for I(n, n— 1) is obtained by using the fact that S(n, n~1)= (;).
In order to obtain the expression for I(n, 2), suppose that y ¢ S. Then there
exists a bijection from the set of partitions with three classes of Su { v} onto the
set of irreducible 2-set coverings of S, defined as follows: The partition Su {1}
=S,uS,;uS; is associated with the irreducible covering of S whose sets are
S oS3 \{1} and S,u (S5 \{3}), where S, is the class of the partition which
contains y. It follows that I(n. 2)=S(n+ 1, 3). The same conclusion holds il one
applies the recurrence relation (a) of Problem 3.5. [T. Hearne, C. Wagner,
Discrete Mathematics. 5 (1973), 247-251.]

4.14 Let ¢ be the smallest integer such that [t2/4] > n. Consider the follow-
ing [1%/4] sets of natural numbers:

Ay={x]i<x<jl where 1<i<i<j<t

Let 4, ;,, 1 <k<m, denote a subfamily F of this family of sets, which is union-
free. Label the number i, (or j,) if there does not exist another set Ay, j, of this
family with m sets F with the property that i, =i, and j, < j, (or j,=j, and i< 1,).

At least one of the endpoints iy and ji of 4;, ;, must be labeled, since otherwise
Ai, j, would be the union of two sets in F, contrary to hypothesis. Since a
labeled integer can be an endpoint for only one set A it follows that m<t
and thus

g fnt

2 -
f(n)Sf([%DSt, or  f(m<2Jyn+1.

In order to obtain the lower bound, let {4,. ..., 4,} be an arbitrary family of
n distinct sets. Construct a subfamily which is union-free in the following way:
Let 4;, denote aminimal 4;, that is, one which does not contain another set as a
proper subset. If the sets 4;, ..., 4, have been selected, then the set A4,
will be a minimal set in the family {4, ..., 4,} \{A4,, ..., 4;} which is not
the union of two distinct sets of the family {4,,..., 4,}. One can select 4, _
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in this way if n—s>s(s— 1)/2, since there are (;) unions of two distinct sets in
the family {4;,, ..., 4;,}. This construction defines a subfamily {4;, ..., 4.}
where r+r(r—1)/22n, that is, rkﬁ;—l.

The equation 4;u A;= A, (where i, j, k€ {i}, ..., i} are pairwise distinct)
cannot hold, and thus the family {4,, ..., 4,} is union-free. In fact, if 4, were
selected after 4, and A}, this equality would also contradict the construction,
for otherwise it would follow that 4, was not minimal when it was selected,
which contradicts the definition of the family {4,,...., 4; }. [P. Erdds, S. Shelah,
Graph Theory and Applications, Proceedings of the Conference at Western
Michigan University, 1972, Lecture Notes in Mathematics. Springer-Verlag,
1972.]

4.15 Forevery x€ S let M(x)={i|x € A;}. It can be shown that for every
subset T<{1,2,...,n} with |T|=n—k+ 1, there exists x € S such that M(x)=T.
Infact, since U“T A;isaunion of k— [ subsets of the given family, it follows that
there is an element x € S which does not belong to this union. One can show that
M(x)=T. By construction M(x)= T. If M(x) is a proper subset of T, it follows
that [M(x)|<n—k. Thus there exist k sets which do not contain the element x,
which contradicts the hypothesis that every union of k sets of this family is
equal to S. It follows that M(x)=T, and thus the function which associates with
each element x € S the subset M(x) has a surjective restriction defined on U =S,
with values in the set P,_,+({1,..., n}). It follows that

sizv>(, )=

IfSI=(,”,), then one can conclude from the hypothesis that

Y |4l =nlA] ==+ DIs| =(1—k+ 1) (kfl)’

and it can be seen that

n—k+1 n n—1
A= n (k—1>—<k—1>

for every 1 <i< n. This deduction uses the fact that in this case [M(x)|=n—k+1
for every x € §.

4,16 Let m, be the smallest natural number with the property described in
the statement of the problem and set U _ X, Y. Since |X;|=h for 1<i<k
and X, Y, it follows that k< ('}’ , OF N < min ]Yl In order to
prove the opposite 1nequa11ty let Y c X with |Y| =m,. Since ("})=k, one can
choose h-element subsets X, ..., X, such that U_, X,=Y.In fact this property
follows from the inequality mo<kh. Suppose however, that mq>kh. Since
", "YY<k by the definition of mg, and since mq > kh + 1, one can conclude that

<m0 - 1) 2<kh> Sk
h h
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which is a contradiction. By construction |Uf_, X/|=|Y|=mq, and thus
min |Ul . X <mo, which establishes the identity in questlon

4.17 Let Y< X with |Y|=p. The set Y may be written as the union of k
sets, Y =4, U '+ U4,, in (2*— 1) different ways. In fact, each of the p elements
of Y can belong to 2*—1 nonempty families of subsets 4, .... 4. It follows
from the fact that Y can be chosen in ( ) different ways. that

= n(2k— 1241,

4.18 From the previous problem one can also conclude that Y |4, -+ M A4y
=n2*"" D if | X | = n. Recall that the operation of complementation,

ClA,u - vAY=CA;n - nCA,,

determines a bijection between the family of subsets of the form A, u - L 4,

and the family of subsets 4;n -+ N A, Furthermore |CA;n - nCA4,|
=n—|A; U '+ U A, One can thus write

YA n A=Y (n=[A 0 o U4 =02 — 2k = 1)2km D

=n2kn= 1),

which is the desired result. One should also note that each of the indicated sums
contains 2" terms and each of the subsets A, .. ., A, can be selected from among
the subsets of X in 2" ways. [1. Tomescu, E 2764, American Math. Monthly, 86
(1979), 223.]

4.19 Suppose that a filter basis S contains the sets 4, 4,, ... 4,. It follows
that there exists B, € S such that B, = 4, n A4,. Similarly, there exists B, € §
such that B,cB;n4,, and so forth. Finally there is a B,_, €S such that
B, B, ;nA,and Bjc A, fori=1,..., p—1. 1t is also the case that
B, < A,. By construction,

B,_,cB,.,c - <cB,cBy,

and hence there exists a set B=B,,_; € Ssuch that Bc 4;fori=1,.... p.
Thus every filter basis S has the following form: There exists B X, B+,
such that

S={ByBUC1"'~yBUC5}\ (1)

where C, ..., C, are pairwise different nonempty subsets of X \B. Let |X \B|
=k. Then B+ implies that 0<k<n—1. Since {C,, ..., C,} is a family of
nonempty subsets of X \B, it follows that 0<s<2*~1. But [B|=n—k. and
thus the set B can be chosen in (,”,)=(;) different ways. For every choice of
B the family {C,, ..., C,} of subsets of X \B [which may be empty (s=0)]
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can be chosen in a number of ways which is equal to the number of subsets of a
(2*—1)-element set, namely, 22°7!. (Note that X \B has 2*—1 nonempty
subsets.) If |B| =n—k, it follows that the number of ways in which a filter basis
of form (1) can be selected is equal to

M\ g2k
()2

The number of filter bases for an arbitrary n-element set is obtained by summing
these numbers over k=0,....n—1.

420 Let X be the union of all the elements of the sets 4; and B; where
1<, j<m.Suppose that X ={x,, ..., x,}, and let (xyy, .. ., Xpn) be an arbitrary
permutation of X.

There exists at most one index i for which each element of the set 4, has an
index smaller than each element of the set B;. In fact. suppose that this is not the
case. Let i#j be two indices such that each element of A; has an index smaller
than each element of B; and each element of 4, has an index smaller than each
element of B;. By the hypothesis, there is an element x,4, € B; nA, and an
element x,, € B, mA,. Since x,, € A, and x4, € By, it follows that p(r) < p(k).
But x,, € B, and x,4 € A,, and thus p(r)>p(k), which establishes a contra-
diction.

Thus there exist at most n! pairs (4;, B;) with the desired property. Let ibea
fixed index, and consider permutations of the indices of the elements of X such
that each element of A4; has an index which is smaller than the index of every
element of B,. The number of such permutations is equal to

" e eyt m
<p+q>p.q.(n p—q)! <p+ )
P

To see this, note that one can choose p+ g elements from A;u B; in (o) ways.
The first p elements in increasing order of indices are taken from A4;, and the
remaining q elements (with indices larger than the elements of A4,) are associated
with B,. The indices of the elements from A; can be permuted in p! ways, the
indices of the elements from B; can be permuted in q! ways, and the remaining
elements’ indices can be permuted in (n~p—gq)! ways. Thus in this way one
obtains all permutations of {1, ..., n} with the property that each element of A4;
has an index which is smaller than each element of B;.

Thus each pair (4;, B;) is calculated n .'/(":") times relative to all the permuta-
tions of indices for which each element of A4; has an index smaller than each
element of B;. Thus the number of pairs {4;. B;) satisfies the inequality

<n (fﬁgj:(p;q)'

p
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4.21 A chain of length n formed from subsets of X is a sequence
M,eMyc---cM,_,cX

such that [M;|=ifori=1,...,n—1. The number of chains of length n which can
be formed from elements of the set X is equal to n!. If |4|=r, then number of
chains of length n which contain A of the form

Mc-cM,_,cAcM,,,c- - X

isequal to rli(n—r)l.

If 4; and A4; are noncomparable with respect to inclusion, then every chain
which contains 4; is different from every chain which contains A4;. Thus one
can write

14
Z mln—n)t<nl,

i=1

where |4,/ =n;. But this implies that
1
—<1,

)"

since max,, () =(;,5)- It follows that max p<(,/,). The opposite inequality
is obtained by considering the family G of subsets of X which contain m=[n/2]
elements.

This proof is due to D. Lubell [J. Comb. Theory, 1({1966), 299].

"M“‘

422 Let m=(x,,..., x,) be a cyclic permutation of the set X. Consider a
cycle C with n edges, and associate the symbols x, . . ., x, with the edges of C
(in the usual cyclic order). If an r-element subset 4 of X contains consecutive
elements in the permutation 7. then it corresponds to a subwalk of the cycle C
of length r.

By condition (2) the subwalks which correspond to the sets A;...., A, have
at least one edge pairwise in common. Let x be a vertex of C. Associate the sub-
walk having the same symbols with the corresponding r-element subset of X.
It follows that x is a terminal vertex for at most one walk A4,. In fact, if 4;and 4;
have a terminal vertex in common and i#j (and thus 4; and 4, are distinct),
then they must leave x in opposite directions on the cycle C. Since n= 2r, it
follows that these walks are disjoint relative to edges, which contradicts the
hypothesis. Now, sinceeach walk 4,(j=2,..., p)hasatleast one edge in common
with A4,, it follows that one of the endpoints of 4; is an interior point of 4,. But
since two distinct walks cannot have a common endpoint, one can conclude
that there exist at most r—1 walks A, with 2<j<p, and hence p—1<r—1, or
p<r.

Finally, for each cyclic permutation 7 of X, there exist at most r r-element
subsets of X which consist of consecutive vertices relative to n and which
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satisfy (2). Since there exist (n—1)! cyclic permutations of X, one can in this
way obtain at most r(n— 1)! r-element subsets of X.

In order to determine a cyclic permutation for which an r-element set A4
consists of consecutive elements, one must first order the sets 4 and X \A.
Since |A|=r. it follows that each set 4 is counted r!(n—r)! times. Thus the
number of subsets 4, is p<r(n—DYrin—-n!=(] _1) In order to show that
max p2 (- 1) con51der the r-element subsets of X which contain a fixed element
x; € X. There are (_ ) such subsets.

This proof is due to G. O. H. Katona [J. Comb. Theory, 13(1972), 183-184].

423 Let X={x,,...,x,}. Color these elements with one of the two colors
a or b, so no set E; is monochromatic. The element x, is assumed to be colored
with ga.

Suppose that one has colored the elements xy, ..., x; with 1 <i<n with a or
b so that no subset E, is monochromatic, and consider the case which occurs
when this process cannot be continued. Thus one cannot color the element
x;+; With the color a, since there exists a set Ec{x,, ..., X;4,} With x;,, € E
which has all the elements other than x;,, colored with a. The element x,,,
can also not be colored with b, since there is a set Fa{x,, ..., X;,,} with
Xi+1 € F which has all elements distinct from x;,, colored with b. It follows
that E, F are distinct sets chosen from E,, .. ., E,, with EnF=/{x;,,}, which
contradicts the hypothesis, Thus one can color x;, , with either a or b so that
no monochromatic set E, is produced.

It has thus been proved by induction that the coloring process can continue
until one has colored X with two colors so that no set is monochromatic.

4.24 Color the elements of X randomly with red and blue. Assume that the
colorings are independent and that each color has probability 4. Let 4; be the
event which consists in coloring all the elements of E; with a single color. It
follows that P(A)=1/2""! for every i=1, ..., n, since there are 2" ways of
coloring E; with two colors and among these only two lead to a monochromatic
coloring. Thus the probability that a random coloring contains a monochroma-
tic subset is equal to

P(A,U A< Y PA)=r—<1.

The first inequality is strict, since the events 4y, ..., A, are not independent;
they occur simultaneously when all the elements of X have the same color.

Thus the probability of the complementary event is strictly positive, which
shows that there exists a coloring with the desired property.

4.25 Assume that n>23 and the family F of three-element subsets of M
has the property that for each two distinct subsets 4, B € F one has |4 B|=
or |[AnB|=2. In this case it will be shown that |F|<n, which establishes the
desired property.

Thus suppose that F contains only three-element sets which either are
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pairwise disjoint or have exactly two elements in common. In particular, let
A, Be F such that AnB={a, b}, 4={a, b, ¢}, and B={a, b, d}. Consider two
cases:

{I) The element ¢ belongs to another set C € F. The set C cannot contain a
unique element in common with 4, and hence C contains one of the elements
aor b. But C also cannot contain a unique element in common with B and hence
d € C. It follows that C = A U B. One can now show that if the elements a, b, or d
also belong to a set of F other than A4, B, or C, then this set must be contained
in AuB. If the element d is selected instead of ¢ the same conclusion can be
obtained by an analogous argument. Suppose, for example, that a e C. Let
aeDand D e F. From the fact that |[Dn 4|=|Dn B|=|Dn C|=2 (which holds
because {aj = AN BN Cn D) one can conclude that D is one of the sets 4. B, or
C. However, if b € D, it follows from the fact that b € A n B that the pair D and
A and the pair D and B each have two elements in common. One of these
common elements also belongs to C, and hence D and C have two elements in
common. It follows that if D is distinct from A4, B, and C, then one must have
D={b, ¢, d}c AU B. On the other hand, consider a four-element set and its
four three-element subsets. They satisfy the condition that the intersection of
every two contains exactly two elements,

(II) Theelement abelongsto another set C € F. If C also contains one of the
elements c¢ or d, it follows that C= Au B and one again has case (I). Otherwise
it turns out that b € C and C also contains an element x, #¢, d. In this case the
elements ¢ and d do not belong to another set of the family F. Suppose, (or ex-
ample, that ce D and D+ 4, B, C. It follows that a € D and hence d € D and
x, € D, which establishes a contradiction, since |D|=3.

If one of the elements a or b belongs to another set D in F, then D does not
contain ¢ or d. It follows that D contains both a and b and another element
x,#x,. From this observation one can deduce the structure of the family F
of three-element subsets of M which pairwise have an intersection of cardin-
ality zero or two.

The family F can contain three kinds of sets:

(a) three-element subsets which do not have an element in common
with another subset in F;

(b) two subsets 4 and B such that An B={a, b} and possibly subsets
Ci={a,b,x,}, Cy={a. b, xy}...;

(c) two subsets A and B such that |4~ B|=2 and at most two other
three-element subsets contained in Au B, but with every subset
from (b) disjoint from the subsets from (c).

From this one can easily find the maximal cardinality of the family F as a func-
tion of n. Let max |F|= f(n). Thus if n=4k, it follows that f(n)=n, and this maxi-
mum is attained when F is obtained by starting from a partition of M into n/4
four-element classes and considering all four subsets with three elements of each
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class. For n=4k+1 one sees that f(n)=n—1, and this maximum is attained by
applying the preceding construction to the set M \{x}, where x is an arbitrary
element of M. The maximum is attained only in this case. For n=4k+2 one
has f(n)=n—2. The maximum is attained only in the {ollowing cases:

{1) The construction is applied for n=4k to the set M \{x, y},
where x, v are any two distinct elements of M.

(2) F contains n— 2 subsets of type (b):
C,={a b, x}. Co={a, b x3},..., Cooo=la, b x,-,}.

For n=4k + 3 it turns out that f(n)=n—2 and the maximum occurs only in the
following two cases:

(3) The construction is applied for n=4k to the set M \{x, y, z},
where x, y, 7 are distinct elements of M, and the set {x, y, z}
is then added to the family thus obtained.
(4) F contains n— 2 subsets of type (b), as in case (2).
Since f(n)<n for n23, the property in question has been established. One
considers n2 S in the statement of the problem. because then there are n+1
pairwise distinct three-element subsets. One can also observe that the limit
n+1 can be reduced to n or n—1 when n=1(modd) or n=2 or 3 (mod4)
respectively.

426 Onecanassume that g, b;=0fori=1,..., n,since the problem remains
the same if an arbitrary constant is added to all the numbers a; and b;. Define
the following polynomials:

Then

f2(x)= i X2"‘+2 Z xm+a/=f(x2)+2 Z X1t a5,

i=] 1gi<jgn 1gi<j<n

) =glxh+2 T xMtP

1gi<jsn

Thus f2(x)—g*(x)= f(x?)—g(x?). or
_ )= gx?)

f)—glx) ’
?ux the polynomial f(x)—g(x) is not identically zero, since {ay,.... a,}#

)
\blf,fil‘riliel)rt ss‘ince J(1)=g(1)=n, one can write
J(x)—g(x)=(x = 1pix)

where k21 and p(1)#0. Tt follows that

Jx)+4¢(x)
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S+ gx)=——m=(x+ )

If one now sets x =1, it follows that
2= f)+g(L)=(1+1)*=2*  or n=2¢"1

For the case n a power of 2, one can construct an example of two collections
which satisfy the given conditions as follows: {a,,..., a,; is formed from
( )coples of the integer 2p for 0< p<(k+ 1)/2. The set {b,, ..., b,} is lormed
from (2p+1) copies of the integer 2p+1 for 0< p<k;2, where n—Z" For k=2
these two collections are respectively {0, 2, 2, 2} and {1, 1, 1, 3}. [J. Selfridge,
E. G. Straus, Pacific J. Math., 8 (1958). 847—856.]

427 If &eF, it is clear that F={&}, m=1, and thus m<n. [ X € F,
then it is possible that F={X} and m=1 and hence m< n. Otherwise it {ollows
that m=2, A, =X, and A, ={x}, where x € X and n=|X|>2 because 4, = 4,.
Here too m<n.

Now consider the case in which neither &rnor X is in the family F. If all the
sets Ay, ..., A, have an element x in common, then the sets 4; \{x}.....
A \{x} are pairwise disjoint and they are subsets of the (n—1)-clement set
X \ix}. It is easy to see that the maximum number of pairwise disjoint subsets
ofaset Y={y,, ..., ¥~} is equal to n, and this maximum is attained for the
following sets: &, {y,}, ..., {yn—1}- Thus in this case one again has m<n.

Otherwise, for every x € X there is a set A € F which does not contain the
element x. Let d(x) be the number of sets of the {amily F which contain the
element x.

For x € X, let A € F be a set with the property that x ¢ A, and let 4, ..., A,
[with d =d(x)] be the sets which contain x. By the hypothesis A4,, ..., A4 each
have an element in common with A. Let these elements be x,, ..., x4. If, for

example, x;=x,, 1 <i, j<d and i#}, then it follows that {x, x;} = A;n A;. Since
x ¢ A and x, € 4, one can conclude that x#x; and thus |4;n 4| =2, which
contradicts the hypothesis. The elements x,, . . ., x, are therefore pairwise
distinct. From the fact that {x,,..., x,} = 4 it follows that |A4]| > d=d(x).

Now suppose that m>n. Then m—d(x)>n—d(x)=n—|A| for each pair
(x. A) with x ¢ A. and hence

dx) __ A
m—d{x) n—|A|

since 0<|A|<n. Now take the sum of the inequalities of form (1) for every pair
(x, A) with x ¢ A.
It has been assumed that for every x € X there is a set A € F such that
x ¢ A, and thus every element x € X belongs to at least one pair (x, 4). Similarly,
for every A € F there exists an element x € X \A # ¥ with the property that
x ¢ A, and hence each set A € F belongs to at least one pair (x. A).
For a fixed element x € X there exist exactly m —d(x) sets A with the property
that x ¢ A. Fora fixed set A there are exactly n—|4| elements x with the property

(1)
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that x ¢ 4. By summing the inequalities (1) and by grouping terms one obtains

d(x) |4]
_ y
L m=dt) 2o < L D S
or
Y dixy< Y. 4] )

xeX AeF
It follows from the definition of d(x) that the two sides of inequality (2) are
equal, which establishes a contradiction. Thus the assumption that m>n is
false and hence m< n. [P. Crawley, R. P. Dilworth, Algebraic Theory of Lattices,
Prentice-Hall, 1973.]

4.28 Let {p,, ..., p,} denote a set of n points in the plane. Let g, be the
number of points at distance 1 from the point p; for 1 <i< n. The desired number
of pairs will be equal to

__a1+a2+ o Ha,
= 5 .

Let C; denote the unit circle with center at point p;. Each two such circles
have at most two points of intersection. Thus counting for each pair of circles
either 0, 1, or 2 points of intersection and adding the numbers thus obtained, one
finds that the sum is less than or equal to 2(3)=n(n—1).

It is clear that one needs to consider only the case in which each number a; is
at least equal to 1. Since each point p; is an intersection point for exactly (%)
pairs of these circles, one can write

n a. 1 n
nin—1)= =23 al-m
02 E (914

It follows from the Cauchy-Schwarz inequality that

n 2 n
Y oa) €n'Y af,
i=1 i=1

and thus from the preceding inequality one has

4m2—< Y a ) <n(2nn - 1)+ 2m),
or
dm? —2nm—2n%(n—1)<0.

Thus m<(n+ 8n3—7n2)/4<n\/;; for n=1. This fact is immediate from the
observation that the inequality is equivalent to n>/n—1.[1978 W. L. Putnam
Competition, Amer. Math. Monthly, 86 (1979), 752.]

4.29 Each line of intersection is determined by two planes, but each plane
is determined by three points of the set M containing the n given points. The
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number of lines of intersection which contain no point of M is equal to $(;)("3°).
since one can choose three points from n points in (3) ways, and another plane
in the remaining set in ("_33) ways. The order of selection has no importance in
determining the lines of intersection.

The number of lines which contain a unique point of M is equal to %(;)(";3),
since one can choose three points in (3) ways, and by considering each of the
three points to be a common point of two planes, in turn, the second plane can
be chosen in (") ways since one must select the two other points from the
n—3 remaining points.

In a similar manner, one can see that the number of lines which contain two
points of M is equal to (3). Each line of intersection can contain at most two
points of M, since no four points of M are coplanar.

The total number of lines of intersection is therefore equal to

1 n>{ n—3> 3 n-3 } <n>
2<3 <3 +<2>+2'

430 One can choose a vertex of the triangle in n ways. The two other
vertices must be chosen from among the n—3 vertices different from and not
adjacent to the vertex already selected. Thus there are ("_23)=(n—3)(n—4)/2
possibilities, of which n—4 must be eliminated, since they correspond to the
cases in which the two chosen vertices are joined by a side of the polygon.
There therefore remain (n—4)(n—5)/2 ways of choosing the two other vertices.
Since any one of the three vertices can be selected as the first vertex, it follows

that there are n(n—4)(n—5)/6 ways of choosing a triangle which satisfies the
given condition.

4.31 No three diagonals are concurrent in an interior point of the polygon.
It follows that each interior point of intersection is uniquely determined by the
two diagonals which meet on it and thus by the four vertices of the polygon
which are the endpoints of these diagonals. Thus the number of points of inter-
section of the diagonals inside the polygon is equal to (3).

Each diagonal 4B intersects all diagonals which join pairs of vertices, other
than A and B, in points other than the vertices of the polygon. It follows that the
number of points of intersection other than vertices of the diagonal AB with
other diagonals is equal to the number of diagonals which do not have an end-
point in common with AB. But this number is equal to

=) gy 1 22N

3 5 +1,

since in 4 and in B n— 3 diagonals intersect, but AB has been counted twice, as a
diagonal incident with 4 and with B.

Multiply this number by the total number of diagonals. n(n—3)/2. Each
point of intersection will be counted twice, with respect to each diagonal on
which it is found. Thus the total number of points of intersection other than
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vertices is equal to
nn=3){(n=3)n-4)+2} nin— 3)n? —Tn+14)
8 B 8

Subtract from this number the number of interior points of intersection. The
number of exterior points of intersection is thus equal to

ml:_3)(n2 —Tn+14) _ (n> =n(n -3 n—-4)(n-195)

8 4 (2
for every n>=3.

432 Let A,,....A,benpointson a circle. The order is the order in which
the points are encountered when the circle is traversed clockwise. It follows
that A; A, ' -+ A,is a convex polygon. If this polygon does not trace a diagonal,
then the sides of the polygon, together with the circumference, determine n+ 1
regions. Draw the n(n— 3)/2 diagonals, and number the new regions each time a
new diagonal is drawn.

Each new diagonal produces exactly as many regions as the number of
segments into which it is divided by already existing diagonals. But this number
is one greater than the number of points of intersection (in the interior of the
circle) of this diagonal with already existing diagonals. Observe that by this
procedure each point of intersection of two diagonals located in the interior
of the polygon is obtained once and only once. It follows that the total number
of new regions is equal to the sum of the number of diagonals and the number of
points of intersection located in the interior of the polygon. By hypothesis
there do not exist three diagonals which are concurrent in an interior point of
the polygon. Thus one can characterize as a bijection the mapping which
associates each interior point of intersection of two diagonals to the four
vertices of the polygon which are the endpoints of the two diagonals.

It follows that the total number of regions into which the interior of the circle

is divided is equal to
nn-3 /n n n
n+1+——2—+<4>—<4)+(2>+1,

since the number of interior points of intersection is equal to (3). The formula
is valid for every n> 1.

433 The property is established by induction on the number ¢ of curves.
If ¢=1, there are no points of intersection and hence the number of regions is
equal to 1. Suppose that the property holds for every family of ¢ curves which
have n, points of intersection having multiplicity p, for every p>2, where the
multiplicity of a point of intersection is defined as being the number of curves
which intersect in it. By the induction hypothesis these ¢ curves bound
l4+n,+ -+ +(p—1)n,+ - - closed regions. Consider a new curve, and suppose
that it passes through k, points of intersection of multiplicity p with the first ¢
curves (p=>2). The total number of points of intersection of the new curve is
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equalto k; +ks+ -+ +k,+ -, and hence the number of arcs induced onthis
curve is equal to k,+ k3 + -+ . Each portion corresponds to a new region with
respect to the family of ¢ curves, Thus the total number of regions bounded by
the family of ¢+ 1 curves is equal to

Lbny+2ny+ 0 +(p=Un,+ - +hotka+ 0 +k+ 0 (1)

Let m, be the number of points of intersection of multiplicity p of the family
of ¢4+ 1 closed curves. This number can be expressed as a function of n, and &,
in the form

my=n,—Kyi1+kp.

since the n, points of intersection of multiplicity p of the ¢ curves must be reduced
by the number k, , , of these points which become of multiplicity p+ 1 by being
located on the new curve. One must also add the number k, of points which have
multiplicity p—1 and become of multiplicity p in the family of ¢+ 1 curves. It
follows that

L+my+2my+ - A (p—1imy+ -+
=14 (ny—kay+k)+ 2ny —ky+ky)+ -~
H(p—Dny—kpuy +kp)+ -
=l4+n,+2ny+ - F(p—=ling+ -+ Fhotka+ - +k+

This is the number (1) of regions formed by the family of ¢+ 1 curves. The proper-
ty is thus established by induction.

4.34 Suppose that (S, ..., S,) hasan SDR, denoted (a,, . .., a,). It follows
that S, u - uS;,>{a,, ..., a,), and hence |S; U LS, |=k for every
k and every choice of pairwise distinct numbers iy, .. ., i.

The sufficiency will be established by induction on m. Suppose that the family
S ..., Sy satisfies the condition for the existence of an SDR. For m=1 each
element of S, forms an SDR.

Suppose further that the property is true for every m'<m, and let

M(S)=(S,, ..., S,). Two cases will be studied:
(1) 8w - uS;, contains at least k+1 elements for 1<k<m—1 and
for each choice of distinct numbers iy, ..., i, €{l,...,m}. Leta, € S,. Suppress

a, each time it appears in the other sets of M(S), and denote the sets thus obtained
by S5 85, ..., Sm. Thus M'(S)=(S3, Sy, ..., S,) satisfies the necessary and
sufficient conditions for the existence of an SDR, since the set S; U * -+ US;,
contains at least k+ 1 elements and a single element @, has been suppressed.
By the induction hypothesis M’(S) has an SDR. The element a, together with an
SDR for M'(S) forms an SDR for M(S) in which a, is a representative of S,
[a, no longer appears in the sets of M'(S)].

(2) Suppose that | <k<m—1, and let {iy,..., i,y<{l,..., m such that
IS;,u "+ US;|=k Renumber the family S...., S, so that S; becomes S,
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S;, becomes S, ..., §;, becomes S;. By the induction hypothesis (S;, S5, .. ., Sp)
has an SDR. Denote it by D* =(ay, a», . . ., @), and suppress the elements of D*
whenever they appear in the sets Sy+q, Si+2 ..., S,. Denote the sets thus
obtained by S¥. 1, S¥va, ..., Sk. The system of m—k sets M*(S)=(S¥+ 1,..., SH)
satisfies necessary and sufficient conditions for the existence of an SDR. In
fact, if SkU Sk -+~ USE, where {i}, ij,..., i,y {k+1,..., m} contains fewer
than p elements, then S;US;u -+ US;USEU -+ USE will contain fewer
than k+p elements, since |[S;u '+ US| =k By construction S;u - US,
={ay,...,a},and hence [S;u - USUS; L - US; | <k+p, which contra-
dicts the hypothesis that M(S) satisfies necessary and sufficient conditions for
the existence of an SDR.

By the induction hypothesis M*(S) has an SDR, which together with D*
forms an SDR for M(S), since M*(S) does not contain any element of D*.
[Phillip Hall, J. London Math. Soc., 10 (1935), 26-30.]

4.35 It will first be shown that if F is a minimal family of h-element subsets
of X, then there exists an element x € X such that

|{E|EeF,er}|>%M(n. k. h). (1)

Suppose that the property is false, that is, for every element x € X the number
of sets in the family F which contains it is smaller than (h/n)M(n. k, h). In this
case, the number of occurrences of the elements of X in the sets of F
[ =hM(n, k, h)] is strictly smaller than the product of the number n of elements
of X and the number (h/n)M(n, k, h), which is an upper bound for the number
of occurrences of each element in the sets of X. It has thus been shown that
hM(n, k, hy<hM(n, k, h), and this contradiction establishes (1). It follows that if
G={E|E€F,x ¢E}, then

—h
\G|=Min, k, )= |{E|E € F, x eE}|<n—n— M(n, k, h).

Now it will be shown that M(n— 1, k, h) < |G , which will provide a proof of the
first inequality. For this it is sufficient to show that the family G has the property
that every k-element subset of the set Y =X \{x} contains at least one h-element
subset of G.

Let Z< Y with |Z|=k. Since Z is a k-element subset of X, it follows that there
exists an h-element set T of F such that T< Z. From the fact that Z does not
contain the element x, one can conclude that x ¢ T and hence the set T belongs
to the family G. This observation establishes inequality (a). [G. Katona, T.
Nemetz, M. Simonovits, Mat. Lapok, 15 (1964), 228-238.]

By iterating this inequality and using the fact that M(k, k, h}=1 one can show

that
n n—1 k+1
M(n’k’h)>{n—h{n—h—l {k—h-&-l} }}
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where {x} denotes the smallest integer greater than or equal to x. [J. Schénheim,
Pacific J. Math., 14 (1964), 1405-1411.]

In order to prove (b) use the following construction: Consider an element
x € X, and let G be an extremal family composed of M(n—1, k, h) h-clement
subsets of Y =X \{x}. Further let H be an extremal family made up of
M(n=1, k=1, h=1) (h—1)-element subsets of Y such that every set consisting
of k—1 elements of Y contains at least one subset of H.

Let E be the family obtained from H by adding the element x to every subset
of H. Then GUE is such that GAE= and hence |GUE|=M(n—1, k, h)+
M(n—1, k=1, h—1). It can now be shown that every k-element subset Z of X
contains an h-element subset of Gu E, and this establishes (b).

In fact, if x € Z, then Z \{x] is a (k—1)-element subset of ¥, and hence it
contains an {(h— 1)-element subset A in H, and thus Au {xjcZand Au{x} € E.
If x¢Z, then Z is a k-element subset of ¥ and thus contains a subset Be G.
[J. Kalbfleisch, R. Stanton, International Conference on Combinatorial
Mathematics, 1970; Ann. New York Acad. Sci., 175 (1970), 366--369.]

In order to obtain the lower bound in (c), observe that an h-element subset
A of X is contained in (;_) k-element subsets of X. For each of the M(n, k, h)
subsets of an extremal family F, construct all the (;_ h) k-element subsets which
contain it. In this way, one obtains all the (;) k-element subsets of X since every
k- elememset contains an h-efement set in F. It is thus possible to write M(n. k, h) x
(k h)>(k) from which one may deduce

<n> <n>
k h
Mn k, h) 2 ——=—L.
(n, k, > o=
k—h h
The upper bound is proved by induction on the index n and by using in-

equality (b), the recurrence relation for binomial coefficients, and the fact that
one obtains an equality for n=k (and for k=h or h=1). In fact

Min, k, ) SM(n—1, k=1, h—1)+Mn-1, k, h)

n—k+h-1 n—k+h—1 n—k+h
< + = .
h—1 h h
[I. Tomescu, Cahiers du Centre d’Etudes de Recherche Opérationnelle, 15(3)
(1973), 355-362.7

An expression for the number M(n, k, h) is not known in the general case.
It also represents the smallest number of tickets with # numbers needed to have
at least one winning lottery ticket if a single drawing of k numbers is made from
a total of n numbers. Turan’s conjecture implies that

M(2n, 5, 3)=2 @
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4.36 (a) In order to prove (a) consider the two-element subsets to be the
edges of a graph whose vertex set X contains n elements. One must find the
minimum number of edges of this graph, such that each set of k vertices contains
at least one edge. With respect to the complementary graph one must find the
maximum number of edges in a graph G with n vertices which does not contain a
complete subgraph with k vertices. The expression for M(n, k, 2) is thus obtained
in the form (3) — M(n, k) where M(n, k) is given by Turan’s theorem (see Problem
9.9).

(b) If k=1, it can be shown that M(n,n—h, i=n—(n—h)+1=h+1. Now
let k>2 and S<=X, |S|=h. Suppose further that P,_,(X \S) is the family of
(k — 1)-element subsets of X \S. Since n— h= h{k— 1), one can define a function

J:S=P_ (X \5)

such that the sets ( f(x)),.s are pairwise disjoint. Let F be a family of h k-element
subsets of X defined by

F=({x} U f(X))xes-

There exists an (n —h)-element subset of X. namely X \S, which does not con-
tain any set in F. An analogous result can be obtained for a family consisting of
h k-element subsets of X which are not pairwise disjoint, and hence M(n, n-h, k)
Zh+1.

In order to prove the opposite inequality, let T be an (h+ 1)-element subset of
X. There exists a function g: T—P,_,(x \T) such that the sets of the family
(g(x)cer are pairwise disjoint. This follows from the fact that n—h—-12>
(h+1)k=1). Let

G =({.\'} Ug(x))xeT'

One can at this point show that |{xjug(x)|=k for every x € T and also that G
contains h+ 1 subsets. Let U< X, |U|=n—h, and suppose that there are indices
iy, ..., 1, (0<r<h+1) such that U does not contain n, elements of the set
S{x;,) for every 1< p<r. It follows that one can write

n—h=|U|=|UnT|+|Un(X \T)

SUAT|+n—h~1-3 n,
p=1

and hence
UAT|Z Y ny+lzr+l
p=1
Thus U contains at least one element x € T such that x ¢ {x,-l, Ce x,-‘,} and

hence U {x}ug(x) € G. It has in fact been shown that U contains at least one
k-element subset of G, that is, M(n, n— h, k)< h+ 1. One can finally conclude that
M@, n=h, k)=h+1 for every k=2 and n>k(h+1). [1. Tomescu, Cahiers du
Centre d’Etudes de Recherche Opérationnelle, 15(3) (1973), 355-362.]
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It is also known that M(n, n—h, k)=h+2 for klth+ 1} —=[k/21<n<kh+1)
and M(n, n—h, k)=h+3 for h>2 and kih+1)=[3kI<n<k(h+1)~[k2].
[N. N. Kuzyurin, 4 Collection of Papers in Mathematical Cybernetics. Akad.
Nauk USSR, Moscow, 1981, 143-152.]

4,37 The first identity is verified by counting in two ways the number of
occurrences of objects in the blocks. One can do this because each of the b
blocks contains k objects, and each of the  objects belongs to exactly r blocks.
With respect to the second identity one counts in two ways the occurrences in
the blocks of pairs which contain a fixed object a;.

The object a, occurs in r blocks, and in each of them it forms k — 1 pairs with
the other k—1 objects. On the other hand the object 4, forms pairs with each of
the v —1 remaining objects, and each pair is contained in 4 blocks.

4.38 The matrices (k— A+ AJ are of the form

k4 - 2
Aok A
Ao Ak

that is, the elements on the main diagonal are equal to & and all the other
elements are equal to 4. If A is the incidence matrix of a (v, k, /)-configuration, it
follows that each column of the matrix contains k elements equal to 1 and the
remaining v —k elements are equal to zero.

Let B=A4"A. The element b;; of the matrix B is the scalar product of columns
i and j of the matrix A. Thus b; =k, that is, the number of 1’s in column i of the
matrix A. If i#j, then columns i and j of 4 have a | in row ¢ if and only if the
element ¢ of X belongs to both of the sets X, and X ;. Thus the off-diagonal
element b,v% is equal to |X;n X ,;|=/. Analogously, if a v-by-v binary matrix A4
satisfles A" A=(k—A) + iJ where 0< A< k<uv— 1, then define

for every 1< j<v. It follows that (1) and (2) are verified.

4,39 One first evaluates the determinant of the matrix 474 where 4 is the
incidence matrix of a (v, k, 4)-configuration. Recall the form of the matrix
AT A obtained in the preceding problem; subtract the first row from rows 2
through v, and then add columns 2 through v to the first column. In this way one
obtains an upper triangular matrix with elements on the main diagonal equal
to k+AMv—1)=vi—4i+k and the remaining v—1 elements equal t0 k—2.
Thus det (ATA)=(k =)~ 1(vA —i+k)>0, that is, the matrix 4 is nonsingular,
since det (AT 4)=(det A)%

In order to prove that the (z, k. A)-configuration of the matrix 4 is a BIBD
with parameters (z, v, k, k, 4) it is necessary to show that each element belongs to
exactly k blocks and each pair of distinct objects is contained in exactly
blocks. These conditions hold if and only if the matrix A4 satisfies the equation

AAT =(k = +4J (1)
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which is similar to the equation satisfied by the incidence matrix of a (v, k, 4)-
configuration. The proof of relation (1) is analogous to that given in the pre-
ceding problem, since if C=AAT, the element c;; (of the matrix C) is the scalar
product of rows i and j of the matrix A. Thus ¢;=k if the number of 1’s in row i
of the matrix A is equal to k, and hence each object belongs to exactly k blocks.
If i#j, then rows | and j of the matrix 4 have a | in column t if and only if the
elements i and j both belong to block . It follows that the number of blocks
which contain the pair {i, j} is equal to A.

One must finally show that if the matrix A satisfies the equation A7 4 =(k— A)]
+AJ, then AAT =(k— A + AJ. Since each column of the matrix A contains k
elements equal to 1 and v — k 0’s, one can show that JA=kJ. A further implica-
tion is that

(JAA™ ' =(kJ)A™ 1.

Multiply both sides of the equation on the right by the matrix 441, It follows
that

J=kJAT'AA ' =kJA™Y,
and thus
kmlJ=JA"", (2)
But it follows from (2) that
AT=(ATAA Y =((k= ) +AJ)A ' =(k—A)A 1+ IJA"!

=(k—-A" 1+ k"],
Thus

ATJ=(k—A)A"J+Ak‘1J2=(k—A)A‘1./+All<‘1v.l,

since J2=vJ and the matrix J has order .
On the other hand ATJ =(JA)T =(kJ)T = kJ.
By identifying the two expressions for A7J, one sees that

kl=(k—)A~ W+ Ak~ 'uJ,
and hence,
A" Y =mJ, or J=mAJ,

where m=(k—2ik™"v)/(k=2). But tJ=J2=J(mAJ)=m(J A)J =mkJ?>=mkvJ,
and hence v=mkz, or mk=1. Thus k—A=k*— v, so that k> —k=A(v—1); and
A VW =mJ=k"'J, thatis, J=k ' AJ, or

AJ=kJ

. It has thus been shown that J4 = 4J; this property is essential to the verifica-
tion of identity (1). The proof proceeds as follows:

AAT= A(ATA)A™ Y = Ak = AT+ JJ)A !
=(k=DI+UAT)A™ ' =(k— ) + AJ(AA™ Y=(k—- )] + AJ.
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4.40 Observe that a Steiner triple system is a BIBD for which A=3 and
A=1. By using the relations of Problem 4.37 one can show that r=(v—1)/2
and b=1v(r—1)/6. Thusv=1 or 3 (mod 6) because b must be an integer. Kirkman
showed in 1847 that this condition is also sufficient for the existence of a Steiner

triple system.
A simple proof was recently given by A. J. W. Hilton [J. Combinatorial

Theory, A13 (1972), 422-425.]

4.41 Inthe solution to Problem 4.39 it was shown that det (47 4)=(det 4)2
=(k=2)""Y(vA—4+k), where 4 is the incidence matrix of a (v, k, A)-configura-
tion or a BIBD with parameters (v, v, k, k, ). Since r=%k and v=0», the relations
which the parameters of a BIBD must satisfy imply that k(k—1)=A(r — 1) and
hence vA—A+k=k% Thus (k— 1)~ 'k? is the square of an integer. Since r—1
is odd, it follows that k— 4 is a perfect square.

442 Let p be the maximum number of subsets with the desired property.
Then by considering the family of sets

IAUB| AcY,|A|=r; Bc X \Y,|B|=[(n—k)y2]},

o
Pz ) [(n—k)/2])

[n order to obtain the opposite inequality, let F be a maximum family of
subsets with the desired property, and suppose that 4 € F. Let

F={B|BeF,BNY=ANY],

and let F, be the family obtained from F, by suppressing all elements of AN Y
in the sets B of Fy. It turns out that F, is a family of subsets of X \\Y which are
noncomparable with respect to inclusion. It then follows from Sperner’s

theorem that
IFl< ( o )
2= k)/2]

k n—k
p< O N
<r><[(n—k)/2]>
since |[ANY|=r.

443 Let K(f)={xe X| f(x)=a}. It will be shown that f( Sx))y=a for
every x € X if and only if f{( X)cK (/). In fact, 1ff X)= K (f) it foll ows that
JUf(x)}=a, since f(x) € f(X),and hence f(x)e K (f). Suppose that f(f(x))=a
for every x € X, and let y e f(X); it follows that there exists x, € X such that
f(\ff) y. This implies that f())= f(f(x,)=q¢, and hence y ¢ Ka(f) or f(X

one can show that

which implies that
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Since b= f{a)e X and f(f{a))=aq, it follows that f(f(f(a))= f(a). But
TS @)= f(f(b)y=a, or f(a)=a, which implies that a € K (f).

Suppose that |K, (/)| =1, so that K{ /)= {a}. It follows that f(x)=a {or every
xeX, or K (f)=X, which is a contradiction, since 1=|K,(f)|=|X|=n>2.
Hence |K, f)[>2

LetK(f)={a xi,...,x;,} for I<p<n~—1.Thisimplies that f(a)= f(x;)="""
= f(x;,)=a, and hence for any x € X \K,(f) one has f(x)e{x;. ..., X}
because f(X)< K (f).

Thus the number of functions f : X — X such that f(f(x))=aforany xe X

and |[K(f)=p+{=>2is equal to (";l)p" =1, since elements x;, ..., X;, can be
chosen from X \{a} in ("'} ways. The number of functions | : X N\K (f)
{x,...,x;,} is equal to p"~?~'. By summing these numbers for p=1,....n—1

one obtains the expression in the statement of the problem.
4.44 There exist ("“) subsets with r+1 elements taken from the set

{0, 1, ..., n}. Delete the smallest element of each subset X to obtain a subset
Y with r elements of the set {1, ..., n}. In this manner, each subset Y is obtained
with multiplicity equal to its minimum element.

For example, if Y={y,,...,y}and 1<y, <y, < - <y,, then Y is the
image of y, subsets X, namely {0, y, . .., v, {L, v, oy Wby oeos {¥y =1,
Yis .oy Vop. It follows that the sum of the smallest elements is equal to (',’Ii).
and their arithmetical mean is (',’:i)( “l=(n+ 1)/(r+1).

{Problem proposed at the 22nd International Mathematical Olympiad,
Washington, {981.)

445 The number of nonempty subsets of X is equal to 2'°~1=32,767.
The largest 15 elements of M have their sum equal to 2048 + 2047+ - - - +2034
=15, it follows that 1<), , i<30,615 for
any Y < X, Y # . Using Dirichlet’s principle it can be seen that there exist two
subsets U, V< X such that ), ,i=Y ., j. Now let A=U\(UnV) and
B=V\(UnV). This property does not hold for 12-element subsets of M.
To see this let Y=1{1, 2, 2% ..., 2" =2048} =M. The existence of 4, B Y,
AnB=(¥ such that 3, ,i=), zj=n would imply that n has two distinct
representations in base 2, which is false.

4.46 The p vectors (1, 1),(2,2),...,(p, p) constitute a covering set H, and
hence a(2, p)< p. Since (g, b) is not covered by any vector in the set (a,, by). ...,
{ap-1,by—1) Where a= g and b#b,fori=1,....p—1, it follows that a2, p) = p,
and hence o(2, p)=p. The number of vectors which differ from a given vector
in at most one componentisn(p — 1)+ 1. Thus each vector of H coversn(p—1)+1
vectors of F, and H contains at least p"/{n(p—1)+1} vectors. [O. Taussky,
J. Todd, Ann. Soc. Polonaise Math., 21 (1948), 303-305.]

J. G. Kalbfleisch and R. G. Stanton [J. London Math. Soc., 44 (1969), 60-64]
showed that a(3, p)=[(p?+1)/2], and S. Zaremba [ibid., 26 (1950), 71-72]
yroved that if p is a prime or a prime power and n(p — 1)+ 1 is a power of p,
hen a(n, p)=p"/in(p-1)+1}.
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4.47 Every positive integer can be written uniquely in the form 2°g where
p is a non-negative integer and ¢ is a positive odd integer, called the odd part of
n. Therefore the odd part of an integer from the set M={1,2, ..., 2n} must be
one of the nintegers 1. 3, 5,. .., 2n—1. Given n+ | integers in M, at least two
must have the same odd part: that is, they must be of the form 27t¢ and 27,
where p, #p,. If, for example. p, <p, then 27'¢g divides 272q. (W. L. Putnam
Math. Competition, 1958.)

448 Let X={x,...., x,/, and denote by n,, ..., n, the numbers of sets
among Ay, ..., A;po Which contain x,, ..., x,, respectively. Then
100

Myt -+ ne= Y |4 >3mx 100=75m,
=1

which implies that there is an index i such that n;>76. Suppose for example
that i=1 or n,>76. If x, is deleted from X, one obtains a subset X, with
m—1 elements. Let B,, ..., B, be the sets among 4,, ..., 4,4, not containing
xy. If s=0let Y ={x,}. Otherwise. it follows that s<100— 76 = 24.

Since |B,|>3(X|>3|X,|, it can similarly be shown that there exists an element
x, which belongs to more than 3s of the sets B;. Let Cy, . . ., C,, be the sets which
donot contain x, (and hence not x,, by construction), where p < s — 3s/4 =5,4<6,
or p<5. 1f p=0let Y ={x,, x,}. Otherwise. it follows that there exists x, which

belongs to more than 3p sets from Cy, ..., C,. Because p<5, it follows that
p/4<%, and hence at most one set from C, ..., C,does not include x;. If all the
sets Cy,..., C, contain x,, the set Y ={x,, x,, x;}. Otherwise, let x, be an

element of the unique set C; which does not contain x; (and hence not x; or
x,). In this case one can choose Y ={xy, x,, X3, X4}; Y has at least one element
in common with every set 4; for 1 <i<100. A similar problem was proposed at
the W. L. Putnam Math. Competition in 1980 (Problem B-4).

4.49 Suppose that the digital plane has a finite metric basis B. Then there
exists a sufficiently large rectangle which contains B. Examination of Figure 4.1
shows that the digital points x and y have equal d,-distances from the rectangle.

Fig. 4.1
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This contradicts the assertion that B is a metric basis, since any set which
contains a metric basis is clearly also a metric basis.

In order to show (b) consider the region in the plane bounded by the lines
x=0,y=0,x+y=n-1and x+y=n+1. Weshall choose E, to be the rectangle
R, composed of all digital points in the region with the exception of the four
points having coordinates (0, n), (0, n+1), (n, 0), (n+ 1, 0) (see Figure 4.2). It
follows that R contains 3n—1 digital points. Denote the (digital) intersection
points of the opposite sides of R with lines of slope 1 by 4,, By, A,, By, .. .,
Ay, B,. It is clear that for 1<i<n, dy(A;, M)=d,(B,, M) for any digital point
M in R such that M # 4,, B,. It follows that any 4-metric basis for R must contain
at least one point from every pair {4;, B;} for 1 <i<n. This implies that dim,
(Ryzn, where dim4(R) denotes the number of elements in a minimal metric
basis for R (i.e., the metric dimension of R).

It will in fact be shown that B={C,, ..., C,}, where C;=4; or C;=B, for
| <i<n, is a 4-metric basis for R.

One observes that the pairs of digital points of R which have equal city-block
distances to A; and A;., are {B;. B, ;} and the pairs of the form {4,, B, }.....
{Ai—1s Biz1}y {4142, Bis s}, ..., {A,. B,}. Suppose now that B is not a 4-metric
basis for R. Then there exist two distinct digital points M, N such that M, N ¢ B
and M and N have equal distances to all points of B. If B contains A; and A, |,
it follows that {M, N}={B, B}, since M and N do not belong to B. In a
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similar manner one can show that if A;, B;,, € B then {M, N}={B,, A;+,};
if B;, A;+1 €B then {M, N}={A4,, B;+,}; and if B;, B;,, € B then {M, N}
={A;. A;+,}. Since n>3, one can apply this argument to the pairs {C,, C,}
and {C,, Cs}. It turns out that {M, N} ={A,, A>, By, Bs} n{A4,, A3, B,, B;}
=1A,, B,}. This establishes a contradiction, since M and N do not belong to B.
It follows that dim,(R)=n and R has exactly 2" minimal 4-metric bases. [R. A.
Melter and 1. Tomescu, Computer Vision, Graphics and Image Processing,
(25)(1984), 113-1211.

4.50 Suppose first that A is a finite projective plane. Note that the condition
v=4 implies that the order n of A is at least 2 and that the block size k is at least
3. Condition (1) is satisfied, since A = 1. It will be shown that every two lines of A
intersect. Suppose that there exist two lines L, and L, such that L,nL,=¢.
If Ly ={x,,..., X}, then by hypothesis x, belongs to exactly k lines L,, L7, ...,
Liforeveryi=1,..., k. Condition (1) implies that L[+ L7 for every 1<, j<k,
i#j, and 2<m, p<k. In fact, if for example L' =L?, then the pair {x;, x;} is
contained in two lines L, and L7, which contradicts (1). In this case the number
of lines of A is at least

v k(k—1)+2>k*—k+1,

which contradicts the hypothesis.

Since every two lines L, and L, intersect, it follows from (1) that {L, A Ly[=1
and (2) holds. Since r=k> 3, one may choose a point x, and two lines L, and
L, containing it. Now choose x; and x; on L, distinct from xq, and choose
x, and x4 on L, distinct from x,. Since (1) holds, one easily verifies that {x;, x,,
X3, X4} satisfies condition (3).

Conversely, suppose A satisfies (1), (2), and (3). First it will be shown that
every two lines contain the same number of points; this involves choosing two
lines and establishing a bijection between them.

Given any two lines L and L, there exists a point x ¢ Lu L. To see this let
{x1, X3, X3, X4} De a set whose existence is implied by (3), and let LnL={y}.
If {x,, ..., x4} $LUL, then clearly one may choose x,€ {x;, ..., x4} If
{x,..., x4} = Lu L, then condition (3) implies that y ¢ {x,, ..., x4}, and hence
one may assume that x;,x, € L \L and x3, x, € L \L. Let L, be theline through
x; and x;, and let L, be the line through x, and x, which exists by (1). Let
{xo}=LynL, By(2),xo ¢ LUL.

Now define the function y:L— L as follows. If x € L, let L denote the unique
line [in virtue of {2)] which contains x and x,, and let y(x) be the unique point
[in virtue of (1)] which is contained in L.~ L. By (2), ¥ is an injection, since
exactly one line contains both x4 and y(x). Thus |L|<|L], and equality holds by
symmetry.

Thus every line contains exactly k22 points. Now suppose that k=2.
This leads to a contradiction since x,, x3 €L, X5, X4 €L, LynLy={x,!,
and (3) implies that xo € {x;, ..., x4}. It follows that k>3 and the number of
points r24. Since x,, x4, ¢ L, one can also see that k<v—2 or k<r—1. This
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implies that Ais a (v, k, 1)-configuration. By Problem 4.39, A is a finite projective
plane of order k—1.

It is not difficult to see that there exists only one projective plane of order 2
{up to isomorphism). It has point set ¥'={1, ..., 7} and line set E=({1, 2, 3},
(1, 4,5}, {1, 6,7}, {2, 4,6}, {2, 5,7}, {3, 4,7}, {3, 5, 6}). This plane is also the
unique Steiner triple system on seven vertices (up to isomorphism).

CHAPTER S

5.1 Let
A={m|1<m<3n,m=0 (mod 3)},
B={m|1<m<3n,m=1(mod 3)},
C={m|l<m<3n, m=2 (mod 3)}.

It follows that |4|=|B|=|C|=n. The sum x+y+z=0(mod 3) if and only if
x,v,ze€Adorx, y,zeBorx, vy zeC orx, ) zeach belong to a different set
among A, B, C. Thus the number of solutions is equal to

n 5_n(3n’=3n+2)
3<3>+n = 3 .

5.2 The partitions of a number n into at most k parts form a set with
P(n, 1)+ P(n, 2)+ -+ + P(n, k) elements. Each partition of n into at most k parts
can be expressed in the form n=a; + a,+ - +4,+0+ -+ +0, where the sum
contains k terms and a, > a,> + -+ 2a,>1(1<m<k). From this expression for
n one can obtain a partition of n+k into k parts in the following manner:

nt+k=(a;+1)+(@+1)+ - +(@,+1)+1+ - +1

where the sum contains k terms and a, +1>a,+12 - 2q,+121.

The mapping thus defined is an injection, since different partitions of n
into at most k parts correspond to different partitions of n+ k into k parts. The
mapping is also surjective, since every partition of n+ k into k parts results from
the partition of n with m<k parts obtained by subtracting 1 from each term of
the partition of n+ k and retaining the first nonzero terms. The existence of a
bijection between the set of partitions of n into at most k parts and the set of
partitions of n+k into k parts implies the validity of the given recurrence
relation. This permits the computation, by iteration, of all values of P(n. k). One
starts with P(n, 1)=P(n, n)=1 for all n and P(n. k)=0 for n<k.

5.3 A bijection will be defined between the set of partitions of n into odd
paris and the set of partitions of n into pairwise distinct parts. Thus suppose
that in a partition of n into odd parts the number 2k + 1 appears p times. Write p
as a sum of powers of 2:

p=2ft4224 - 42 (1)
where i, >i,> -+ > i >0.
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The (2k+ 1)p entries in the Ferrers diagram associated with the partition of n
can be arranged as follows: Put in different rows respectively (2k + 1)2t entries,
(2k+1)22 entries, ..., (2k+ 1)2's entries. Maintain the decreasing order of the
number of entries from top to bottom. For example, the partition 74+ 5+ 543+
3+3+1+1+141 isassociated in this way with the partition 104+7+6+4+3
into distinct parts, The partitions thus obtained have distinct parts because
every integer can be uniquely expressed as a product of an odd number and a
power of 2.

The injectivity of the mapping follows from the uniqueness of the representa-
tion (1). In order to show that this correspondence is a surjection, consider a
partition P of n into distinct parts. Each part can be uniquely written as a
product of an odd number and a power of 2. By regrouping the terms of the sum
and combining common factors one obtains only terms of the form (2k+ 1)p
where k>0. This will generate p terms equal to 2k+1.

By arranging these terms in decreasing order one obtains a partition Q of n
into odd parts. Apply the previously defined mapping to Q. The result is the
partition P and this establishes the surjectivity of this mapping.

54 Leta;+ - +a,=nbea partition of n into m pairwise distinct parts.
It follows that a; >a,> -+ >aq,> 1, which implies that

a,—(m—-NOzay,-m-2)2 - 2a,.,—12a,21.

AS a ICSUII one can wr 1te
| It N m
lal (1 1 1)} laz (1 1 2)f T am 1 2 .

which is a partition of n—(3) into m parts.

Thus each partition of n into m pairwise distinct parts is associated with a
partition of n—(7) into m parts. This correspondence is injective. In order to
show that this mapping is a surjection, consider a partition of n — () into m parts.
Add the numbers m—1, m=2,..., 1,0, to each of the m parts respectively in
decreasing order. One thus obtains a partition of n into m pairwise distinct
parts. If one applies the transformation previously defined to this partition,
one obtains the partition of n—(7) into m parts with which the process originated.
Thus the given correspondence between the partitions of n into m pairwise
distinct parts and the set of the P(n—(7), m) partitions of n— () into m parts is a
bijection. This completes the proof of the property in question.

5.5 Suppose that the partition of n contains k, terms equal to 1. The partial
sums formed by the elements equal to 1 uniquely represent every number
between 1 and k,. Thus the numbers 2,..., k, cannot appear in this partition
of n because of the uniqueness of the representation. Since the number k, + 1
must be represented as a partial sum, it must also be a term of the partition with
multiplicity k,>0. It follows that all numbers between 1 and k; +k,(k, + 1)
have a unique representation as a partial sum.
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Using this argument, one finds that the numbers which occur in the partition
of n are

1,k + 1, G 1Kk, + 1), (R + DR+ 1) Ky + 1),

where (k; + 1) - - (k;+ 1) has multiplicity equal to k;., fori=1,..., m. Since the
sum of these terms is equal to n, one can write

n=k1+k2(k1+l)+ e +km+1(k1+1)"'(km+1)

and hence n+ 1=(k,+ 1)+ (ks +1)

If n+1 is prime, then m=0 and the only partition of n which satisfies the
condition of the problem contains only terms equal to 1. If n+ 1 is not prime,
then there is another solution to the problem. In fact it follows that

n+l=(k, + 1)k, + 1)
with k,, k,> 1. and the partition

n=l+ o +14 (k+D+ - +k +1)

ky ky

has the property that every number between 1 and ncan be uniquely represented
as a partial sum of this partition.

56 It follows from the rules for removing parentheses that yin)=
Q.(n)—Q(n) where Q,(n) represents the number of partitions of n into an even
number of distinct parts and Q,(n) represents the number of partitions of n
into an odd number of distinct parts.

In order to prove Euler’s identity, one defines a transformation of a Ferrers
diagram with an even number of rows into a diagram with the same number of
cells and an odd number of rows and vice versa. Since one considers only
partitions into pairwise distinct parts, the diagram of this kind of partition is
formed of several trapezoids placed next to each other as in Figure 5.1. Let the
number of cells in the last row of the diagram be equal to m, and let the number
of rows in the upper trapezoid be equal to k.

_
X
X EAST
_
1]
x x
IS E— |
o
SOUTH

Fig. 5.1
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1f m< k, one suppresses the last row of the diagram (labeled SOUTH) and adds
one cell to each of the first m rows of the upper trapezoid (in a line inclined at 45
to the east in the diagram). This transformation does not change the total
number of cells. One obtains in this way a new diagram in which each row has a
different length. The parity of the number of rows is changed with respect to the
initial diagram. The diagram of Figure 5.1 corresponds to the partition

23=74+6+5+3+2.

After performing this transformation, one finds the row SOUTH laid against the
diagonal EAST. Since m=2 and k=3, the partition 23=8+7+5+3 is thereby
obtained.

If the diagram contains at least two trapezoids and if m>k, then take one cell
from EAST in each row of the upper trapezoid, and with these cells make a new
row SOUTH in the new diagram. This construction is possible because m>k
and thus the row SOUTH is shorter than the old row SOUTH in the diagram. The
length of each row in the upper trapezoid has been shortened by one. It follows
that all the rows of the new diagram are pairwise different in length. The new
diagram contains the same number of cells as the old diagram, but the parity
of the number of rows has changed. The new diagram contains one more or
one less row than the original diagram.

This operation can be carried out when the diagram consists of a single
trapezoid {(when the diagonal EAST contains k cells and k is equal to the number
of partsof mif m#*k and m=k+1.

The transformation just described is an involution on the set of partitions of
n into pairwise distinct parts. (This means that if this transformation is applied
twice, one obtains the original diagram.) It [ollows that the transformation is
bijective. Thus the Ferrers diagrams for partitions of » which admit this trans-
formation can be divided into an equal number of diagrams with an odd and
even number of rows. respectively. One can now find the diagrams which do not
admit this transformation. They consist of a single trapezoid for which m=k
or m=k+1 (Figure 5.2).

In the first case

ki—k 3k*—k
4+ —=

=2 — 1=k
n=k*+1+2+ +k-1)=k 3 5

-
|
]

T 1

Fig. 5.2
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and in the second case

_3k2—k+k_3k2+k
n= 3 ==

Thus if n is not a number of the form (3k%+ k)/2, it has the same number of

partitions into an odd and even number of pairwise distinct terms. If n=

(3k%+ k)/2, then Q (n) = Q,(n}+( — 1}*, since there remains a unique diagram with

k rows outside this bijection. It follows that Y(n)=0 for n#(3k* £ k)/2 and

Y(n) =(— 1k if n=(3k2+ k)/2.

5.7 The proof will be given for case (a). The other cases can be established
analogously.
Consider the expansion

(L~ x)(1—asx?) - (L—ax*y- -
=(l4+a;x+aix?+ - Jitax24alx®+ ) (L4axd+aix+ )
=l+ax+(al +a)x?+ - +(alal o apit x4

Observe that the term aj'a}?- - - af* which appears in the coefficient of x” is

such that Ay + 24, + - -+ + kA, =n, and thus it determines the following partition
of n:

n=k+k+ o dk+ o F2424 2241414+ 1

)-k ;.2 ;-1

The rules for removing parentheses imply that in this case the exponents of
the symbols which appear in the coefficient of x" generate, without repetitions,

all the partitions of n. If one sets a; =a,= -+ =1, then the coefficient of x"
will be exactly equal to P(n), the number of partitions of n. Part (c) of the problem
now follows immediately, since A, =4, =+ =0.

The proof of part (e) is contained in the solution of Problem 5.13; the proof
of part (d) is analogous to that of part (e).
The property expressed in Problem 5.3 follows from an algebraic calculation
due to Euler and based on the use of generating functions:
1 Clex?1-x* 1-x5 1-x®
T —x)1=x9 1-x 1=x? 1-%° 1-x°

=1+ +xD01 +xH1+x% .

5.8 By using Euler’s identity and the expression for the generating function
of the numbers P(n), one can write

<1+ i P(i)x")(l + Z l,//(i)xf>=1.
i=1 Jj=1
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After equating to zero the coefficient of x" on the left-hand side of this equa-
tion, it turns out that

]

5 Pln=jWij)=0.

or in other words

2 _ 3 2
Pny+ ), (-1} {P (n— 3k2 —E>+P<n— -k2+5>}=0,
k=1

This is in fact Euler’s Pentagonal Theorem.

5.9 Consider the expansion
(I+a, x+a?x*) 1 +a,x* +adx) (1 +a;x3 +a3x% - -.

and observe that each monomial a%'ad? - aj* which occurs in the coeflicient
of x" has the property that 0<A; <2 for I<i<kand A, +24,+ - + ki, =n,
and thus determines a partition of n of the form

n=(kt o R4 (24 2 (T e 1),

The numbers of repetitions are equal respectively to /,,....2s. 4;. The rules
for removing parentheses imply that the exponents of the symbols which make
up the coefficient of x" generate, without repetitions. all partitions of n in which
no integer occurs more than twice.

Taking a;=a,="+- =1, one finds that the generating function of these
partitions of n is given by

Gy ={1+x+x)1+x2+x% (1 +x"+x27) -

Using the same reasoning for the generating function of the numbers P(n), it is
seen that the generating function for the number of partitions of n into parts
which are not divisible by 3 is

Gox)=(1=x)"' 1 =xH " 1 =xH" 1 =xH" 1 =x7)" 1 -

= [ (l=xn"

=1
p!g(modJ)
It remains to show that G,(x)= G,(x) by using the identity
(14 xP 4+ x2)(1 - xP)=1—x°",
In fact
_1—-x3 1—x® l—.\'”m
Tl=x =xZ1=x]
=(1—x)" 'l =xH)" (1 =xH) " (= =xT)
=G2(X).

Gi(x)




oav It > KUUWI UTOM Problem O./) that the generating function of the
numbers P(n) is

n PEEEr pp—" 1
PO)+P)x+ =+ P+ - = s ()

while the generating function of the numbers Q(n) can be expressed as
1
QO)+Q()x+ -+ +Q)x"+ - - T T ()

where P(0)=Q(0)=1. The substitution of ~x for x in (2) yields

Py 1 .
i;o (_1) Q(l)x _(1+X)(] +x3)(1+x5),,, ) (3)
after substituting x? for x in (2) the result is
N2 1
i;o Qi =X =-x%)1=x1) " (4)

The identity
1 ] 1 _ 1
(L=x)(1=x3)1=x%) - (L+x)1+x)(1+x7) - (L=xI)1=xE)(1~-x19)- -

then leads to the following relation between the associated formal series:

Y QX' Y (= 1YQUI =} Qix?
iz0 j20 iz0
The proof of part (a) is completed by equating the coefficients of x2" on the two
sides of this identity.
The proof of part (b) starts with the identity

1 1 1

o s

(I=xT=x3)1=xY) " (=x)1—x (I=xD1=x% "

This implies that Yo Pli)x'=Y, o Qix' Y, P()x?, and the proof is
finished by again equating the coefficients of x". [R. Karpe, Casopis Pest. Mat.,
94 (1969), 108-114.]

5.11 Each partition of n into m parts of the form n=n+ --- +n,, with
n = =n,21 corresponds to a partition of n—m obtained by writing

n—m=(n, -+, —1)+ - +(n,—1),

and the possible elimination of zero terms.
The mapping thus defined is injective. One can also show that it is surjective
for m>n/2. In fact, starting from the partition

n—m=ry+ " +r (1)

of n—m, it follows that k< m, since otherwise one would have k>m+1 and




hence n—mzk>=m+1. This implies that m<(n—1)/2. The latter inequality
contradicts the hypothesis m > n/2. Now add one toeach term of (1) and m— k= 0
terms equal to 1 to obtain a partition of n into m parts: n={r; + 1)+ - - +
(re+ 1D+ 14 -+ +1. Its image under the given mapping is precisely the parti-
tion (1).

5.12 Suppose that n=x4y+z with x>y>z>1 is a partition of » into
three distinct parts. [t follows that

(x+V)+(y+2)+(x+2)=2n
and
(yAo)+(x+)=x+y+2z>x+y.

Thus x + v, )+ z. x + z are the lengths of the sides of a triangle with perimeter 2n.
It is also the case that no two sides are equal, since

X+y>x+z>y+z.

Conversely, suppose that a>h>c are the integral lengths of the sides of a
triangle with perimeter equal to 2n. Let

xX=n-—a, y=n-—b, z=n-—c.
It follows that

b+c— - . —c
_ +c a>o’ V=a b+c>0, and =a+b c

5 yE—s z > >0,

Further, x<y<zand x+y+:-=n, while x+yv=¢, x+z=b, and y+z=qa.

There is thus defined a mapping of the set of partitions of n into three distinct
parts onto the set of triangles of perimeter 2n with integral sides, no two of which
are equal. This mapping is injective. The construction shows that it is also
surjective. This follows from the fact that, starting with a triangle of perimeter
2n with sides a> b > ¢, one obtains a partition of n of the form n=x + y + z where
x4+y=¢, x+z=b, and y+z=a Thus the image of this partition under the
mapping being considered is the original triangle. Since the mapping is bijective,
one can conclude that the number of triangles which satisfy the given condition
is equal to Q(n, 3).

The number #n can be represented as a sum of three positive integers (two
representations which differ only in the order of the terms are to be considered

distinct) in
n—1 _rzz—3n+2
2 ) 2

different ways (Problem 1.19). It follows from this that two terms are equal in
each of the following representations of n:
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n=14+1+n=2)=1+n-2)+1=n-2)+1+1
=2+2+(n—4)=2+(n—4)+2=(n—4)+2+2
=34+34(m—6)=3+(n—6)+3=(n—6)+3+3= .

There are thus 3(n— 2),2 representations if n is even and 3(n — 1);2 representa-
tions if n is odd and n=4. But for n=1, 2, 3 one has Q(n, 3)=0, and hence the
given [ormula is verified.

If n is a multiple of 3, one must also subtract 2 from the numbers obtained,
since there is a representation of n with three equal terms which is counted three
times instead of being counted only once. For example, for n=6 one obtains a
unique partition with two terms equal to 2. namely 6=2+2+2,

In order to obtain the number of representations with three pairwise distinct
terms, one must subtract {rom the number of all representations of »n as the
sum of three integers, the number of representations which contain equal terms.
The result is that this number is equal to

- 2_6n+12
"_;"—”__%(,,_mz:#_ i n=6k,
2_1 Z_6n+
i‘_-z'ﬁ_z_g(n—l);‘ 2”-—5 if n=6k+1,
2 L
"_%1%_;("-2);’_ 2“? it n=6k+2,
:_ 2= 6n+9
”_%Lz_g(n-nn:".—gli il n=6k+3,
2 2
n ;n+2_%(n_2)=”_62L+_8 if n=6k+4,
2 __ 2
ﬁ__;f_'*'_g_%(n_l)=n_$__5 if n=6k=+5.

Since these representations of n as the sum of three terms contain only pairwise
distinct terms, in order to find the partitions of n into three pairwise distinct
parts, one must divide the number obtained in each case by 3!=6, since the
order of the terms is no longer of any importance. It can immediately be seen
that all the expressions obtained have the form

El—6n+12 | n(n—6) 1 ‘
3 =" oreveryn.

For example, for n=6k+ 1 one has

n*—6n_ 36k:—24k—5
n - oKk
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and thus

n?—6én 5 nt—6n+5
[ T :|+1—31«. —Zk———lz—.

It follows from the inequalities

n>—6n+5 n—6n+12
——<0n, )< ——F—
o Sdn <
that
n>—6n+12
Q(n» 3)_['—— 12 '—jl'

5.13 Onefirst shows that the number of partitions of » into pairwise distinct
odd terms is equal 10 the number of partitions of n with a symmetric Ferrers
diagram. (The axial symmetry of a Ferrers diagram is with respect to a line
drawn from the top left of the diagram at an angle of 45° with the horizontal.)

Define a bijection from the set of partitions of n with symmetric Ferrers
diagram onto the set of partitions of n into pairwise distinct odd terms as
follows: Suppose that a symmetric Ferrers diagram has k cells on the diagonal,
and let a, be the total number of cells which are found in the first row and first
column of the diagram. Since the diagram is symmetric, it follows that a, is odd.
Now let a, denote the number of cells which are found in the first row and first
column of the diagram obtained by suppressing the a, cells. Similarly let a; be
the number of cells which are found in the first row and first column of the
diagram obtained when the g, cells are suppressed, and so on. One thus obtains
k odd numbers a;>a,> - >a, which define a partition of n: n=
ay+a,+ - +a.

For example, consider the partition of n=30 with the symmetric Ferrers
diagram of Figure 5.3:

30=7+7+54+4+3+242

Fig. 5.3
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In this case a, =13, a, =11, a3 =5, a, =1, which corresponds to the partition
of 30 into four odd parts: 30=13+11+5+1.

It is clear that this correspondence is injective. In order to establish the
surjectivity let n=a, + - +a, be a partition of n into k pairwise distinct odd
parts. A symmetric Ferrers diagram will now be constructed having a, cells in
the rth row and column for 1 << k. It will turn out that for the described corre-
spondence the image of this partition with symmetric Ferrers diagram is
precisely the original partition of n into odd parts, and this establishes the
surjectivity and hence the bijectivity of the correspondence.

The number of partitions of n with pairwise distinct odd parts is equal to the
coefficient of x” in the product

(L+0 +x3) 1 +x5) -

In fact, in order to obtain a term equal to x” in this expansion one must multiply
terms of the form x™, x%, ..., x%, where a, +a,+ - +ay=n, a;....,q, are
pairwise distinct odd numbers, and we set ¢, 2 a,> -+ =q, in order not to
count these monomials twice. Since the coefficient of each product of the form
x -+ x% is equal to 1, it turns out that the coefficient of x" is equal to the
number of partitions of n into pairwise distinct odd parts.

To obtain the generating function for the number of symmetric Ferrers
diagrams with k cells on the diagonal, one suppresses the square with k cells
on a side which lies in the upper left-hand portion of the diagram.

Now consider the number of cells in row i plus the number of cells in column
i(izk+ 1)asanewtermin a partition of n with a term equal to k? and a sequence
of other terms less than or equal to 2k. For the diagram of Figure 5.3 this new
partition can be written

30=42+6+4+4.

One thus has shown that the number of partitions of n with symmetric Ferrers
diagrams having k cells on the diagonal is equal to the number of partitions of
n of the form

n=k¥+2a,+2a,+ - +2a,,

where k>a,2a,2 - 2a,. Similarly one finds that the number of these
partitions of n is equal to the coefficient of x" in the expansion of the product

T+ WL+ xB ) xR ™ )

X
===

In fact the number of partitions of m=n—k? into even parts which are less
than or equal to 2k is the coefficient of x™ in the expansion of the product

(T x2x*+ ) +x* x4 ) (L x* ),
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In order to show this, start with the expansion
1
(1—a,x2(1—ax®) (I —ax®)

=(1+a, x> +aix*+ Y +a,x*+a2x®+ ) (L +ax +aix™+ )

=l4ax?+(al+a)x*+ - +@l ai? o ar+ X"+

The term a}' a%* - a}* which appears in the coefficient of x™ satisfies the
relation

20 +4h+ - +2kA=m,
and thus it defines a partition of m of the form

2kt 2k+ o+ A+ +4+2+ 0+ 2

Ak A2 Ay

It follows from the rules for removing parentheses that the exponents of the
symbols which appear in the coefficient of x™ generate, without repetition. all
the partitions of m into even parts. Thus if a, =a,= -+ =q,=1. then the
coefficient of x™ will be equal to the number of partitions of m into even parts
which are less than or equal to 2k. This justifies the expression which has been
obtained for the generating function of the number of symmetric Ferrers
diagrams with k cells on the diagonal. Thus

o x.k2

,Z‘o (T=x®1=x% - (1=x%)

represents the generating function for the number of symmetric Ferrers diagrams
with n cells; this completes the proof of the first identity.

In order to prove Euler’s identity, observe that (as in the discussion of the
generating function of the number of partitions of n into distinct odd parts) the
number of partitions of n into k distinct odd parts is the coefficient of x"y* in
the expansion of the product

T+ +7 00 +x%) .

On the other hand, it has been seen that there exists a bijection of the set of
partitions of n with symmetric Ferrers diagrams with k cells on the diagonal
onto the set ol partitions of n into k distinct odd parts. Thus the number of
partitions of n into k distinct odd parts is equal to the coefficient of x" in (1) or
the coefficient of x™y* in

xkzyk
(T=xM(1=x% - (1=x)
One thus obtains the identity
@ k2 k
Xy

. 3. 5.
(14+x3)(1 4+ 3331 +x%y) —,;0(1—,\'2)(1—,\'4)-“(1—xz")'
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Also, if the substitution y=x, is made then the resulting identity is

X . o« Xk2+k
L+ +xH+x8) - = .
(LN ) =) T (=)

5.14 Let2n+1=2"4224 -+ 42"+ 1 be a partition of 2n+1 into powers
of two, where i, 2 i,= *-* 2i,20. It follows that 2n=2"+ - -+ +2"; this corre-
spondence is a bijection, and hence B(2rn+ 1)=B(2n). In order to prove (b)
note that the set of partitions of 2n whose parts are powers of two can be written
as A,u B,, where A4, is the set of partitions of the form

2n=2" 4204 o 4204
where i, 21,2 - 21,20 and B, contains all the partitions of the form
2n=2" 4274 o0 420,

where i, 21,2 -+ 21,2 1,and hence 4,n B, =L7.

Since in the first case one has 2n—1=2"+4 -+ +2¥ and in the second
n=2""t4 oo 42071 wherei, ~12 - 2i.— 1 20,and these correspondences
between sets of partitions are bijections, one can conclude that (b) follows.

(c) may be proved by induction on n, since B(2)=B(3)=2, B(4)=B(5)=4.
Suppose (c) to be true for all m<n—1. If n=2m, then B(2m)=B(2m— 1)+ B(m)
is even, and if n=2m+1, then B(2m+ 1)=B(2m) is also even by the induction
hypothesis.

515 Letr=[/n], and let K bea k-element subset {a,,...,a.} of {1,...,r}

forO<k<r. Ttfollows that K generates a partition of n whose partsarea,,..., &,
n—(a,+ -+ +a,), in view of the fact that a,+ - +a,<kr<r*<n. Thus
P(n)= 2", since in this case different subsets of {1,....r} induce distinct parti-
tions of n.

CHAPTER 6

6.1 There is a unique walk which joins each pair of vertices of a tree. The
subgraph induced by B does not contain cycles, since 4 itself does not contain
cycles. If x, y e B and x #y, then x, y are vertices of each subtree 4,,....4,
and thus each of these subtrees contains the unique walk [x, zy,. .., z, y'] which
joins x and y in 4. Hence z,,...,2z,€X,,..., X, or zy,...,z €B. and thus
the subgraph induced by the set of vertices B is connected and is in fact a tree.

6.2 The proof uses induction on the number of vertices in the tree G.

If G has two vertices the property is immediate. Suppose that the property
holds for all trees with at most n vertices, and let G be a tree with n+ 1 vertices.
G contains a vertex x of degree 1 which is adjacent to a vertex y. By the induction
hypothesis the property is valid for the subtree G, obtained from G by sup-
pressing the vertex x and the edge [x, y]. If no subtree G, ..., G, is the graph
consisting of only the vertex x, then all the subtrees G7, ..., Gi obtained from
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Gy..... G, by suppressing the vertex x have at least one vertex pairwise in
common. In fact, if x is a common vertex for G; and G;, then y is also a vertex
common to G; and G, and thus also for Gf and G7. By the induction hypothesis

1...., Gi have at least one vertex in common, and thus the subtrees G,..... G,
have this property. If, for example, G, contains only the vertex x. then x is
common to all the subtrees G,,.. ., G, and the property is again verified.

6.3 The proof will show by induction on the number n that a tree with n
vertices has n— 1 edges.

If n=1, the tree has a single vertex and no edges. Suppose that the property
is true for all trees with n vertices, and let 4 be a tree with n+ 1 vertices. The tree
A contains at least one vertex of degree 1, since otherwise 4 would contain a
cycle, which contradicts the definition of a tree. In fact, let

L=[xy,...,x]

be an elementary walk of maximal length in A4. Since d(x;)> 2, it {ollows that x,
is adjacent to at least one of the vertices x,,..., x,—,. Otherwise one would
obtain a walk longer than L, which would contradict the maximality of L. One
thus obtains a cycle which passes through the vertex x,.

It has been shown that 4 contains a vertex of degree 1. Let d(x)=1. and let y
be the vertex adjacent to x. If one suppresses the vertex x and the edge [x, 1],
then a subgraph A, is obtained which is connected and without cycles, and
hence is a tree. By the induction hypothesis 4, has n vertices and n—1 edges,
and thus 4 has n+1 vertices and n edges, and the property is established.

The necessity of the condition in the problem is now immediate, since
d,+ - +d,=2m=2n-2, where m denotes the number of edges of a tree with n
vertices.

Suppose now that d, + -+ +d,=2n—2. At this point we use induction on n.
For n=1 it follows that d, =0, and for n=2 one has d, =d, =1 and hence the
trees are K, and K, respectively. Assume that the property is true for n—1
integers; we establish it {or integers d,,...,d, whose sum is equal to 2n—2
with n=3. It follows that d, =1, since d,>2 would imply that d, + - +d,>
2n>2n—2. Similarly d,>1, since otherwise d;+ - - +d,=n<2n—2. Thus
dy+ - +d,o +{d,—1)=2n—4=2(n-1)-2, and by the induction hypothesis
there is a tree 4 having n—1 vertices of degrees d,,...,d,~,,d,—~ 1. One can
add to the tree A4 a new vertex which is connected to the vertex of 4 of degree
d,—1. In this way a tree is constructed with degrees d,,..., d,.

6.4 Suppose U, is the set of edges of the tree A,, and U, is the set of edges
of the tree A,; let ue Uy, \U,. If the edge u is suppressed {rom the tree 4,.
then a graph G, is obtained which contains two connected components C, and
C,. In fact, if the graph obtained had contained at least three connected com-
ponents, then by adding the edge u between two vertices located in different
components the resulting graph would not have been connected and hence
A, would not be connected. Thus the definition of a tree would be contradicted.
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On the other hand, it has been seen that every tree with n vertices has n—1
edges (Problem 6.3), and thus by suppressing edge u the resulting graph G, is
no longer connected, since it has n— 2 edges.

There is an edge v € U, which joins two vertices located in components C,
and C,. For otherwise it would follow that the edges of the tree 4, join only
pairs of vertices located either in C, or C,. which would imply that A4, is not
connected. But A4,, being a tree, is connected, and hence there exists an edge
v € U, which joins vertices located in components C, and C,. Since G, does
not contain a cycle, it follows that the graph obtained (rom G, by adding the
edge v also does not contain cycles and is connected. It is thus a tree. which
will be denoted B,.

But B, is a spanning tree of G which has more edges in common with 4,
than A4,. Repeat this transformation, replacing all the edges ue U, \U; by
edges of U,, to obtain finally a tree B,=A4, where r> 2.

6.5 (a) We show that if all the vertices of degree 1 of the tree G are sup-
pressed then e(x) is decreased by 1 for every vertex of the resulting subgraph.
All the vertices at a distance e(x) from x have degree 1, and thus by suppressing
them e(x) decreases for all of the remaining vertices. One can also observe that
by this operation e(x) decreases by exactly one, since the longest walk which
leaves x ends in a vertex of degree 1 in G, which is then suppressed. The property
is true for a graph with a single vertex. Assume therefore that it is true for all
trees with at most n—1 vertices. Let G be a tree with n> 2 vertices. Denote by
C the set of vertices x in the center of G, that is, those for which e(x)isa minimum.
Suppose that C does not contain a vertex of degree 1, and suppress all vertices
of degree 1 in the graph G. For all the remaining vertices the value of e(x) is
reduced by one. and hence by this operation a new tree G’ is obtained with the
same center C. Since G’ has at most n— 2 vertices, it follows from the induction
hypothesis that C consists of one vertex or two adjacent vertices, and property
(a) is therefore established. If C contains a vertex of degree d(x)=1, then x
will be adjacent to a unique vertex y. It is clear that y is strictly nearer than x to
every other vertex of G. Thus e(x) can be a minimum only if e(x)=1 and G is a
tree consisting of x and y joined by an edge. In this case C={x, y} and the
property is established. ‘

By Problem 8.4, the walks of maximum length in a tree have a nonempty
intersection. It can be shown that this intersection contains the center of the tree.

(b) Let L be a walk of length e(x) which starts at x. If L does not contain
either y or z, then

e(N=elx)+1, e(z)=e(x)+ 1.

and hence 2e(x)<e(y) +e(z). The walk L cannot contain both y and z, since
both vertices are adjacent to x. For example, if L contains y, then

e(y)=elx)—1, e(z)=elx)+1,
and thus 2e(x)<e())+e(z).
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(c) It is easily shown that the distance thus defined on the set of vertices of a
connected graph is a metric for this set and thus satisfies the triangle inequality.
Let x, y be vertices such that d(x, y)=d(G), and let z be a vertex of minimal
eccentricity [ =p(G)]. It can be shown that

d(Gy=d(x, v)<d(x, z)+dlz, )< p(G)+ p(C)=2p(C).

66 LetL=[x,,...,X5-,]bea walk oflength 2k—3 of a tree 4. To every
vertex y which is not on L associate a walk, L,, in the following manner: Let M
be the walk which joins y and a vertex z of L and which has only the endpoint z
in common with L. If the length of M is greater than k—1.let L, be the subwalk
of M oflength k, and with endpoint y. Otherwise L, consists of M and a subwalk
of L. The construction is always possible, since L has length 2k—3 and thus
there is a subwalk of L of length k—1 incident with an endpoint of M. In fact.
in the opposite case L would have length less than or equal to 2(k —2), which
would contradict the hypothesis.

[tis also the case that L contains the subwalks [xq, ..., xpe g Jve oo [Xpmas o es
Xy -] of length k. One thus obtains n—(2k—2) + k—2=n—k pairwise distinct
walks of length k.

6.7 (a) Let G, denote the subgraph obtained from G by suppressing the
vertex x and the edges incident with x. Since G is a tree, it follows that G, is not
connected and y and z are found in different connected components of G, which
contain k, and k, vertices respectively. This implies that k, +k,<n—1. It
follows from the definition of the function s(x) that in going from x to y at each
step one moves closer by a distance 1 to k, vertices, but further away by 1 from
n—k, vertices. It is hence the case that

s(my=s(y)+ky—(n—ky)=s(y)+ 2k, ~n.
One can show analogously that
s(x)=s(z)+ 2k, —n.
By adding these two identities it turns out that
25(x)=s(y)+s(z)+ 2k, +k, —m)<s{ ¥ +s(z)~ 2.

(b) Suppose that there are two nonadjacent vertices x and y such that s(x)=
s(»)=minimum. Let [x, x;,X;,....X,, ] be the unique walk which joins x and y
in the tree (p=1). By hypothesis s(x,) = s(x). The inequality proved in (a) shows
that

S(x)+ s(x3)> 25(x,) 2= s(x,) + s(x),
and thus
5(x2) > s(x,) = s(x).
It also follows that s(x;)+s(x3)> 2s(x,) > 5(x;)+5(x5), and thus s(x3)>s(x,)>
s(x;)Zs(x), and so lorth. Finally one finds that s(y)>s(x,)> -+ >s(x;) > 5(x),
which contradicts the equation s(x)=s(y), since p> 1.
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The points in which s(x) attains its minimum form the barycenter of the tree
G. By considering a walk with an odd (or respectively even) number of vertices
one observes that the barycenter is formed of a single vertex (or of two adjacent
vertices). If xy, ..., x, are the vertices of a walk and y,, ..., y, are other vertices
joined by an edge to x,, then if p is even, it follows that the center of the tree
thus obtained is the vertex x,,. If ¢ is sufficiently large, for example g=(?),
then the barycenter of the tree is x,, while the distance between the center and
the barycenter is p/2—1. This number can be arbitrarily large for values of p
which are sufficiently large.

6.8 If the tree G has vertex set X of cardinality n, it follows that it also has
n—1edges. Then in the sum ) _ ., d(x, y) there are exactly 2(n 1) terms equal
to 1, and the other nonzero terms are greater than or equal to 2. If G is a star
(the graph K, ,_,), all the terms different from O (for x=y) and 1 are equal to 2.
Il G is not a star, there is at least one term equal to 3, and thus the desired mini-
mum is attained only for the tree K, ,_,. In order to find the maximum of this
sum one can show that s(x) is a maximum in the set of terminal vertices of a
tree only when the tree is a walk and x is one of its endpoints. 1l L is a walk
with n vertices and x is one of its endpoints, then

s(xy=1424+ - +(n-1).

If G is a tree and x is a terminal vertex with e(x)=d, then there will exist at
least one vertex at a distance 1, 2,...,d from x. It follows from the definition
of s(x) that the sum which enters into s(x) is of the form

s(x)=1+42+ " +d+d,+ -+ +d,- -4,

where d,, ..., d,-;-4<d. By comparing this with the expression for s(x) in the
case of the walk L. one finds that the maximum of s(x) is attained only when
d=n-1, that is. when G is a walk and x is one of its endpoints. One now uses
induction on n to prove that y . . d(x, y) is a maximum in the set of trees G
with n vertices from the set X when G is a walk. For 1 <n<3 the property is
immediate, since in this case every tree with n vertices is a walk.

Suppose now that the property is true for all trees with at most n—1 vertices,
and let G be a tree with n vertices which consist of the set X. Il a is a vertex of
degree 1 in the tree G, then

Y, dlx, y)=2s(a)+ Y dix, ).
x,yeX x,yeY
where Y =X \{a}.

The first term s(a) is a maximum only il G is a walk and a is one of its end-
points. In this case the second term can also be shown to be maximal by applying
the induction hypothesis to the subtree whose n—1 vertices make up the set Y.

6.9 Consider three pairwise different indices i, j, k € {1, ..., r}. [Tf, for ex-
ample, i=j then d;;+d; —dy =0 and (a) is satisfied.] Since 4 is a tree, there
exists a unique walk L;=[x;,....x;] between the terminal vertices x; and x;.



Solutions 187
x;

X Xk

u
u v xy xp

Xy

xj
Fig. 6.3

There is also a vertex v € L;; such that the unique walk from v to x, has no

vertices in common with L;; other than the endpoint v. It follows that
d(x;, x;) +d(x;, x)—d(x;, x,) = 2d(x), v),

which implies (a).

Consider i, j, k, 1 €{1,..., r} which are pairwise different. If, for example, i=j
the three numbers become d,;, dy; + dy, di +dy;, and thus two are equal and the
third satisfies the inequality

Ay <dyi+dy.

In (act, the distance defined between the vertices of a graph satisfies the con-
ditions for a metric, including the triangle inequality.

Let L;; and L,; be walks which join vertices x; to x; and x, to x,, respectively.
These walks can have no, one, or two or more vertices in common.

If the walks have no vertices in common, let u be a vertex of the walk L;;and ¢
a vertex of the walk L,, such that the unique walk with endpoints u and v has
in common with the walks L;; and L, only the endpoints u and v (Figure 6.3).
In this case, it follows that

d{k + dﬂ'—'—d“ +d}k =dij+dkl +2d(u, U),

which establishes (b).

If L;; and Ly, have exactly one vertex u in common, then di;+dy =dy+d; =
dy+dj.

If the walks L;; and L,, have at least two vertices u, v in common (Figure 6.3)
then (b) is also true. If u and w denote the endpoints of the subwalk common to
the two walks, then it follows that

dlj+ dkl =d” +djk=dik+ djl + 2(1'(” W),

Let r=2 and (d;);.j=,,...., be a symmetric matrix with non-negative integer
entries, such that d;;=01f and only if i =j, which satisfies (a) and (b). It is possible
to show (by induction on r) that there exists a tree A with r terminal vertices
Xy...-, X, such thatd(x;, x;)=d;;fori, j=1,...,r.[K. A. Zaretskii, Uspehi Mat.
Nauk, 20 (6) (1965), 94-96.]
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6.10 The proof will proceed by induction on r. For r=2 the property is
immediate, since every tree with exactly two terminal vertices is an elementary
walk and the fact that d 4(1, 2)=dg(1, 2) shows that the two walks have the same
number of vertices and are thus isomorphic.

Let r> 2, and suppose that the property is true for all trees with at most r—1
terminal vertices. Let v, denote the vertex of degree greater than or equal to 3
of the tree A, which is closest to the terminal vertex labeled r. Similarly let vy
denote the corresponding vertex of the tree B. It follows that there exists an
elementary walk [v4,...,r] in the tree A, such that all vertices located between
v4 and r have degree 2 in the graph A (their set may possibly be empty). There
is a similar elementary walk [vg,...,r] in B. Suppress the terminal vertices
with label r as well as all internal vertices onthe walks [v4,...,r]and [vg, ..., 7]
respectively. In this manner one obtains trees 4, and B, which each have r—1
terminal vertices with labels selected from the set {1,...,r—1}. The distances
between the terminal vertices / and j are the samein Aand Bfor 1 €igj<r-1
and thus will remain unchanged for the trees 4, and B,. By the induction
hypothesis 4, and B, are isomorphic trees, and thus there exists a bijection f
from the set of vertices of A, onto the set of vertices of B, which preserves the
adjacency of vertices.

One can assume that f(i)=17 for i=1,...,r—1, because it is possible to
relabel the terminal vertices of B, so that this condition is satisfied and the
distances between the terminal vertices i and j are the same in A, and B,. It
is now possible to show that f(v,)=rvg. Suppose that f(v,)#vg. There exists a
unique walk in B which joins f(v4) and vz which can be extended in an arbitrary
fashion to a walk which joins the terminal vertices i and j in B,. It follows that
dpli, J)+dgli, r)—dg(j, r) = 2dg(i, vg). Since f(v,) is found on the walk which joins
iandjin By (which is isomorphic to 4,), it follows that v 4 is found on the walk
which joins i and j in 4,. Thus, one can conclude similarly that

dali, )+ dali, r)—d G r)=2d (i, v4).

Since the distances between terminal vertices are the same in the trees 4 and B,
it also follows that dp(i, vg)=d (i, v4). But dp(i, vp)=dp (i, vg) and d,(i,v,)=
da,(i,v4). Since A, and B, are isomorphic under f, it follows that d, (i, v4)=
dg (i, [(v4)) =dp,(i, vp), which contradicts the fact that f(v,)#1pand the vertices
Sf{vy), vg, and i are found on the same walk. Finally, f(v,)=vg. Let i, j with
1<i<j<r—1 be labels for two terminal vertices such that v, and f(v,)=vp
are found on the walk with endpoints i and j in A, and B, respectively, and
hence in A and B.
One can thus write

dalr, )+ dalr, j)=d (i, j) =2d 4(r, v 4),
dplr, i) +dp(r, j)— dgli, j) = 2dg(r, vp).

Since the left-hand sides are equal by the hypothesis, it follows that d(r, v,) =
dg(r, vg), and hence the walks [v,,...,r] and [vg, ..., r] have the same length.

et m— A

Ao R

i < oA e oAbtk et A £
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NOWlet [vA,...,r]=[UA,X1,...,Xk,r]aﬂd[b‘y,-.-,r]-':[l)a,yu---‘Yksrland
define an isomorphism g between A and B as follows: g{x)= f(x) for every
vertex x of Ay, and

gx))=yn .. gxd =y gr)=r.
[E. A. Smolenskii, Jurnal Vicisl. Mat. i. Matem. Fiz. 2(2) (1962), 371-372.]

6.11 The proof will use induction on the number of vertices. If | X|=1 or 2
the property is immediate.

Suppose that the property is true for every tree with at most n—1 vertices.
[t will be shown that it is true for a tree G with n> 3 vertices. If f is a bijection,
then f{x)# f(y) for x#y. Also [x, y] e U implies that [ f(x), f/(y)] e U and
thus / is an automorphism of G. Every terminal vertex (of degree 1) is thus
mapped by / into a terminal vertex.

Let G’ denote the subtree of G obtained by suppressing all terminal vertices.
It follows that G’ is nonempty, since n23. If X' denotes the vertex set of G'.
then f(X')=X"and the restriction /" of f to X’ has the same property as /.
Thus by the induction hypothesis /' (and consequently /) has a fixed point or a
fixed edge (|[X'|<n~2). If f is not a bijection, then f(X) is a proper subset of
the vertex set of G. It follows from the conditions on f that these vertices induce
a connected subgraph of G, and hence f{X) is the vertex set of a tree and
[f(X)|<n—1.

Since f(f(X))< f(X), one can consider the restriction of f to the subtree
generated by the vertex set f(X), which has the same properties as f. By the
induction hypothesis this restriction, and hence also f, has a fixed point or a
fixed edge.

The property is no longer valid if G contains cycles. For example, suppose
G =K, contains vertices x, ¥, z and let f{x)=y, f(y}=2z, f(z)=x. In this case
the mapping / has neither fixed points nor fixed edges.

6.12 It has been seen (Problem 6.5) that the center of a tree always consists
of a single vertex u or two adjacent vertices u and v. The proof uses induction
on the number m of vertices of X to show that if the tree A has a single vertex u
as its center then f{u)=u. If the center is {u, v}, then either f()=uand f(v)=¢
or f(u)=1 and f{v)=u. Since the bijection f preserves adjacency of vertices,
it follows that x and f(x) have the same degree in the tree 4.

For m=1 the tree is equal to its center ¥ and hence f(u)=u. For m=2 the
tree is identical with its center and the property is again satisfied. Suppose that
the property is true for all trees with at most m—1 vertices (m=3), and let A4
be a tree with m vertices. If x,,..., x, 1s the set of terminal vertices of A4, then
it follows that f(x,),..., f(x,) are vertices of degree 1 and thus constitute a
permutation of the set of terminal vertices. Consider the restriction of the
function f to the set of vertices of degree at least 2 in A:

g:X,—X,, where X,=X\{x;....,x},

and g(x)= f(x) lor every x € X,. It follows that g is an automorphism of the
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subtree A, of A with vertex set X,. In the solution of Problem 6.5 it was shown
that 4 and A, have the same center. It therefore {ollows from the induction
hypothesis that either the center of 4 is equal to u, in which case g(u)= f(u)=uy,
or the center of A consists of the adjacent vertices u and v, in which case either
guy=flu)=u and g(r)= f(v)=v, or g(u)= f(u)=r and g(v)= f(v) =u

The stated property is thus valid [or every m. Since it must be shown that f
has a fixed point, the only case which must be investigated is that in which 4
has center [u, v} with f(u)=rand f(v)=u. Let A, and A4, denote the subtrees of
A obtained by suppressing the edge [u, v] and which contain the vertices u and
respectively. Let u,,..., u, denote the vertices in 4, which are adjacent to w.
Since f preserves adjacency in A, it follows that f(uy),..., f(u,) are adjacent
to v in the subtree 4,, and so on.

Let X, and X, denote the vertex sets of the trees A, and A4, respectively. It
follows that f(X,)=X,. Consider the restriction of the function f to the set
X, denote it by h: X,—X,. The function h is a bijection, and {x, y] is an edge
in the tree A, if and only if [A(x), A(y)] is an edge in the tree 4,. Thus & is an
isomorphism of the trees 4, and A,. [t follows that 4, and 4, have the same
number of vertices, which implies that |X|=|X,[+|X [=2[X,| and is thus an
even number.

It was assumed that [X|=2n+1, and thus the case in which f(u)=v and
f{v)=u does not occur. It follows that / has at least one fixed point.

6.13 Let A, —x and A4, —x denote the graphs obtained from 4, and 4,
respectively by suppressing x and the edges incident with x. Since a tree with n
vertices has n— 1 edges (Problem 6.3), the degree of the vertex x in the tree 4,
is equal to

da(X)=]X]—=1=mlA, - x), (1)

where m(A, — x) denotes the number of edges in the graph 4, — x. It also follows
that

da(x)=|X|~1=m(d;—x). 2)

The fact that the graphs A, —x and A4,—x are isomorphic implies that
MA;—x)=m(4,; —X).

By using (1) and (2) one can show that d 4 (x)=d,{x) for every vertex x € X
ind thus the trees 4, and A, have the same terminal vertices {of degree 1). Let
T be the set of terminal vertices for the trees A, and A,. If | T| =2, it follows that
4, and A, are walks of length | X|— 1,and thus 4, and 4, have the same diameter.
suppose that |T|>3, and let L be an elementary walk of maximal length in the
ree A,. The length of L is by definition equal to d(4,), the diameter of 4,.

The endpoints of this walk are two terminal vertices in the set T. The set T
1so contains at least one other terminal vertex x which does not belong to the
valk L. By hypothesis 4, —x is isomorphic to 4, — x. Since the walk L is con-
ained in the graph 4, —x, it follows that 4, — x contains an elementary walk
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L, which has the same length as the walk L. Thus the graph 4, contains an
elementary walk L, of the same length as L. It follows that d(4,) > d(A4,).

By interchanging the roles of 4, and A4, in the preceding argument one can
conclude that d(A4;)=d(A,) and hence 4, and 4, have the same diameter.

It can also be shown that under the given conditions the trees 4, and 4,
are isomorphic. [P. J. Kelly, Pacific J. Math., 7 (1957),961-968.]

6.14 One can obtain an arborescence from the tree G by considering the
vertex x; to be the root and directing all the edges of the tree so that for every
vertex y#x, there is a unique path which originates in x; and terminates in .
In this way a partial order is defined on the set X: Let x; < x; if the unique path
from x; to x; contains the vertex x;.

Let the matrix Z=(z;)); j=1....,, be defined as follows: z;;=1 if x;<x;. and
z;;=01f x; is not less than or equal to x;. In the solution to Problem 2.19 it was
shown that one can renumber the elements of X so that Z is upper triangular

with z;=1for i=1, ..., n It follows that det Z=1.
Let
0 1 1 1
1 =2 0 0
A=|1 0 =2 0
1 0 - 0 -2

It will be shown that ZT4Z =D, In fact, the element in row i and column j of
the matrix ZTAZ is

n n
CU=Z Z ZkiQg 2= Z Z Uy

k=11=1 XkSX; X <X

But a,#0only if k=l or k=1 or [=1, and hence

cy= 2, (=+ ¥ 1+ ¥ 1
XL X)X L IT ST X <xy
since x, < x; for every i=1,...,n. Let x, denote the last common vertex of the

paths from x, to x; and from x, to x;, with x, being considered as the initial
point. It follows that

cj= = 2d(xy, x,)+ 1)+ (d(xy, x))+ D+ (dlxy, x;)+ 1)
=d(x,, x;))+dixy, x;)=2d(xy, x.)=d(Xx;, x;).

Thus it has been shown that ZTAZ =D and finally that det D=det A. By
adding the other columns to the first column of the matrix 4 and expanding the
resulting determinant on the first column one sees that

det A=(n—1)(—=2)""*~det 4, and hence det A=—-(n—1)(—2)"" 2.
[R. L. Graham, H. C. Pollak, Bell Syst. Techn. J., 50 (1971), 2495-2519.]
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6.15 (a) Since every tree has at least two terminal vertices. it {ollows that
by using the procedure previously described one obtains a tree consisting only
of the vertex x, and another vertex adjacent to x,. The Priifer code of 4 is com-
pleted by a new position a,-, =n.

Let by,..., b, be the indices of the terminal vertices which are suppressed
when the algorithm determining the Priifer code is applied to the tree A. It will
now be shown how to determine the numbers b; from the Priifer code
(Gyyen-s@poy)

Itisclear that b; is different from by, .. ., b;—; and also from q;, since {x,,, xp,]
is an edge in the tree A. Since the vertex x,, has been suppressed, it cannot be
adjacent to a terminal vertex at a later step. Thus b, #q; for j>1i.

Conversely, il k ¢ {b,,....bi—y, a; ..., a,- }, then the vertex x; is a terminal
vertex of the tree A-{x;, ..., Xy, ,} obtained from A by suppressing the ver-
tices with indices by, . . ., b;~,. For otherwise it would have to be adjacent to
avertex which will be suppressed at a later step. [t follows that k € {a;, ..., d,-,},
which contradicts the hypothesis. Hence

b,-=mir1{klkﬁ{bl,...,bi_l,a,-,...,a,,_l}}. (1)

Thus the Prifer code uniquely determines the numbers b,, and hence the
tree A which consists of the edges [x,, x,,]. It follows that the correspondence
which associates to every tree its Priifer code is injective.

Nowlet (a,, ..., a,-,) bean arbitrary sequence of integers such that | <a¢;<n
and g, , = n. Define the numbers b, recursively by identity (1). Join the vertices
X,, and x;, by an edge for i=1,...,n—1.

One can now show that the graph A4 obtained in this manner is a tree whose
Priifer code is exactly (a,, ..., a,—): thus the correspondence under considera-
tion is surjective, and hence bijective. In order to establish this property it is
sufficient to show that x,, is a terminal vertex with minimal index of the graph

Ay=A={xpps s Xy, )

It follows from (1) that b;#a, for j>i, and thus a;#b,,..., b;—, which implies
that x, is a vertex in A;. By construction the vertices x,, and x,, are adjacent,
and thus x; is adjacent with a vertex in the graph A;. The vertex x,, cannot be
adjacent to a vertex of A4, other than x,,, since if [x,, x,,] were another edge of
A; incident with x, , it would follow that j> i, since x;, is a vertex of 4;.

But x,, is one of the vertices x,, or x;,, and thus b;=b; or b;=a;, which con-
tradicts identity (1), since j> i. It follows that x, is a terminal vertex of the graph
A;, and hence A and all of the graphs A, are trees. This property follows by
induction on i. For i=nthe graph A, is composed of the vertex x,, and is thus a
tree. The fact that A4; is a tree is a consequence of the fact that 4, is a tree.

Suppose now that A; has a terminal vertex x, with k<b;. It follows from (1)
that either k=b, with s<i or k=a; with j>i. The first alternative is impossible,
since x,, is a vertex in the tree A4;, which does not contain the vertices
Xp,s- - Xp,_,- Il k=a; with j> 1, then j<n—2, since a,-, =n2=b; > k. But it has
been shown that x;, is a terminal vertex of A; which is adjacent only to x,, = x;.
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The vertex x,, being a terminal in 4;, is also a terminal vertex in 4;, since j> .
It follows that x,, and x,, are both terminal vertices of 4;, and thus A4; reduces
to the edge [x,,, x;,]. This is a contradiction, since 4, has n—j+12>3 vertices,
since j<n-2.

(b) Thenumber of trees with n vertices x,, .. ., x, is thusequal to the number
of sequences (ay, . . ., ap- ) With 1< a;<nand a,_, =n. Hence it is equal to n" ™2,
(c) Observe that each vertex x,, occurs in the sequence (ay,....an-,)

exactly d,,— 1 times. In fact, the indices of the terminal vertices do not appear in
the sequence, but a vertex x; of degree d;> 2 will become a terminal vertex after
exactly d,~ 1 of its neighbors have been eliminated. It follows that the number
of trees with degrees d(x,)=d,, . .., d(x,)=d,, whose sum is equal to twice the
number of edges (i.e. 2n—2) is equal to the number of sequences (a,....,d,-,)
which contain the number k d, ~ 1 times for 1 <k< n. But this number is equal
to the number of arrangements of n— 2 objects in n cells such that the kth cell
contains d, — 1 objects {or 1 <k<n The objects in cell i represent the number
orderings of positions in which the number i is found in the sequence

(ay,...,a,-,). By Problem 1.15 this number is equal to
(n=2)!
di=1)! - (d,—1)!"
6.16 Let A be a tree with vertices x,,..., x,. Il an arbitrary edge is sup-

pressed, the result is two disjoint trees which together contain all the vertices
of A. Label the endpoints of the suppressed edge. Since 4 has n—1 edges,
starting from the t, trees with n vertices, one obtains (n— 1)z, pairs of trees of
this kind with one vertex labeled in each tree. Suppose that 4, and A4, are two
disjoint trees with k and n— k vertices respectively and which together contain
the vertices x,,..., x,. One can label a vertex of 4, and a vertex of 4, in k(n—k)
ways for 1< k<n—1. The vertex sets of 4, and 4, can be chosen in (; _ i) ways
under the condition that a fixed vertex x, belongs to the tree 4, in order to
eliminate repetition.

One can find t, and ¢,-, trees with vertex sets 4, and A4,, respectively, and
thus, by counting (in two ways) the pairs of disjoint trees which together contain

the vertices x,, ..., x, and have a labeled vertex in each tree, one finds that
ntn—1
Z (k__1>tktn-kk(n"k)=(”—1)fn- (1)
k=1

Since

n—=1\ n-1/n=2
k~1) n—k\k—1)

the desired identity is obtained, after dividing both sides of (1) by n—1.
Recall that (;Z})=(7_}). As a result of interchanging the indices k and n— k,
(1) becomes

n—~1 n—l
k;( i )lkt,,_kk(n—k)=(n—1)t,,. (2)
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Addition of (1) and (2) yields

n—1
Y (Z) bty ek(n — k)= 2(n — )i, 3)
k=1 :

This identity can also be found directly if x, is not a fixed vertex in A4,.
It will now be shown by induction on n that 1,=n""2% For n=1 there is a
unique tree with one vertex and the formula is satisfied. Suppose that 1,,=m™ "2

for every 1 <m<n—1.1t will be shown that t,=n""2. Since (3) holds, one must
show that

n-1

Y (Z) K=Y n—k)y =t =2n—1n" "2

k=1

This equation is in [act identity (c) of Problem 1.29 and implies that z,=n""2,
[O. Dziobek, Sitzungsber. Berl. Math. G., 17 (1917), 64-67.]

6.17 Suppose that the terminal vertices are fixed and in fact that they are

Xy,...,X,. Since dy = -+ =d,=1. it follows from the preceding problem that
he desired number is equal to
n—2)! (n—2)!

i ==

, (1)
(d‘,H;..,d,,) (dp-n =Dl d,-1 (Kpypreens k) kp+1l' k!
vhere the first summation is taken over all values

dp.gl,....d">2 and dp.,.1+"'+d,,=2n—2—p.

‘he second summation is obtained by substituting the variables k,,,=

p+1—1,... k,=d,—1 and hence kp,,....k,21 and k, .y + - +k,=n-2.
‘he number

(n—2)!

kp.+.1 Poees k"‘

:presents the number of ways of arranging n— 2 objects in n—p cells so that the
rst cell contains k,., objects, ..., the (n—p)th cell contains k, objects. Since
21 for i=p+1,....n this number also represents the number of surjective
mctions

f:X-Y

here |[X|=n—2,|Y|=n—p,and il Y ={y 4y, ..., s} then [/ 7' (3)|=k:>1lor
+1<ign 1t follows that the sum (1) is equal to the number of surjective
netions Sy 3..-p,=(n~p)! Sin—2,n—p), where S(n—2,n—p) is the Stirling
umber of the second kind (Problem 3.4),

Since the p terminal vertices are not specified, they cun be chosen from the
1t of n vertices in (;) ways. Thus the number of trees with n vertices p of which
we degree 1 is equal to

!
(Z) (n—p)! S(n—2, n—p)=% Stn—2, n—p).

\. Reényi, Mat. Kut. Int. Kézl., 4 (1959), 73-85.]
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6.18 (a) Let f(n) be the desired number of possible ways of selection. It
follows that f(1)=1 and f(2)=2. This corresponds to the choice of edge
[x;. y,] and respectively to [x,, x,] and [y, ¥,] or [x,, ¥,] and [x,, y,]. I
the ladder graph has 2n vertices, then one can select [x;. y, ] and for the remain-
ing edges there are f(n— 1) possible choices. One may also select [x,, x,] and
[y, ¥s], leaving f(n—2) possible further choices. It then follows that

Sim=fin=1)+ f(n=2).

and this relation together with the initial values f(1)=1 and f(2)=2 implies
that f(n)=F,, the Fibonacci number.

(b) Let g(n) denote the number of spanning trees of the ladder graph. It
follows that g(1)=1 when the spanning tree consists of [x,, y,]. Also g(2)=4
for the trees which are obtained [rom a cycle with four vertices il one suppresses,
in turn, an edge of the cycle.

In order to prove the recurrence relation for ¢(n), consider the graph of
Figure 6.1 with 2n+2 vertices:

Xy Vyeoor i Xng 1y Yot

The set of its spanning trees can be written in the form
AjVA, VAU A,.

where A4, is the set of spanning trees which do not contain the edge [x;. x,],
A, is the set of spanning trees which do not contain the edge [x,, ¥,], 45 is the
set of spanning trees which do not contain [y, y,], and A4, is the set of spanning
trees which contain [ x,, x,], [x,, ¥,],and [y;, y,] and do not contain [x,, y,].
It is clear that these sets are pairwise disjoint. If, for example, there were a span-
ning tree in 4, N 4,, then it would not contain the edges [x,, x,] and [x;, y,].
The vertex x, would thus be isolated, which contradicts the definition of a
spanning tree. It follows that |4,|=|4,|=|4;|=g(n). [Using the vertices
X2, V2, -y Xna1s ¥ne there are g(n) possible spanning trees.] Let |[d4|=h(n+ 1).
Then

g(n+1)=3g(n)+ h(n+1). (1)

Now consider the graph of Figure 6.1 with 2n vertices denoted x,. y,,.. .,
Xn+1s VYu-1- 1tS set of spanning trees can be written in the form B, u B,, where
B, is the set of spanning trees which do not contain the edge [x,. y,] and B,
is the set of spanning trees which do contain [x,, y,]. Since B, nB,=%, it
follows that g(n)=|B,|+|B,|. But |B;|=g(n—1) and |B,|=|44|. There thus
exists a bijection between these two sets defined as [ollows: In each spanning
tree of B, replace the edge [x,, y,] by a walk of length 3 having the same end-
points: [x,, Xy, ¥y, ¥2]. One thus obtains a spanning tree in A,. It is obvious that
this correspondence is a bijection and hence

gin)=gn=1y+hin+1),
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-om which it follows by using (1) that
gn+1)=4g(n)—gin—1). 2)
The characteristic equation of relation (2) is
r2—dr+1=0,

‘hich has the solutions r; =2+ﬁ and r2=2—ﬁ. Thus the general solution
{ the recurrence relation (2) is of the form

gin=Cri+C,r3,
‘here C, and C, are determined by the system
Ci2+/3)+C,2-I)=1,
Cy(T+43)+ Cy(1—-43)=4,
hich has the solution C, =1/2/3, C;= —1/2/3. Thus

(
=—__ 12 " (2 n
g(n) e (2+Br=2-J37)

§. Sedlatek, Casopis pro pestovani matem., 94(2) (1969), 217-221.3

6.19 Let D=(d;;) be the distance matrix of a connected graph G. Properties
)—(4) are precisely the expression of the fact that the distance function is a
ietric on the set of vertices {1,...,p}. In order to prove (5), let 1 <i<j<p, so
1at d;;=d(i, j)>1, and let L be a shortest walk from i to j, which contains at
:ast two edges. Let k be a vertex of L, different from the endpoints i and j. It
illows that both subwalks of L from i to k and from k to j are subwalks of
inimal length, that is, d;;=dy + dy;.

It will be shown, conversely, that a square matrix D of order p which satisfies
roperties (1)-(5) is the distance matrix of a given graph. Let G be a graph with
artex set X={1,...,p} and with edge set U={[i, j]|d;;=1}. It remains to
10w that for each two vertices i and j it is the case that d(i. j)=d,;.

If i=j then d(i, i)=0=dy. If [i, /] € U, one has d(i, j)=1=d;; in view of the
=finition of the graph G. Thus suppose that i}, [i, /] ¢ U, and hence d,;=> 2.
y repeated use of property (5) one finds integers iy, i,,. .., i such that

d,'j=d”] +d,-112+ e +dikj;

.ch term on the right-hand side of this equation is equal to 1. Thus [, i,],
15 i2] ..., [i, j1 € U, which implies the existence of a walk of length d,; in G
ith endpoints i and j. Infact G also contains an elementary walk with endpoints
ind j of length at most equal to d;;. The graph G is connected, and d(i, j) < d;;.
d(i, j)< d,;, there is an elementary walk [i,j,,;,....jm, ] of length less than
;- The existence of this walk implies that d;; =d,, ,,= -+ =d;_ ;=1. In this
se (4) implies that d;;<d,;, + *+ +d;, ;<d;;, which is a contradiction. It has
us been shown that d(i, j)=d;; for every i and j.
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6.20 It will be shown that (1) is equivalent to (2) and that (2) is equivalent
to (3).

Suppose that Gisatree, that is, G is connected and without cycles. If the graph
G, obtained from G by deleting edge [x, ] is connected, then there is a walk
between x and y in G;. It follows that in G, there exists an elementary walk
between x and y, which together with [x, y] generates a cycle in G, and thisisa
contradiction. Hence (1) implies (2). Suppose G is a graph satisfying (2) and
G has a cycle [x, z,,..., 2, ¥, X]. By deleting one edge [x, y] in this cycle one
obtains a new graph G, which is connected; this is a contradiction. It follows
that G is connected and without cycles, and hence is a tree.

(1) implies (3): If G is a tree, it follows that G does not contain a cycle. For
any two nonadjacent vertices x, y of G there is an elementary walk between
x and y. This walk together with the edge [x, y] generates a cycle in G, and
hence (3) holds.

It remains to show that (3) implies (1). To show this let G be a graph satisfying
(3). One must prove that G is connected. Suppose that G is not connected. There
are therefore two vertices x and y belonging to different connected components
of G. By inserting the edge [ x, y] one obtains a graph G, which does not contain
a cycle, which is a contradiction.

6.21 [f T,isa tree with nlabeled vertices, one may choose a root ¢ in n ways.
For any such selection a unique arborescence is obtained directing each edge
so that any vertex x #a to be reached from a by a unique path. Hence the number
of arborescences with n labeled vertices is equal to nn"~2=n""! by Cayley’s
formula.

6.22 Choose a vertex of a labeled tree T, with vertex set {1,...,n} (say
the vertex n), and call it the root. There exists a unique walk from any other
vertex i< n to the root. If [i, /] is the first edge in this walk, let f(i)=,j. The
function f is called the tree function of T,. Assign the label i to the edge [}, j],
where j= f(i), for i=1,...,n—1. This defines a mapping of the set of n" 2
vertex-labeled trees T, onto the set of edge-labeled trees.

When n=3, each edge-labeled tree is the image of n vertex-labeled trees,
since the vertex n may be chosen in n ways and the labels of the other vertices
are uniquely determined by the labels of the edges. It follows that the number of
trees with n unlabeled vertices and n—1 labeled edges is equal to n"~ 2/n=n""3
by Cayley’sformula. [E. M. Palmer, J. Combinatorial Theory, 6 (1969), 206-207.]

6.23 Each column of an incidence matrix 4 contains one +1, one —1,
and n—2 zeros, and hence the sum of all n rows vanishes. The sum of any r
rows of A must contain at least one nonzero entry if r<n, for otherwise G
would not be connected. This implies that no r rows are linearly dependent if
r<n. In fact, if there exist r rows a; , ..., a; of 4 (r<n) whose sum equals the
null vector with m components, then it follows that there is no edge which is
directed away from or towards the vertex set {i;,...,i,} of G; this contradicts
the hypothesis that G is connected.
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By applying this result to the submatrices corresponding to the connected
components of G it follows that if G has s connected components then the
rank of 4 is n—s. [G. Kirchhofl, Annalen der Physik und Chemie, 72 (1847),
497-508.]

6.24 1 B is nonsingular, then each column of B must contain at least one
nonzero entry, but not all columns can contain two nonzero entries. Hence some
column of B must contain exactly one nonzero entry. The desired result now
follows by induction on the order r=1 of B by expanding the determinant of
Balong this column. [H. Poincaré, Proc. London Math. Soc., 32(1901), 277-308.]

6.25 Let F denote the spanning graph of G whose n—1 edges correspond
to the columns of B. It follows that B is the reduced incidence matrix of F,
but B is nonsingular if and only if rank(B) =n— 1. It has been seen that rank(B)=
n—1if and only if F is connected (Problem 6.23). In fact, if C is the incidence
matrix of F, then rank(C)=rank(B), and if F is connected, then rank(C)=n—1.
If F is not connected, then it has s=2 connected components and rank(C)=
rank(B)=n—s<n—1. It remains to prove that an F which has n vertices and
n—1 edges is connected if and only il it is a tree. Il F is a tree with n vertices, it
is connected and has n — 1 edges by Problem 6.3. Conversely, since F is connected
and has n vertices and n—1 edges, it will be shown that F is a tree.

Indeed, if F is connected, it contains a spanning tree T. To see this. suppose
that for any edge [x, y] of F the graph F, obtained from F by deleting edge
[x.y] is not connected. In this case, by Problem 6.20, F is itself a tree and we
define T=F. Otherwise, the same argument can be applied to F, and so on by
obtaining a spanning tree T of F.

The tree T has n vertices and n—1 edges; hence T=F, or F is a tree. [J.
Chuard, Rend. Circolo Mat. Palermo, 46 (1922), 185-224.]

6.26 The Binet—Cauchy theorem states that if P and Q are matrices of size
p by q and g by p where p<gq, then det PQ=) det B det C, where the sum
taken is over the square submatrices B and C of P and Q of order p such that
the columns of P in B are numbered the same as the rows of Q in C. Applying
this to A and A7, assuming that m=n—1, and using Problem 6.24, one can
show that

det 4,47 =Y det Bdet BT=Y (det B)?=Y 1,

where the last sum is taken over all nonsingular (n — 1)-by-(n — 1) submatrices
)f A,. The desired result now follows from Problem 6.25.[R. L. Brooks, C. A. B.
smith, A. H. Stone, W. T. Tutte, Duke Math. J., 7 (1940), 312-340.]

6.27 Let B=A,A7, and let g, denote the ith row of the incidence matrix
4 of G. It is clear that b;; is equal to the scalar product a,a; for 1<, j<n—1.
t follows that by is equal to the number of nonzero entries of a;, that is, to the
wmber of vertices adjacent to i in G. If i, then bj; is equal to —1 if [i, /] is
in edge of G and b;;=0 otherwise. It follows that
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I
1l
X

where all matrices are of order n—1.
This method for obtaining ¢, was first pointed out by L. Weinberg [ Pruc.
IRE, 46 (1958), 1954--1955].

6.28 For n=1 one obtains three independent sets, namely £. {1}, {2}, and
hence I, =3. In a similar manner one can show that I, =8. For the graph R,
let M, denote the family of all independent sets, and let 4, denote the family
of independent sets containing vertex n+ 1. Let B, be the family of independent
sets containing 1, and let C, be the family of independent sets of R, which
contain neither n+1 nor 1. It follows that M,=A4,uB,u C,, where 4,, B,, C,
are parrwise disjoint sets. It is clear that |4,|=|C,|=1,-, and |B,|=2I,_,,
since the independent sets containing 1 do not contain n+1 and 2, but they
may or may not contain the vertex n+ 2. Thus the numbers I, satisly the recur-
rence relation

In=21n—1+21n-2

with initial conditions I,=3 and I,=8. The characteristic equation is
r?—2r—2=0 with roots r; ,=1 iJB. which implies that

L=C,(1 +3Y+C,(1 = J3).

From the initial conditions one can conclude that C, =(3+2J§)/6 and C,=
(3—2J§)/6. [H. Prodinger. R. F. Tichy, Fibonacci Quarterly, 20(1) (1982),
16--21.]

6.29 The proof is by induction on n. For n=2 this inequality becomes an
equality and coincides with the Principle of Inclusion and Exclusion.

Suppose that the inequality holds for any n—1 subsets of X and any choice
of a tree on vertices 1,...,n—1. Without loss of generality one can suppose
that n is a terminal vertex of the tree T. Denote by T, the tree obtained from T
by suppressing n and its incident edge [k, n]. It (ollows from the induction
hypothesis that

Ay0 VA DU A =1410 U A+ A = (A0 UA,_ )N A

i=1 [1,/1eE(Ty)
=2 lAal- ¥ lAinay
i=1 [t jleE(T)

since (A, U ' UA,_ )N A,D A, NA,. [K.]. Worsley, Biometrika 69(2) (1982),
297-302.]
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6.30 Itisclearthat(1)is satisfied. In order to show (2) suppose that the edges
of I induce a spanning graph (X, I) with p components C,,...,C, and that
these components contain respectively ny,...,n, vertices (n,+ :** +n,=n),
Since (X, I) does not contain a cycle, it follows that C, ..., C, are trees having
respectively n; —1,...,n,—1 edges. By hypothesis (X, J) also has no cycles,
which implies that J contains at most n,—1 edges with both endpoints in the
component Cy, for every i=1,..., p. Because |J|=|I|+1, it follows that there is
at least one edge e € J\I whose endpoints lie in different components C; and
C,(i#)). It follows that Ju{e} is an independent set, since (X, Iu{e}) also
contains no cycles.

From Problem 6.20 one can deduce that the bases of the matroid M(G)
coincide with the edge sets of spanning trees of G. If (X, S) has p components
containing respectively m,,...,m, vertices, then the fact that independent
sets of edges contain no cycles implies that

4
piS)= Y. (m=1)=n—p

i=1

CHAPTER 7

7.1 Suppose that the sign of a negative edge is changed so that it becomes
positive. It follows that the signs of the n—2 triangles which contain this edge
are also changed.

Suppose that r positive triangles become negative and s negative triangles
become positive, so that r+s=n—2. In the graph thereby obtained the number
of negative triangles is equal to

n(f)+r—s=n(f)+r+s=n(f)+n-2,

where the congruence is taken modulo 2.
It follows that by changing, in turn, the sign of all the negative edges, one
obtains zero negative triangles, and hence

n(f)+p(n-2)=0,
that is,
n(f)=np.

7.2 Suppose that the three colors are a, b, c. Each triangular face for which
the vertex set is colored with all three colors has an edge whose endpoints are
colored a and b respectively. All the other faces contain 0 or 2 edges with this
property. Separate all the faces of the planar graph, and count the number of
edges with endpoints of colors a and b. It follows that

1414 +14040+ - +0+24+2+ -+ +2=0 (mod 2).
—— ——

g
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Thus f; represents the number of faces whose vertices are colored with all the
colors a, b, and ¢, since each edge with colors a, b is counted twice (in both faces
adjacent with it). Thus f;=0(mod 2).

This property is a special case of Sperner’s lemma of algebraic topology,
which is equivalent to an analogous property for n-dimensional triangulations.
The result remains valid for an arbitrary number of colors.

7.3 The necessity of the condition is immediate, since if a graph G without
isolated vertices has an Eulerian circuit, then it is connected. In fact each two
vertices, x and y, being incident to an arc which belongs to an Eulerian circuit,
are joined by a walk.

On the other hand, an Eulerian circuit uses all the arcs which originate at
and terminate in every vertex x. The Eulerian circuit uses a unique arc which
ends at x and a unique arc which starts at x each time the vertex x is traversed,
and hence d " (x)=d"(x). In order to show the sufficiency, let C be a circuit of
the graph G which contains a maximal number of arcs. The graph G is con-
nected and d~(x)=d " (x) for every vertex x. If C does not contain all the arcs of
G, then it follows from the fact that G is connected that there is an arc (x, y)
which has a vertex in common with the circuit C. Suppose, for example, that
x € C. One can make this assumption because the circuit C uses the same
number of entry and exit arcs in each vertex, but the indegree of the vertex y
is equal to the outdegree of the vertex y. Therefore if y € C. there will exist an
arc of the form (y, t).

Let G denote the spanning subgraph of G induced by the arcs which do not
belong to the circuit C. Since d™(x)=d*(x) for every vertex x, and since the
circuit C uses the same number of entry and exit arcs at every vertex. it follows
that all the vertices of G have equal indegrees and outdegrees.

Leave by the arc (x, ¥) of G, and move along the arcs of G using each arc
exactly once. Continue this process as long as possible. One cannot end in a
vertex z#x, since the vertices of G have equal indegrees and outdegrees and
each traversal of a vertex z # x uses an entry arc and an exit arc. Thus if one has
arrived at a vertex z #x, one can also leave this vertex on an exit arc. Since the
number of vertices of G is finite, one must terminate at the vertex x, and this
produces a circuit C, in G.

The union of the arcs of the circuits C and C, is a circuit which is longer
than C, which contradicts the assumption made. Thus C is an Eulerian circuit.

7.4 One can suppose that the graph G has at least one Eulerian circuit C,
since otherwise the property is evident. The Eulerian circuit passes through
every arc of G and hence passes through the vertex x with d7(x)> 3.

Move along the circuit C by leaving from x and returning to x. At each
traversal of x one obtains a circuit. Let these circuits be C,, C,,..., C,, where
m=d"*(x). Every permutation of the circuits C,,..., C,, determines an order of
passing through the arcs of the graph G once, and hence an Eulerian circuit.
Two Eulerian circuits obtained in this way are identical if and only if the per-
mutations of the cycles Cy,..., C,, are identical as cyclic permutations. The
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number of cyclic permutations of m objects is equal to m!/m=(m—1)!, since
each cycle with m elements can be expressed in m different ways, by taking as
first element each of the m elements. Thus one can obtain exactly (m—1)!

Eulerian circuits starting with the circuits Cy,. .., C,, into which the circuit C
is decomposed.
If two families of circuits {Cy,..., C,} and {C},...,C,) are different as

sets, then the (m—1)! Eulerian circuits obtained in this way from the first family
will be different from all the (m — 1)! Eulerian circuits obtained from the second
family. It follows that the total number of Eulerian circuits of the graph G is
divisible by (m— 1)1, which is an even number, since m> 3.

If G is a connected digraph with vertex set X = {x,, ..., X, }such thatd™(x;)=
d*(x)=r for every i=1,... n, then the theorem of van Aardenne-Ehrenfest
and deBruijn states that the number of Eulerian circuits of G is equal to
A [Tr=, (ne= 1)}, where A, is the number of spanning arborescences of G
with the root x,. [T. van Aardenne-Ehrenfest, N. G. deBruijn, Simon Stevin,
28 (1951), 203-217.]

7.5 First we show that every graph without isolated vertices and whose
vertices have even degree can be expressed as the union of cycles without com-
mon edges. The union of two graphs

Gy =(X,U;) and G,=(X,, U,)
is defined to be
GIUGZ=(X1UX2, UIUUz).

In the solution of Problem 6.3, it was shown that d(x)>2 for every vertex x
implies the existence of an elementary cycle C, in G. By suppressing the edges
of the cycle C,; one obtains a spanning graph of G which may contain some
isolated vertices. After suppressing the isolated vertices one obtains a spanning
subgraph G, of G whose vertices have even degrees and which does not contain
isolated vertices. In fact, by suppressing the edges of the cycle C, some vertices
of G have their degree reduced by 2. One can write

G=C1U61,

where G, has at least three edges less than G. G has all vertex degrees even and
lacks isolated vertices.

By continuing this procedure the edges of G, are eventually exhausted and
one finally obtains a single cycle C,,thatis, G=C, u - U C,such that C,...,C,
do not have an edge pairwise in common.

Now let G be a graph all of whose vertices have even degree. Excluding
isolated vertices, it has been shown that G can be expressed as the union of
elementary cycles C,, ..., C, which do not contain an edge pairwise in com-
mon. By selecting a sense for traversing each cycle C,, one directs the edges of
the cycle in the sense of their traversal. Thus the indegree and the outdegree of
every vertex on the cycle C, increase by one. Finally, after all the edges of the
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cycles C, have been directed forp=1, ..., k, one obtains a directed graph which
satisfies the given conditions.

7.6 If the graph G has an Eulerian cycle, then it follows that G is connected
and has vertices of even degrees, since each traversal of a vertex uses two edges.
Conversely, if G is connected and has even degrees, then by the preceding
problem its edges can be directed so as to obtain a directed graph which satisfies
d*(x)=d"(x) for every vertex x. It follows {rom Problem 7.3 that the digraph
so obtained has an Eulerian circuit, which corresponds to an Eulerian cycle
in the graph G.

Suppose that G is connected and has 2k vertices of odd degree (k>1). Let
G, be the graph obtained from G by adding a new vertex which is joined by
edges to all the 2k vertices of odd degree in G. It follows that G, is connected
and has even degrees, and thus has an Eulerian cycle. After suppressing the
additional vertex and the 2k edges incident with it. the Eulerian cycle decom-
poses into k walks which are disjoint with respect to their edges, do not use the
same edge twice, and cover all the edges of G.

It can be seen that the sum of the degrees of the vertices of the graph is even,
and hence the number of vertices of odd degree is also even.

7.7 Let K* denote the complete directed graph with vertex set X of cardi-
nality n and arc set of the form {(x, y)|x, y € X and x+#y}. It follows that the
graph K * has n(n— 1) arcs and the set of arcs of the graph G is the complement
of the set of arcs of the graph G with respect to the set of arcs of K ¥. The number
of Hamiltonian paths of K} is equal to n!, since there is a bijection from the
set of Hamiltonian paths of K ¥ onto the set of permutations of X. Let uy, ..., uy,
denote the arcs of the graph G, and let A4, denote the set of Hamiltonian paths
of K * which contain the arc u;.

One can use the Principle of Inclusion and Exclusion (Problem 2.2) to obtain

WG =nl—|A;0 - UA,

m
=nl+ 3y (=17 )y |4, 0 A (1)
p=1 1<y < - <ipsm
The term |4, N - N A;,| represents the number of Hamiltonian paths of K}
which contain the arcs u;, ... u;,. This term is nonzero only in the case ol arcs
U, ..., 4, which form elementary paths which are pairwise disjoint with
respect to vertices. In this last case suppose that there exist r elementary paths
which contain py, ps..... p, vertices respectively. The number of connected
components of the spanning subgraph of K} generated by the arcs ;... U,
will be equal to

r+n~(py+ - +pi=n—p,

since the number of arcs satisfies p=(p, =1+ +{p.=l)=py+ = +p,—1.
Every Hamiltonian path which passes through the arcs u,...., u;, defines a
permutation of these n — p components and conversely, and this correspondence
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is bijective. Thus if the arcs u;,, ..., u;, form elementary paths without common
vertices, then

|4, A Ay [=(n—p)!.

Finally, the numbers |4, -+ " 4; l are equal to 1 if and only if p=n—1
and the arcs w;,, . .., 4; form a Hamlltoman path in the graph G. Otherwise
these numbers are even _

By using (1) one can conclude that h(G)=h(G) (mod 2).

Let G be a graph, and consider the complete graph K, which has (3) edges

and n!/2 Hamiltonian walks. Denote by u,,...,u, the edges of the graph G,
and by A, the set of Hamiltonian walks of K, which contain the edge u;.

A formula analogous to (1) for h(G) can be obtained immediately by replacing
n! with n!/2, which is even for every n> 4.

One can also show that

(n=p)!
2 ’
if the edges u;,, ..., u;, form g elementary walks without common vertices. The
right-hand side is equal to zero otherwise. In fact, if one considers the n—p
connected components reduced to a single point, then one can form
(n=p)!
2

Hamiltonian walks, but each walk L from among the g elementary walks of the
form

|4, o A=

L=[x,...,%,]

can be inserted in each of the (n—p)!/2 Hamiltonian walks in two ways. One
can choose the form [x,...,x,] or [xp, ..., x1]. This results in distinct Hamil-
tonian walks which belong to the set 4; n -+ N A4,,

Thus |A N4l is equal to U if p=n— v and q—l (in other words
Uy, .- ,form a Hamlltoman walk in the graph G) and is even otherwise.
In view of the fact that n>4, one can conclude that h(G)=h(G) (mod 2).

7.8 It can be shown that if the orientation of a unique arc u={(q, b) of the
tournament G is inverted, then a tournament G, is obtained such that A(G,)=
h{G). Let G, be the graph obtained from G by suppressing the arc 4, and let G,
be the graph obtained from G by adding the arc (b, a) with the same endpoints,
but the opposite orientation to w.

Since G, is obtained from G, by changing the direction of all its arcs, it
follows that

h(Gy)=h(G3)
The results of the preceding problem then imply that
hG,)=h(G,) (mod 2).
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Let h3(a, b), ha(b, a), and h4(0) denote respectively the number of Hamiltonian
paths of G which use the arc (a, b), the arc (b, a), or neither of these two arcs. Then

h3(0)=h(G2)=h(G3)=h4(0) +hy(a, b)+ h(b, a),
from which one can conclude that h5(a, b)=h4(b, a) modulo 2. Hence
h(G) = h3(0) + hs(a, b)=h3(0)+ hs(b, a)=h(G,).

Now let G be an arbitrary tournament. According to Problem 9.5, G contains
a Hamiltonianpath;say (x,, x,,..., X,). By changing the direction of some arcs,
it is possible to insure that the resulting tournament contains only arcs of the
form (x;, x;) with i<j, i.e, it becomes a transitive tournament with a unique
Hamiltonian path.

It has been shown that if the direction of an arc is changed, the parity of the
number of Hamiltonian paths remains constant. This observation implies that
h(G)=1(mod 2). [L. Rédei, Acta Litt. Szeged, 7 (1934), 39-43.]

7.9 Let L be a longest elementary walk which begins at a vertex x, of the
graph G:

L=[xq,..., %]

It follows that the vertex x, is adjacent to x, -, and to the other d(x;)— 1 vertices
which belong to the walk L, since otherwise L could be extended to a longer walk.
Suppose that x, is adjacent to a vertex x; such that 1<j<k—2. The walk

Li=[X0, Xty eesXjy Xiy Xkmgyevvs Xja1]

is likewise a longest elementary walk which begins at x,. The walk L, will be
called a transformation of L. If L, is a transformation of L, then L is also a
transformation of L,. There are exactly d(x,)—1 transformations if x, is a ter-
minal vertex of L.

Let Y be the set of vertices of even degree in G, and let x, be an arbitrary
vertex in G. It will be shown that there exists an even number of longest el-
ementary walks L which begin at x, and have their last vertex in Y.

In order to prove this, let H be the graph defined as follows: The vertex set
of H is the set of longest elementary walks which originate at x, in the graph G.
Two vertices of H which correspond to two walks L and L, are adjacent if and
only if L, is a transformation of L,.

The degree of a vertex of H which corresponds to the walk L=[x,,..., X]
is d(x,)—1. It follows that the set of longest elementary walks which originate
at x, and terminate at a vertex of Y corresponds to the set of vertices of odd
degree of the graph H. The number of vertices of odd degree is even for all
graphs. This observation completes thé proof of the property previously stated.

One can now prove that there exist an even number of Hamiltonian cycles
which use a given edge [x,, ¥] in a graph G with all vertices of odd degree. To
this end, consider the graph G, obtained {rom G by suppressing the edge [ x,, ]
In G, only the vertices x, and y have even degrees. Thus, by applying the pre-
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vious property, it is found that there exist an even number of longest elementary
walks which have endpoints x, and y. It follows that G has no Hamiltonian
cycles which contain the edge [ x,, ] (and thus an even number of such cycles)
or else contains a positive even number of them. In fact, suppose that G contains
a Hamiltonian cycle which passes through the edge [x,, ¥]. One can then con-
clude that all maximal elementary walks with endpoints x, and y are Hamilton-
ian walks.

By the property just demonstrated, the number of these walks is even. But
each of them generates, when taken together with the edge [x,, y], a Hamil-
tonian cycle which satisfies the given condition. [A. G. Thomason, Annals of
Discrete Math., 3 (1978), 259-268.]

7.10 First let G, be a spanning graph of G of the form G, =(X, V) which
has all its vertices of even degree, and let C be an elementary cycle of G with
edge set W. It follows that the spanning graph G, =(X, V 2 W) also has all of
its vertices of even degree. {4 & B is the symmetric difference of A and B.) In
fact, if the cycle C does not pass through the vertex x, then the degree of x in
G, is even.

Suppose that (u, x) € W, (x, v) e W. If:

(1Y (u, x) €V, (x, v) ¢V, then dg,(x) =dg,(x)+2:
(2) ux)eV ix,v)gV or(ux)¢V,(x, v)eV,then dg,x)=dg,(x);
(3) (u,x)eV,(x,v) eV, thends,ix)=dg,(x)—2 for every x € V.

The property will be established by induction on the number m. Since G is
connected, it follows that m>=n—1.1f m=n—1, then G is a tree. The number of
spanning trees of G of even degree is in this case equal to 2""!~"*! =1, since
the unique spanning graph with this property is (X, &).

In fact, suppose that there exists a spanning graph G, of G of the [orm (X, V)
with V # ¥ and all vertices of even degree. It has been seen in the solution to
Problem 7.5 that by suppressing the isolated vertices of G, the resulting graph
can be expressed as a union of cycles without common vertices. This implies
that G contains cycles, which contradicts the fact that G is a tree.

Suppose now that the property is true for all connected graphs with n vertices
and at most p edges (p=n—1). Let G be a connected graph with n vertices and
p+1 edges. If by suppressing an arbitrary edge of the graph G, it becomes dis-
connected, then G is a tree and p+ 1=n—1, which contradicts the inequality
p=n—1. It follows that G contains an edge u whose elimination produces a
connected graph G, with p edges. The spanning graphs of even degree of G
which do not contain the edge u coincide with the spanning graphs of even
degree of G,, and by the induction hypothesis their number is equal to 27 ~"*1.

It will now be shown that G contains the same number of spanning graphs
of even degree which contain the edge u. Since G, is connected, it follows that
there exists an elementary walk which joins the endpoints of the edge u. This
walk, together with the edge u, forms an elementary cycle C in G which contains
theedge u. Let G, =(X, U,) be a spanning graph of G of even degree. It has been
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seen that G, =(X, U, & W) has even degree, where W is the set of edges of the
cycle C. Also, if G, contains the edge u, then since u e W, it follows that G, does
not contain the edge u and hence is a spanning tree of even degree of G,. The
correspondence f which associates G, to G, is injective. Since

(A6B)6B=A

for every two sets A and B, it follows that f is also an involution, that is,
Sf(G)=G;.

It follows that for every spanning graph G, of G, of even degree there exists a
spanning graph G, = f(G,) of even degree of G which contains u and is such
that G, = f(G,). The mapping f is therefore surjective and hence bijective. Thus
the number of spanning graphs of evendegree of Gisequal to 27 ™"+ 1 2P """ 1 =
2w+ B=r1 This completes the proof by induction of the property.

7.11 The property will be proved by induction on the number n of vertices
of the graph G. For n=1let X, ={x,} and X,=£%, and for n=2 let X, = {x,}
and X ,={x,}. Suppose that the property is true for all graphs with at most n
vertices, and let G be a graph with n+1 vertices.

If all the vertices of G have even degree, then let X, = X and X, =£&. Other-
wise let a be a vertex of odd degree in G, and denote by A the set of vertices in
G adjacent to a. Define the graph G, as having the vertex set Y =X \{a}. The
pair [x, y]is anedge in G, ifand only if x, y € A and [x, »] is not an edge of the
graph G, or at least one of the vertices x and y does not belong to the set 4 and
[x, y]is an edge of the graph G. By the induction hypothesis there is a partition
Y=Y,uY,suchthat Y, and Y, both induce subgraphs of G, of even degree.
But

|[ANY,|+|4AnY,|=|4|=1(mod 2),

so that one can suppose, {or example, that [AnY | is even and |4 Y| is odd.
Let

Zl=Y1U{a}, ZZ=Y2'

We show that Z, and Z, induce subgraphs of even degree of G.

Let x be a vertex in Z,. If x ¢ A and x #a, then its degree dz,(x) in the sub-
graph of G induced by Z, is even, by the definition of an edge in the graph G,.
If x =g, then its degree dz (a)=|A N Y|, which has been assumed to be an even
number. Let x € A: denote by d,(x) the degree of x in the subgraph of G, in-
duced by Y, and by d,(x) the degree of x in the subgraph of G, induced by
Y, nA. Further suppose that di(x) is the degree of x in the subgraph of G
induced by Y, nA. It follows from the definition of the graph G, that x € 4
is adjacent to v € Y, n A in the graph G if and only if x is not adjacent to y in
the graph G, and hence

dy(x)=|Y, 0 Al = 1= dy(x). 5
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On the other hand, it also follows from the definition of G, that
dz,(x)=d,(x) = dy(x)+ds(x) + 1. )

The last term is | because x € A is adjacent to a € Z, in the graph G.
From (1) and (2) it follows that

dz (X)=d;(x)=dy(x)+ {|Y, nA| = 1 —dy{x)} + 1
= d,(x) = 2d3(0)+ Y, A Al.

and in this sum each term is even,
If xeZ,, it can be shown analogously that if x ¢ A then dgz,(x) is even. If
X € A, then

dz,(x)=d(x) — ds(x) + dg(x)

where d,(x) is the degree of x in the subgraph of G, induced by Y,=2Z,. The
number ds(x) is the degree of x in the subgraph of G, induced by Y,n A4, and
de(x) 1s the degree of x in the subgraph of G induced by Y, n A. A similar argu-
ment shows that

de(x)=]Y ;M A| =1 —ds(x),
which implies the equation
dz,(X)=da(x)—2ds(x)+(|Y 3~ A] = 1).

This number is always even, since d4(x) is even by the induction hypothesis and
|Y,nAlis odd. The property is thus found to be true for every n.
It will now be shown that there exists a partition

X=X‘UX2

such that the degrees of the vertices of the subgraph generated by X, are even
and the degrees of the vertices of the subgraph induced by X, are odd. To this
end add to the graph G a new vertex y, which is adjacent to all the vertices of X.
Let G, be the graph thus obtained. By the previous result, there exists a partition
Y, uY, of the set of vertices X u{y} where Y, and Y, induce subgraphs of
even degree in G,. If, for example, y € Y,, then by denoting X, =Y, and
X,=Y,\{y} one obtains the desired partition of the vertex set of G. [W. K.
Chen, SIAM J. Appl. Math., 20 (1971), 526-529.]

7.12  Ttisclear that if C contains only nonempty subsets, then C, = Cu {&F}
satisfies the given condition, and hence one can assume that &7 € C.

It follows that C+#{X}, since otherwise there exists a proper subset Y = X
which has elements in common with X, and hence with an odd number of sub-
sets from C. Thus there exists a subset 4 in C such that |4|=a is minimum and
az 1. Because a<n—1, it follows that X \A is a proper subset of X, and X \ A4
intersects all sets of C but does not intersect A. By the hypothesis [C|—1 is an
even number, and hence C contains an odd number of subsets of X,
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Ifx € X and {x} ¢ C, it follows that X \{x] intersects all sets in C, and hence
an odd number of sets, which contradicts the hypothesis. It follows that.C
contains all one-element subsets of X. Suppose that every subset B X such
that 1<|B|<k<n has the property BeC. Let A= X be such that |4|=k. If
A ¢ C, one can conclude that X \A4 intersects all but 24' —2=|P(4)\{4, &}|
subsets from C.

Since k=1, it follows that 24! = 2=2*—~ 2 =0 (mod 2), and hence X \ 4 inter-
sects an odd number of subsets from C, which contradicts the hypothesis. This
implies that A € C. It has thus been proved by induction that every subset
Ac X satisfying 1<|4|<n—1 belongs to C.

Suppose that X ¢ C. Then |C|=2"—2=0(mod 2), which is a contradiction.
It follows that C=P(X)\{&¥} and C, = P(X) are the solutions of the problem.
since both satisfy the condition in the statement of the problem.

In fact,if Y= X and |Y|=k, 1<k<n—1, then Y intersects 2"— 2" "% subsets
in both collections C and C,, and this number is even. [A. Adelberg. Problem
E 2887, American Mathematical Monthly, 88(5) (1981), 349.]

CHAPTER 8

8.1 Suppose that G is not connected, and let C; be a component which
does not contain the vertex x,. Let |C,|=k, and let x; ... ., x;, be vertices which
it contains, where

I1<iy < <j<n.

The component which contains x, also contains all vertices adjacent to x,,
and therefore it contains at least d,+ 1 vertices. It follows that

k=|C,|<n—(dy+1).

Since k<, one can show that d,<d;, <k —1, so that the vertices adjacent to
x;, are all found in the component C,. Thisis a contradiction, since by hypothesis
k<n—d,—1 implies that d, =k, and the property is therefore established.

8.2 It will first be shown that G contains a spanning graph A4 which is a
tree. If G does not contain a cycle, then G itsel{ is a tree and one can take A =G.
Otherwise G contains at least one cycle C,.

Now suppress an arbitrary edge u, of the cycle C,. The result is a spanning
graph G, of G. If G, does not contain a cycle, one can take A =G, since in this
case G, is connected and does not contain a cycle and is hence a tree. Otherwise
suppress an edge u, of a cycle C, of G, and so on. This process cannot continue
indefinitely, since G contains at most (3) edges. Finally one obtains a connected
graph G, without cycles, and A is defined to be equal to G,.

It has been seen that the tree A has at least one vertex x; of degree 1 (see the
solution of Problem 6.3). If k=n then choose H=G. Otherwise suppress 'the
vertex x, and the edge incident to x, in the tree A. This produces a new tree A,
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nce it follows immediately that A, is connected and contains no cycles. Repeat
1is process so that the vertices x;, X,,..., X, are eliminated. The result is a
ee A,_, with k vertices. The subgraph H is defined to be the subgraph induced
y the k vertices of the tree A,_,. The graph H is connected, since it contains
te connected spanning tree A,_, with the same vertex set.

8.3 Denote the number of edges and vertices of the p components by
t».-.»mp and ny, ..., n, respectively. Since each component is in fact a con-
:cted graph, it follows that

mzn—1 (1)
ri=1,...,p. Equality holds only for components which are trees.
By adding inequalities (1) for i=1,..., p, one finds that m>n—p, since no

/0 connected components have a common vertex and hence have no common
lge.

8.4 Suppose that there exist two elementary walks of maximal length L,
d L, which have no common vertex. Since G is connected, there are two
rtices x, € L, and x, € L, which are joined by a walk Q which has in common
th L, and L, only the endpoints x; and x,. The vertex x; divides the walk
into two subwalks L;, and L;, (one of which may possibly be empty) for
L2

Let [(L) be the length of the walk L, that is, the number of its edges. One can
sume that I(L; ) > {(L;y) and [(L,,)2(L,,). It follows that

Ly, Q, Ly )> ULy )+ 1Ly )220y )2 (L )+ H(La,) =1(L,).

d hence the walk (L,,, Q, L,,) is longer than L,, which contradicts the
pothesis.

Suppose that G is a tree, and let L, L, be two walks of maximal length in G.
ese walks have at least one vertex in common. In fact the common vertices
L, and L, form a walk Q {which may reduce 10 a single vertex). Thus vertices
L,uL, generate a subgraph of the following form: There exist two walks
, L3 which originate at one terminal vertex of Q and two walks L] and L}
ich originate at the other terminal vertex of Q, such that

Ly=(L},0,LY) and L,=(Ly,Q, LY.

‘ollows that I(L})=I(L%), since if, for example, I(L})>I(L}), then the walk
. 0, L3) would be longer than L,, which would contradict the hypothesis.

In the same way it is seen that [(L7)=1(L}).

Since (L, L5) is a walk, its length is at most equal to the length of a maximal

k, and hence 2l(L' )< I(L,) or I(L})< $I(L,); analogously, [(L1)<5I(L,). Thus

median point or the two adjacent median points of the walk L, belong to

walk Q and hence to L,. Since L, can be chosen arbitrarily, it follows that

median point(s) of L, [depending on whether /(L) is even or odd] belongs

he intersection of all the maximal walks of the tree G.

f the connected graph G contains cycles, this property does not hold.
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8.5 In order to prove the necessity. let G be a bipartite graph which has a
bipartition X =A uB. Every elementary cycle of G has the form

[a;, by, a3, by, ... 044, by, a,]

where a; € A and b, € B for 1 i< k. The length of this cycle is 2k, and thus an
even number.

Now suppose that every elementary cycle of G has an even number of vertices.
Color the vertices of G with two colors so that each two vertices joined by an
edge have different colors. The coloring is performed as follows: Start with a
vertex x, which is colored a. The vertices adjacent to x, are colored b. Then the
vertices adjacent to the vertices which are colored b will be colored a, and so
on. In this way no vertex in the connected component which contains x, will be
colored once with a and once with b, which would be a contradiction.

In fact, suppose that the vertex z is colored aina walk Ly =[xy, ¥(, ...\ Jk» 2]
of even length and is colored b in a walk L, =[x, ty,..., t z] of odd length.
If L, and L, have only endpoints in common. then the union of the edges of L,
and L, forms an elementary cycle with an odd number of edges, which contra-
dicts the hypothesis. Otherwise L; and L, have a given number of vertices in
common, which implies that the union of the edges of L, and L, generates a
spanning subgraph of G consisting of walks and cycles. It will be shown by
induction on the number of edges of L, that the fact that G does not contain odd
elementary cycles implies that the lengths of L, and L, must have the same
parity.

IfI(L,)=1 and I(L,) is even, then the elementary cycle consisting of the edge
of L, and the edges of L, is odd, which contradicts the hypothesis. It follows
that /(L,) is odd. Suppose that the property is true for every two walks L, and L,
of the indicated form such that /(L)< t,and let L, and L, be two walks with the
same endpoints such that [(L,)=t+1.

It has been assumed that L, and L, also have a vertex y in common other
than x, and z. Let L} and L', be subwalks of L, and L, respectively contained
between x; and y. Similarly let L}, L; be subwalks of L, and L, which are
located between y and z. Since I(L') <, it follows from the induction hypothesis
that /(L}) and /(L%) have the same parity. If x, is replaced by y, then since
I(L7)<t, one can conclude similarly that [(L}) and {(L%) have the same parity.
Since I(L,)=I(L})+I(L]) and I(L,)=I(L5)+ (L3}, it follows that /(L) and /(L,)
have the same parity. Thus the vertices of the connected component which
contains x; can be colored in this way by two colors. By continuing this process
for all connected components of G one obtains a coloring by two colors of the
vertices of G such that each two adjacent vertices have different colors. Tt
follows that G is bipartite by taking the set A4 to be the set of vertices colored a
and the set B to be the set of those vertices colored by b.

It also follows that every graph G without odd cycles, which has at least one
edge. is bichromatic, that is, ¥(G)=2.

8.6 The vertex of degree 9 must be adjacent to all the other vertices of the
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graph and hence adjacent to the vertices of degree 1. It follows that the vertex
of degree 7 can be adjacent to only 9—3=6 vertices, which establishes a con-
tradiction. Thus there does not exist a graph with the desired property.

8.7 The necessity of the condition is immediate, since d, + * -+ +d,, is twice
the number of edges and hence an even number. Also d,<d;+ * - +d,_,
since every edge which is incident to x,, is also incident to one of the remaining
vertices [d,=d(x,)].

The sufficiency will be proven by inductionond,; + - -+ +d,. Ifd, + -+ +d,

=2, it follows that d,= - - =d,_,=0 and d,-, =d,=1, and thus the desired
graph contains one edge and n— 2 isolated vertices.
Suppose the property is true for all sequences of numbers dy,....d, which

satisfy (1) and (2) and also satisfy d; + -+ +d,<2d (d>2). Now suppose that
d+ -+ +d,=2d+2 and conditions (1) and (2) are satisfied. Two cases will be
considered.

(a) Suppose that d,-, <d,. It then follows that d,— 1 is the largest number
in the sequence d;,d;,...,dy-5,d,-;—1,d,—1 and it remains to show that:

() dy+ +dys+(dy-;—1)+(d,— 1)=0(mod 2);
4 di+ - +dy_y+d,_ —12d,—1.

These two properties follow immediately from (1) and (2).
(b) Now let d,_,=d,. It follows that d,_,=d,. Condition (3) is again
satisfied, and condition (2) becomes:

5) di+  +dpoztldp- 1 —D+ld, = 1)2dp-s,

since dy-,=max(d,...,dy~2,ds-1—1,d,—1). However, condition (5) also
holds. Infactif d,-, =1, condition (1) implies that the left-hand side of inequality
(5)is odd and thus is at least equal to 1, since in thiscase d, ., =d,=1.1{d,_, 22,
thend,_,—1+d,—1>d,_, because d,.,=d,-, =d,.

It follows that the numbers d,,...,d,-,,d,—1—1,d,—1 whose sum is 2d
satisfy conditions (1) and (2), and by the induction hypothesis there is a multi-
graph with n vertices whose degrees are equal to the given sequence. By joining
the vertices of degrees d,_, —1 and d,—1 by a new edge one obtains a graph
whose degrees are exactly d,,...,d,.

8.8 Suppose that there exists a regular graph G of degree k with n vertices.
Then kn=2m, where m is the number of edges of G and the degree k cannot be
greater than n— 1. Thus two necessary conditions have been found which the
number n must satisfy:

(a) nk=0(mod 2);
(b)y n=zk+1.
It will be shown that if (a) and (b) are satisfied, tHen there exists a regular graph

of degree k with n vertices.
Two cases will be considered:
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(1) k is even. Consider a regular polygon with »n vertices. Join by an edge
neighboring vertices, vertices which are two apart, ..., vertices which are k/2
apart. Since k< n, it follows that k/2 < n/2, and thus by construction each vertex
has degree k and there are no multiple edges (see Figure 8.2).

(2) k is odd. It follows from condition (a) that n is even. The regular graph
of degree k — 1 with n vertices can be drawn as in case (1). Condition (b) assures
that

k=1 _n=2 n 1
2 52 27
and thus the endpoints of the longest diagonals of the polygon are not joined
by an edge. Thus by joining diametrical vertices of the polygon by an edge, each
vertex will have degree k, and hence a regular graph of degree k with n vertices
1s obtained.

8.9 Let x be a vertex of the graph G which is adjacent to the vertices
Xy,...,%Xn in G. Since G does not contain a complete subgraph with three
vertices, it follows that the vertices x,...., x,, are not pairwise adjacent. It is
also the case that every two vertices x;, x; with 1<, j<m and i#/ are adjacent
to a vertex z#x. Hence z and x are not adjacent, since G does not contain a
triangle.

The mapping which associates with every pair {x;, x;} the vertex z which is
not adjacent to x is injective. In fact, if such a z corresponds to two different
pairs, then there are at least three vertices adjacent to both z and x, which con-
tradicts the hypothesis. Since the number of pairs {x;, x;} is equal to (7), it
follows that the number of vertices which are not adjacent to x is greater than or
equal to (7).

But the hypothesis implies that for each vertex z which is not adjacent to x
there are two vertices from x,, .. ., x,, which are adjacent to z and to x. Call

Fig. 8.2
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these vertices x, and x,. The mapping which associates to each vertex z which
is nonadjacent to x the pair of vertices {x,, x,} is also injective.

Suppose that the same pair {x,, x,; corresponds to two vertices z, #2z,. It
follows that there exist at least three vertices x, z,. z, adjacent to x, and x;,
which again contradicts the hypothesis.

Thus the number of vertices z which are not adjacent to x is at most equal to
{73). From the two opposite inequalities it follows that the number of vertices
which are not adjacent to x is equal to (3), and hence

n=1+m+ "
= 5 )

_ -148n—7
—

This implies that

it follows that 8n—7=k? and thus n=(k?+7)/8, which implies that k=2p+1,
n=(”:')+ 1, and m=p. Thus G is a regular graph of degree p. For p=2 one
hasn=4and G=K, ,.

A necessary condition for the existence of this graph is that np is an even
number, since it represents twice the number of edges in the graph.

8.10 Carry out the following construction: Suppose that a regular graph
Gir, g) of degree r and girth g has been constructed. Consider also a graph
G(r', g—1), where r is equal to the number of vertices of the graph G(r, g).
Replace each vertex of the graph G(r', g— 1) by r' vertices of degree 1 (see Figure
8.2).

Now identify these r’ vertices with the vertices of a copy of the graph G(r, g).
In Figure 8.3 the graph G(r, g) is Cs, which is obtained for r=2 and g=3.
Denote by G, the graph obtained in this way. The graph G, is regular of degree
r+1 by construction. It will now be shown that g(G,)=g. Consider an elemen-
tary cycle of minimal length in a copy of the graph G(r, g). Such a cycle has

Fig. 8.3
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length g, and hence g(G,)<g. Since every other elementary cycle in a copy of
G(r, g) haslength greater than or equal to g, onecan let C be an elementary cycle
of minimal length (=3s), which is not contained in any copy of the graph G(r, g).
Replace each copy of G(r, g) by a single vertex while preserving the edges inci-
dent to the vertices in G{r, g). In this way the graph G, is transformed into the
graph G(r', g—1). The cycle C is transformed into a nonempty spanning sub-
graph of G(r, g— 1) with all its vertices of even degree. This is because the cycle
C has a number of entries equal to the number of exits of each copy of G(r, g) if
one fixes a sense of traversal for the cycle C.

Every nonempty spanning subgraph all of whose vertices have even degrees
contains an elementary cycle. In fact, if this were not the case, then a connected
component of this subgraph would have the degrees of its vertices even and
would not contain a cycle. It would thus be a tree. But this contradicts the fact
that every tree has at least two vertices of degree one, that is, two vertices of odd
degree.

Let C, be the elementary cycle contained in the image of the cycle C obtained
by contracting each copy of G(r, g) to a single vertex. It can also be seen that C
contains at least one edge from a copy of G(r, g) by the construction of the graph
G,. Thus C, has at most s—1 edges. One can deduce from this that

s=121(C))=2g-1,

since the graph G(r'. g— 1), which contains the cycle C,, has girth equal to g — 1.

The fact that every cycle of G, has length at least equal to g implies that
szgorG,=G(r+1,qg).

The existence of the graph G(r, 3) for every r>2 is demonstrated by con-
sidering the complete graph K, . ,. Examples of graphs of the form G(2, g) where
g=?2 are given by elementary cycles with g vertices.

By using the construction just described one can prove the existence of the
graphs G(3,4), G(4,4), G(5,4),. .., G(r,4) {or every r 2 2; G(3, 5). G4, 5), G(5, 5),...,
G(r, 5) for every r>2; and so on. Thus one can show by induction that there
exists a graph G(r, g) for every r=2 and g= 3.

8.11 Suppose that g is odd. Let x be an arbitrary vertex of the graph G,
and denote by S; the set of vertices which are found at a distance i from x, {or

g—1
2

For each vertex z in the set §; there is exactly one edge which joins it to a
vertex in S;_,. In fact, there exists at least one edge by the definition of the sets
S,. The existence of two such edges would lead to the existence of two walks
from z to x, each of length i. But these form a cycle, and hence there is an elemen-
tary cycle of length less than g, and this contradicts the hypothesis. Since the
degree of each vertex is equal to r. it can be seen that

i=0,1,...,

1w 1|=(r=1)|S;|  for i=1,...,
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iis then leads to the fact that
n=|Sol+[Si+ -+ +Sig- 1yl
=l+r+rir=1)+ - +r(r=1)" 92

Suppose now that g is even, and consider two adjacent vertices x and y.
1 S; be the set of vertices at a distance i from the set {x, y} fori=1,...,¢/2-1.
follows that |S,|=2(r—1) and |S;,|=(r—1)|S;| for i=1....,9/2—2. From
is one can conclude that

n=|Sol+[Si4+  +[Syaoy|=242r=1)+ - +2(r=1)727 1,

8.12 (a) Let x; be a vertex of a regular graph G of degree 3 and girth
5)=4. and suppose that x,, x3, x4 are adjacent to x,. The vertices x,. x5, X4
2 not pairwise adjacent, since in that case one would have g(G)=3. Denote
Xs, Xg the vertices which, together with x,, are adjacent to x,. It follows that
2 number of vertices in G is at least equal to 6. Since G must be regular of
gree 3, the vertices x; and x, are adjacent to x5 and xg, that is, G=K3 ;.
(by Let[x,,x,,...,Xxs,X;] be a shortest elementary cycle of the graph G.
:note by y; the third vertex adjacent to x; for i=1,..., 5.

The vertices y; are pairwise distinct, and are all different from the vertices
, since otherwise one would have g(G)< 4. It follows that the graph G has at
1st 10 vertices. If G has exactly 10 vertices then the only vertices at distance 4
m y, are ¥ and y, and hence y, must be adjacent to y; and y,, in addition
x,, because otherwise g(G)< 4. Similarly, it is the case that y, is adjacent to
and ys, y; is adjacent to y,; and ys, y, is adjacent to y, and y,, and y;s is
jacent to y, and y;. In this way one obtains the Petersen graph (Figure 8.4).

8.13 Suppose that for every vertex x the subgraph G, is not connected.
tL=[x{,...,Xx,] be an elementary walk of maximal length in the graph G.
"hypothesis G, is not connected. Denote by C, a component of this subgraph
tich does not contain the walk [x,,..., Xn]-

Fig. 8.4
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Since G is connected, there is an edge which joins a vertex y € C, with the
vertex x,. This can be seen because the vertices of C, cannot be joined to the
vertices of the other connected components of the subgraph G.,. It follows that
y€{X5,..., X, and thus the walk

[y’xlv---|xm]

is an elementary walk which is longer than L, which contradicts the hypothesis
that L is an elementary walk of maximal length.

Thus there exists a vertex x for which the subgraph G, is connected. One can
also see that x may be any terminal vertex of a spanning tree of G.

If G is an elementary circuit, then by suppressing an arbitrary vertex one
obtains a subgraph which no longer is strongly connected, although G has this
property.

8.14 Suppose that G is strongly connected and has vertex set X. Let 4+,
a €A, and b € X\ A. It follows that there is a path in G of the form (a, ..., b).
Since a € A and b € A, there will exist at least one arc of this path of the form
(x,y) where x € 4 and y ¢ A.

It will now be shown that if for every nonempty set A there is at least one arc
of the form (x, y) with x € A and y ¢ A, then G is strongly connected.

Let a, b be two distinct vertices of G, and suppose that there is no path of the
form (a,...,b). Denote by A the set of vertices of G which are endpoints of
paths which originate at a. It follows that b ¢ A and there does not exist an arc
of the form (x, y) with x € A and y ¢ A. For otherwise every path of the form
(a,...,x), extended by the arc (x, y) would produce a path {rom « to y. But in
this case y € 4, which contradicts the hypothesis. Thus there does not exist
any arc of the form (x, y), and this again contradicts the hypothesis. It follows
that G is strongly connected.

Denote by G, the graph obtained from G by changing the direction of all the
arcs of G. It follows from the definition of strong connectedness that G is strongly
connected if and only if G, is strongly connected. It follows that G is strongly
connected if and only if for each nonempty subset of vertices A there exists at
least one arc of the form (y, x) where y ¢ A and x € A.

8.15 Suppose that G contains a circuit, and hence an elementary circuit.
Further assume that the following elementary circuit of G has a minimal number
of arcs:

C=(x1,X2,.--,Xk, xl)v

where the vertices x4, .. ., x, are pairwise distinct. The property is clear for k=3.

Suppose now that k2 4. Since G is complete and antisymmetric, there exists
an arc (x;, x,-1), and hence a circuit with three vertices (x;, X, 1, X, X;), which
contradicts the hypothesis k>4; or else there exists an arc (x, -, x;), in which
case one obtains a circuit which is shorter than C:

C1=(X1, x29--'1xk—1’ -xl);
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which contradicts the hypothesis that C contains a minimal number of arcs.
The property is thus established by contradiction.

8.16 There is a unique arc between each two vertices of a tournament T
with n vertices. It follows from this that r;+s;=n—1for i=1,..., n. Similarly
Sy ri=91=, Si=(3), since each sum represents the number of arcs of T and
each arc (x, y) contributes exactly 1 to each sum. Thus

=nn—172=2n-1) ¥ s+ Y st=7Y s
=1 (=1 i=1

8.17 Let x be a vertex of G with maximal outdegree, that is,
d*(x)=mz}x a* (1), (1
te

where X is the vertex set of the graph G. It will be shown that this vertex satisfies
the conditions of the statement of the problem.

Let y € X and y#x. If G does not contain the arc (x, y), then it must contain
(y, x). This follows from the fact that a tournament is complete. Suppose now
that the vertex y cannot be reached by a path of length 2 which originates at x.
Thus for every arc (x, z) there is an arc (y, 2), since otherwise there would exist
an arc (z, y) and hence a path of length 2 from x to z, namely (x, y, z), which is
contrary to the hypothesis.

Finally, for every arc which originates at x [of the form (x, z)], there is an
arc (y, z) which originates at y and is also an arc (y, x) which originates at y
and terminates at x.

1t follows that d *(y) > d*(x), and this contradicts (1). The vertex x which was
defined in (1) therefore satisfies the given condition.

8.18 The property will be established by induction on the number of vertices
of the graph G. If G consists of two isolated vertices, let S={x, y}. Otherwise
there is an arc (y, x) and S={y}.

Suppose that the property is true for all graphs with at most » vertices, and
take G to be a graph with n+ 1 vertices. Let x be a vertex of G, and denote by A
the set {z|(x, z) is an arc of the graph G}. Denote by G, the subgraph obtained
from G by suppressing the vertices of the set Au {x}. It follows from the induc-
tion hypothesis that G, contains a set of pairwise nonadjacent vertices S, with
the following property: Every vertex z ¢ S, can be reached by starting from a
vertex y € S, and traversing a path of G, of length at most 2. Two cases will
be studied.

(@) The vertices of §;u{x} are not pairwise adjacent. Let S=S, U{x}.
Every vertex zin G, such that z ¢ S, can be reached by starting at a vertex y € S|
and traversing a path of length at most 2. If z € 4, then there exists a path (x, z)
of length equal to 1.
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(b) There is a vertex z € S§; which is adjacent to x. Since z ¢ A4, it follows
that (z, x) is an arc in the graph G. Now let §=S,. If y is a vertex of G, and
y €S, then y can be reached by traversing a path of length at most 2 which
originates at a vertex in §,. If y € 4, there exists a path (z, x, y) of length two.
If y=x, it has been shown that there is an arc (z, x) where z € S, =S.

This completes the inductive proof of the property. [V. Chvatal, L. Lovasz,
Hypergraph Seminar, Lecture Notes in Math,, 411, Springer-Verlag, 1974,
p. 175.]

Since every tournament is complete, it follows that |S|=1. This provides
another proof of the previous problem.

8.19 The sequence of outdegrees of T written in increasing order will be
called the score sequence of T. It will first be shown that S:0,1,...,n—11s the
score sequence of a transitive tournament. Let T be a tournament with vertex
set V(T)={v,,...,v,} and arc set E(T)={(v;, vj)|1 <j<i<n}. It follows that
d*(v))=i~1 for i=1,...,n: hence S is the score sequence of the transitive
tournament T. Conversely, assume that T is a transitive tournament. It follows
that $:0, 1,...,n—1 is the score sequence of T. To show this, it suffices to prove
that no two vertices of T have the same outdegree. Suppose that u and v are
distinct vertices of T such that d*(u)=d*(v). Since T is a tournament, either
(u, v) or (v, u) is an arc of T, say the former. Let W be the set of vertices of T
adjacent from v; in this case d*(v)=|W|. Since (v, w) € E(T) for each w € W and
(u, v) € E(T), it follows that (u, w) € E(T) for each w e W, since T is transitive.
However, one then has d*(u)>1 +]W]= 1+4d™*(v), which is a contradiction.

8.20 It is clear that C(2)=1. since the vertices x, and x, are joined by an
edge if the graph is connected. For n>3 it must be shown that

n2®=Y k(” 2°39¢ (k).
=1 \k

Observe that 29 represents the number of graphs with vertex set X = {x,..., X, .
In any such graph it is possible to label an arbitrary vertex in n ways, and hence
n 2% is equal to the number of graphs with vertex set X in which one vertex is
labeled.

It will now be shown that the right-hand side of the formula represents the
same quantity. In order to do this consider a graph G with vertex set X which
contains a labeled vertex x;, where 1 <ign. The vertex x; belongs to a con-
nected component C of G. Let k be the number of vertices in C. It follows that
1 <k<nand the vertices of C are not joined by any edge to vertices in X \C.
The component C can be chosen in (;) ways, the labeled vertex in C can be
chosen in k ways, and the number of connected graphs with vertex set C is equal
to C(k). At the same time the number of graphs with vertex set X \C is equal
to 20"2,

Consider in turn k=1,..., n. One can see that in this way one generates all
the n 2%’ graphs with vertex set X which have a marked vertex, and this observa-
tion completes the proof.
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This recurrence relation yields the following values for C(n):

n=1 2 3 4 § 6 7

Cmy=1 1 4 38 728 26,704 1,866,256
8.21 Consider the 2 graphs with vertex set X ={x;,...,x,}. Let G, be
the set of graphs among them which have the following properties:

(1) x; and x; are not adjacent.
(2) Let x, be another vertex such that x; and x, are adjacent. Then
x, and x; are not adjacent.

Thus for k #1, j there are three possible ways of joining the vertices x;, x;, and x,.
1t follows that

(GU.]=3"‘22("52’ for every i#j.

The set of graphs with vertex set X and diameter at least 3 is U
hence

j<; G, and

U Gy
i<y

from which it follows that

im (M) 22 B2
o \2) 20 hee0\2/47 T

Thus almost all graphs with n vertices have diameter equal to 1 or 2 as n—co.
But there exists a unique graph with diameter equal to 1, namely K,. Thus
almost all graphs with n vertices have diameter equal to 2 as n— o0. From this
it follows that almost all graphs with n vertices are connected as n—- oc.

It can be shown similarly that almost all directed graphs with n vertices have
the property that for each two vertices x and y there is a path of length 1 or 2
from x to y as n— 0.

< z IGUI=(;) 3n—2 2(n;1)’
i<}

8.22 It follows immediately from the definition that this binary relation is
reflexive and symmetric on the set U. In order to prove the transitivity it will
be shown that if the edges u, and u, are found in the same elementary cycle C,
and if u, and u, are found on the same elementary cycle C,, then there is an
elementary cycle C4 which contains u; and uj,.

Traverse C, in both directions by starting at the endpoints of the edge us;
terminate at the first vertex which is found on the cycle C,. Let x and y be these
vertices on the cycle C, (see Figure 8.5). It can happen that x or y are endpoints
of uy. However x#y, since the edge u, is found on the part of the cycle C,
delimited by x and y and which does not contain u,. The cycle C, (which is
indicated by the heavy line in Figure 8.4} is obtained by taking the union of (1)
the elementary walk on the cycle C, which joins x and y and which contains the
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Fig. 8.5

edge u,, and (2) the elementary walk in C, which connects x and y and contains
the edge us.

8.23 It will be shown that (1)=>(3)=(2)=>(1).

In order to show that (1)=(3), let G be a 2-connected graph, and u and ¢
two edges which have the endpoint x in common. Let y and z be their endpoints,
which are different from x. Since G, is connected, it follows that there exists an
elementary walk which joins y and z in G,. This elementary walk, together with
the edges u and v, forms an elementary cycle in the graph G. The previous
problem now implies that every two edges with a common endpoint are equiv-
alent. Since G is connected, it follows that this equivalence relation has a single
equivalence class which consists of the edge set of the graph G. Thus every two
edges of the graph G lie on an elementary cycle. Also, the fact that G is con-
nected implies that G has no isolated vertices.

(3)=>(2): Let x, y be two distinct vertices of the graph G. By hypothesis G
has no isolated vertices, and thus there exist two distinct edges u and v which
are incident with x and y respectively. For otherwise there exists an edge [x, y],
and the vertices x and y are no longer adjacent with other vertices of G. If
n=3, this fact would imply that G has an isolated vertex, which contradicts the
hypothesis. If n4, then since G has no isolated vertices. the set of remaining
vertices contains at least one edge u. The edges [x, y] and u do not belong to
an elementary cycle, since d(x)=d(y)=1, and this contradicts the hypothesis.
Thus there exist two distinct edges v and v which are incident with x and y
respectively. In view of (3), there is an elementary cycle C which contains v and
v and hence x and y.

(2)=>(1): Since every two vertices of G belong to an elementary cycle, it follows
that there is an elementary walk which connects them, and thus G is connected.
Suppose now that G is not 2-connected and hence that there is a vertex x such
that G is not connected. Let g, b be two vertices which lie in different components
of the subgraph G,. Since each elementary walk between a and b in the graph
G passes through x, it follows that there does not exist an elementary cycle in
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G which contains the vertices a and b. This contradicts (2) and completes the
proof that G is 2-connected.

824 Let A=[aqg, ay,...,a,-y, ao) and B=[bg, by,...,b,—1, by] be two
elementary cycles of maximal length in the graph G. Suppose that these cycles
have at most one vertex in common, and let ao=b, be that common vertex.
Since G is 2-connected, it follows that there also exists an elementary walk
which does not pass through a4 and which has one endpoint in the set of vertices
{ay,...,a,_y} and the other endpoint in the set {b;,...,b,_;}. Let
Lap, xy,..., x¢, b,] be such a walk where k>0, p, g #0, and x; does not belong to
the cycles 4 or B for 1 <i<k. Suppose that p> q. One has therefore obtained an
elementary cycle [ag,...,ap, X1, ... Xk, by, ..., by, ap] which is longer than
A, which contradicts the hypothesis.

Now let A and B be cycles which have no vertex in common. Since G is 2-
connected, there exist two elementary walks without common vertices which
join a vertex of 4 and a vertex of B. There will be an elementary walk of length
greater than or equal to r/2 which is part of the cycle 4 and has as its endpoints
the endpoints of the two walks. An analogous result can be obtained for the
cycle B. The two parts of cycles 4 and B, together with the two elementary
walks which join a vertex in 4 and a vertex in B, form an elementary cycle
which is longer than A, and this again contradicts the hypothesis.

8.25 Let m(G) denote the number of edges in the graph G. It follows that

5 m(G,—x-y)=(" 2) m(Gy), ()
xEy 2
since on the left-hand side each edge u contributes 1 for each pair {x, y} of
vertices which are different from the endpoints of u. The fact that there exist
("3?) such pairs of vertices implies (1) for i=1, 2.

By hypothesis, for x#y, the graph G, —x —y is isomorphic to G,—x—y.
Thus they have the same number of edges, and hence (1) implies that m(G,)=
m(G,). Now consider the sum

Y. m(Gi=xo—)), (2

y¥xo
where x, is a fixed vertex. If u is an edge incident with x4, then its contribution
to the sum (2) is zero. Otherwise its contribution to this sum is equal to n—=3.
This corresponds to the case in which y is different from x, and from the end-
points of the edge w. Thus it follows that

(n=3)m(G,) - Z m(G—xog—y)=(n— 3)d(;‘(x0).

y¥xo
Since the left-hand side of this identity is independent of i, one can see that
dg,(xg)=dg,(xo) {or every vertex x.

In the same way one can show that

m(G)—m(G,—x — y)=dg(x)+dg(y) = adx, y). 3)
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Here o;(x, y)=0 if the vertices x and y are not adjacent in the graph G;, and
a,(x, yy=1if x and y are adjacent in G,. It follows from (3) that for every vertex
x#y one has a(x, y)=a,(x, y), that is, the graphs G, and G, coincide.

8.26 Let G be the graph with n? vertices which correspond to the squares
of a chessboard. Two vertices are considered to be adjacent if one can be
reached from the other by moving a knight. Since a knight always moves from a
black square to a white square or vice versa, it follows that this graph is bipartite.
One can conclude from Probiem 8.5 that this graph does not contain an elemen-
tary cycle with an odd number of vertices and hence there does not exist an
elementary cycle with n? vertices. It is therefore impossibie for a knight to visit
all the squares of the chessboard in the manner described.

8.27 The set M of perfect matchings of G, may be written as the union of
two pairwise disjoint sets:

M=M,UM,,

where M, is the set of the perfect matchings of G, that contain [y, «] and M,
is the set of perfect matchings containing [u, s] (see Figure 8.6). If a perfect
matching of G, contains [y, u], then it follows that it also contains [, s], [x, t],
and [v, 2], and hence [M,,|=K(n—2). Thus this is equal to the number of
perfect matchings of the graph obtained from G, by deleting both hexagons
o and f. If a matching belongs to M, then one can show that it contains the
edge [1, r], and hence |M 5| = K(n—1). This is the number of perfect matchings
of the graph obtained from G, by deleting the hexagon . Since K(1)=2, K(2)=3,
and K(n)=K(n—1)+ K(n—2) for n= 3, it follows that K(n)=F,., foranyn>1.
[M. Gordon, W. H. T. Davison, J. Chem. Phys., 20 (1952), 428-435.]

Fig. 8.6

8.28 As in Problem 6.9, one can show that for any three vertices x, y, zof a
tree d(x, y)+4d(y, z) +d(x, z)=0 (mod 2) holds, and for any four vertices x, y, z, t
of a tree the numbers d(x, y)+4(z, 1), d(x, z)+d(y, t). d(x, t)+d(y, z) are not all
distinct.

(a) Suppose that G satisfies the hypothesis and contains an odd cycle with
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2k +1 vertices. Let x, y, z be three distinct vertices on this cycle such that d(x, y)=
d(x, z) and d(y, z)=1. In this case

dx, y)+d(y, 2)+d(x, z)=2k+1=1 (mod 2),

which is a contradiction.
On the other hand, if G contains an even cycle with 2k vertices (k> 2), let
X, y, Z, t be four vertices on the cycle such that

dlx, y)=d(z.t)=1 and d(x, 2)=d(y, )=k~ 1.
Then
d(x, y)+d(z, )=2,  d(x,z)+d(y, t)=2k -2,
d(x, t)+d(y, z)=2k,

which is a contradiction. It is also clear that a cycle with four vertices is not
itself embeddable in a tree.

{(b) Let K, ;beastar with vertex set {g, b, ¢, d} and edge set {[a, d], [b, 4],
[e, d]}. Define the graph S(p) to be the graph obtained from K, ; by inserting
new vertices on the edges of K, 5 such that dg,(a, d) =ds, (b, d) =dglc, d) =p.
Suppose G is bipartite. Let S={x, y, z} be any set of three vertices of G. It will be
shown that S is isometrically embeddable in the tree S(d(G)—1), where d(G) is
the diameter of G. Consider the identity

d(x, y)+d(y, 2) +d(x, z2)=0 (mod 2).

First note that if there exists a subgraph spanned by shortest paths between the
vertices x, y, z which is a tree, then the equation follows from a previous result.
Otherwise, one can assume that the vertices are distributed as in Figure 8.7 and

d(x, y)=d(x, u)+d(u, v)+d(v, y),
d(x, z)=d(x, u)+dlu, w)+d(w, z),
d(y, z)=d(y, v) +d(v, w)+ d(w, 2).
It follows that
d{x, y)+d(y, z)+d(x, z)
=2d(x, u)+2d(y, v)+2d(z, w)+d(u, w)+d(w, v)+d(v, u)
=d(u, w)+d(w. v)+ d(v, u) (mod 2).

But this last sum is even, since it is the length of a cycle in a bipartite graph.
To complete the proof one must find vertices x', y', 2’ in S(d(G)— 1) such that if
dix’, d)=a, d(y', dy=b, d(z, d)=c, then a+b=ds(x, y), a+c=dglx, z), b+c=
dg(y, 2). Let a=0(x, y, 2) = dg(y, 2), b=0l(x, y, z) — d(x, 2), c=0(x, y, 2) — dg(x, y),
where o(x, y, z)={dg(x, y)+dg(x, z)+dg(y, z)}/2. This is the solution of the
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Fig. 8.7

system, and, for example, a={dg(x, y}+dg(x, 2)—~dg(y, 2)}/2<{24(G)—1}/2,
which implies that a<d(G)— L.

(c) Suppose that G is not bipartite. Then G contains an odd cycle with
2k+1 vertices and, as in the proof of (a), one can choose three vertices x, y, z
such that

d(x, y)+d(y, 2)+d(x, z)=1 (mod 2),
which contradicts (b).

One can also show that three vertices x, y, z of a graph G are isometrically
embeddable in a tree if and only if d(x, y)+d(y, z)+ d(x, z)=0(mod 2). [R. A.
Melter and 1. Tomescu, Ars Combinatoria, 12 (1981), 111-115.]

8.29 There is around trip by at least one A; which contains an odd number
of stops. For n=1 the statement is obvious, since one airline serves at least three
cities Cy, C,, C3 and hence [C,, C,, C3, C,] is a cycle with three landings. Use
induction on n, and suppose that n>2. One may assume that all round trips by
A, consist of an even number of stops, since otherwise there is nothing more to
prove. Because the graph of service by A4, has no odd cycles, it follows from
Probiem 8.5 that this graph is bipartite. Then one can find a partition of the
cities into two nonempty classes {Q,,...,Q,} and {R,,...,R,} wherer+s=N,
such that each flight by A, runs between a Q-city and an R-city. Since r+s=
N>2"+1,atleast oneof r, sis greater than 2"~ !, say r>2""* + 1. But {Q,,...,0,}
are only served by 4,,..., 4,-1, and hence by the induction hypothesis at least
one of these airlines flies a round trip with an odd number of landings. If there
are N =2" cities, there is a schedule with n airlines which contain no odd round
trip on any of them. Let the cities be C,, k=0,1,...,N—-1=2"—1. Write k
as an n-digit number in the binary system (possibly starting with one or more
zeros). Link C, and C; by A, if the first digits of i and j are distinct, by 4, if the
first digits are the same but the second digits are different, ..., under 4, if the
first n—1 digits are the same but the nth digits are different.

All round trips under A; are even, since the ith digit alternates for the vertices
of such a cycle. Equivalently, the graph of service by 4, is bipartite for every
1 <ign. [Problem proposed to the jury of the 24th International Mathematical
Olympiad, Paris, 1983.]
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APTER 9

).1 Let V be a set consisting of p(G) edges which cover all the vertices of
graph G. Since V is a minimal system of edges with this property, it follows
t after suppressing an arbitrary edge u of V one vertex x will remain un-
ered, and thus x is an endpoint only for u. Hence V' induces a spanning
ph of G whose components are stars of the form K, , with 1<p<n—1.The
aber of these components is equal to n—[V|=n~p(G), since each com-
ent K, , contains p edges from V and p+ 1 vertices.

select an edge from each component of the spanning graph induced by V.
> obtains a matching with n— p(G) edges, and it follows that

v(G) = n—p(G), or vG)+p(G)=n.

n order to prove the opposite inequality let W be a matching consisting of
1 edges which do not have an endpoint pairwise in common. These ¥(G)
2s thus cover 2v(G) vertices.

ielect an edge which is incident with each of the n— 2v(G) vertices which are
covered by W. This procedure is possible because G does not contain isolated
ices. It is also the case that the vertices uncovered by W are pairwise non-
cent, because this would contradict the maximality of W. The n—2wG)
;s are thus pairwise distinct. These edges, together with the set of edges W,
r all the vertices of G, and their number is equal to

V(G)+n=2vG)=n—v(G).
us follows that
pG)<n—v(G), or wWG)+p(G)<n.
Jallai, Ann. Univ. Sci. R. E6tvés, Sectio Math., 2 (1959), 133-138.]

2 Let X be the vertex set of the graph G. There are d(x){n—1-d(x)}
ss {x, y, z} which are not triangles in G or G and which have a unique edge
with x € X as an endpoint.
ach triple {x, y, z} which is not a triangle in G or G contains one or two
s of G. Suppose that [x, v] is an edge of G and that [x, z] and [y, z] are
s of G. In the sum

Y d()in—1-d(x)}

xeX
riple {x, y, z} is counted twice: once with respect to x, and once with respect
If [x, y] and [y, z] are edges of G and [x, z] is an edge of G, then in the
nation the triple {x, y, z} is also counted twice: once with respect to x and
with respect to z. It follows that the number of triangles in G and in G
ual to

@' ; Y d(x){n—1-d(x)}.

xeX
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(a) If G is regular of degree k, this formula becomes

n nk
(3)—— T(n—k—l).

(b) Thus d(x){n—1~d(x)}<{(n—1)/2}* and hence the number of
triangles in G and G is bounded below by

n) n n-—l)z_n(n—l)(n—S)
3)72\ 2 ) 24 '

This bound is positive for n> 6 and vanishes for n=35. The cycle C; with five
vertices is such that neither Cs nor Cs contains a triangle. It can be shown that
the lower bound is attained if n=4p+ 1 where p is a natural number. [A. W.
Goodman, Amer. Math. Monthly, 66 (1959), 778-783.]

9.3 Let G=(X, U) where |X|=n and |U|=m. Let x, y € X, and denote by
A(x) the set of vertices which are adjacent to x. In similar fashion A(y) will
denote the set of vertices which are adjacent to y. It follows that

|4(x) A A(Y)| =1A)| +|A(»)] ~ [4(x) U A())| = d(x) +d(y)—n.

If [x, y] € U, then there are at least d(x)+d(y)— n vertices which are adjacent
to x and to y. Hence at least d(x)+ d(y)—n triangles in the graph G contain the
edge [x, y]. From this one can conclude that G contains at least

1
5 2 {dl)+d()—n)
[x,yleU
triangles, since each triangle is counted relative to each of its sides. In this sum
d(x) occurs exactly d(x) times for every x € X. It follows that the sum is equal to

-;— (Z d(x)? - mn> )
xeX

By applying the Cauchy-Schwartz inequality and noting that ), d(x)=2m,
one can see that the last sum is bounded below by

1 {1 2 4m n?
5{;<,§x d(x)> —mn}=§<m—z>

94 Consider a set of three vertices {x, y, z} in the graph. Either the triple is
a circuit or there are two arcs of the form {x, y) and (x, z). In the latter case each
would be the direction of the arc between y and z, the three vertices induce a
transitive subgraph of the tournament. Let s; denote the number of arcs which
originate at the vertex x; of the graph for i=1, ..., n. It {ollows that the number
of transitive triangles is equal to

(s (n—1)2\ _nln—1)}n-3)
L ()=
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To see this one uses Jensen’s inequality and the fact that Y ;. s;=(;). Thus the
number of circuits with three vertices is bounded above by

n\ nn=10n=3) (+hnn-1) 1 n+1>
3" 8 - 24 4\ 3 )

The upper bound is attained if n is odd, since there exists a tournament with n
vertices such that s;=(n—1)/2 for i=1,...,n. This will be established by in-
duction on n.

For n=23 one has only to consider a circuit with three vertices. Suppose that
the property holds for a tournament with n vertices (n odd) and vertex set X.
Orient the arcs so that (n—1)/2 arcs originate at each vertex of X.

Let y and z be two new vertices, and construct the arc (y, z). Let X =Y uZ
be a partition of the set X such that |Y|=(n—1)/2,|Z|=(n+1)/2. Now construct
all the arcs of the form (y, x) and (x, z) for x € Y and all the arcs of the form
(z,x) and (x. y) for x € Z. One has thus obtained a tournament with n+2
vertices for which s;=(n+1)/2fori=1,...,n+2.

9.5 A tournament is a complete and antisymmetric graph. One can show
that in general every complete directed graph has a Hamiltonian path.

The proof of this property uses induction on the number n of vertices in the
graph. For n=2 the graph has two vertices x and . Since it is complete, there
1s an arc between these two vertices, for example (x, y). This arc is the desired
Hamiltonian path.

Suppose that the property is true for all complete graphs with n—1 vertices.
It will be shown that it is also true for complete graphs with n vertices.

If G has vertices x,, x,, ..., X,, then the subgraph with vertices x;,....x,-,
is complete, and hence by the induction hypothesis it contains a Hamiltonian
path. Denote this path by (x;,..., x,-;). Since the graph is complete, there
exists at least one arc between x,; and x,,. If this arcis (x,, x,), then (x,, X;,..., X, 1)
is a Hamiltonian path. In the opposite case only arc {xy, x,) exists.

By repeating this argument for a pair of vertices x, and x,_,, it is seen that
if there exists an arc (x,-, x,), then one can form a Hamiltonian path
(xy,...,Xx5-1. X,;), and otherwise one has only the arc (x,, x,-). Suppose only
the arcs (x,, x,) and (x,, x,- ) exist. In view of the fact that x, is connected by
arcs to all vertices x,,...,x,-,, there will exist among them two adjacent
vertices x, and x,,; for which there exist arcs {x,, x,) and (x,, x,. ). In fact
there is an arc from x; to x,, and there is an arc from x, to x,_, the last vertex
on the path. Thus at a given moment, by leaving from x, towards x,_, the
direction of the arc towards x, must be changed.

In this way one constructs a Hamiltonian path for G, namely (x,, ..., xy, x,,
xk-‘—lv"':xn—l)-
In order to obtain the upper bound, consider m={[n/2] arcs a,, a,,..., dpn

which have no vertices pairwise in common and are selected from a tournament
with n vertices. Suppose that there exists a Hamiltonian path whose (2i — 1)st arc
is g; fori=1,..., m In this case the Hamiltonian path is uniquely determined.
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Thus the number of Hamiltonian paths is at most equal to the number of
ways in which one can choose m arcs without common vertices. The arc a,
can be chosen in (3) ways, a, in ("} %) ways, and so on. It follows that the number
of ways of choosing the sequence of arcs ay, ..., ay, is equal to

n\fn=2 n=-2m+2 _n.'<n!
2\ 2 2 Togm T ome

Let #(n) denote the maximum number of Hamiltonian paths in the class of
tournaments with n vertices. The following values are known: t(3)=3, t(4)=
1((5)=15, t(6)=45, and #(7)=189. If

1/n
o= lim (@) ,
n= n!

then o exists and satisfies the inequalities 0.5=2"'<a<2~¥*<0.6. Szele’s
conjecture states that « = 0.5, but a proof of this has not yet been given. [ T. Szele,
Mat. Fiz. Lapok, 50 (1943), 223-256.]

9.6 Suppose that the graph G has n vertices and m edges, and does not
contain an elementary cycle with four vertices. Count the number of pairs of
vertices {x, v} in which both members are adjacent to a third vertex z. If the
vertex z is fixed, then there are ( (z’) such pairs. Each pair {x, y} is coumed at
most once, since if it was counted with respect to z; and z, with z; #z;, then
[x, 2y, ¥, 23, x] would form a cycle with four vertices, contrary to hypothesis.

Hence it follows that
d(z) n
< )
2 (F)0)

where X is the vertex set of the graph G. Since the function x(x —1)/2 is convex,
it follows from Jensen’s inequality that

n d(z) 2m/n _m(2m—n)
Bl () ()

and thus

From this one can see that

n 3n n
<- - =
m<y / T3 41+\/4n 3),

which contradicts the hypothesis. Thus G must contain an elementary cycle
with four vertices.

If n=g>+¢+1 and g is a power of 2, then the maximum number of edges
of a graph G with n vertices which contains no C, is (g/2)(g+ 1)* [Z. Fiiredi,
J. Combinatorial Theory, B. 34(2) (1983), 187-1907], and this result also holds
if ¢ is a prime power.
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9.7 Let n=(k—1)g+r with 0<r<k-2 and (k—2)n=(k—1)p+s, where
0<s<k—2andr, s areintegers. It follows that if r=0then s=0and if r> 1 then
s=k—r—1.

Suppose that the number of vertices x of degree d(x)<p is smaller than m,
that is, the other vertices y have degree d(y)> p+ 1. Thus one can assume that
there exists a partition X u Y of the set of vertices such that d(x)<p for every
vertex x € X, d(y)=p+ 1 for every vertex y € Y, and also [X |<m, |Y|>n—m.

Let y, be a vertex in Y, and denote by A(y,) the set of vertices which
are adjacent to y;. In the set A(y,)nY choose another vertex y,. It follows
that A(y;)nA(y,) will contain at least |A(y,)nA(y,)|=|A(y,)|+|A(y,)|-
|[A(y1)u A(y2)|=2(p+1)—n vertices.

Suppose that the vertex sets A(y,), ..., A(y,-,) with y; € Ni<;A(y) Y have
been constructed for j=1,...,k—2. Let B=M$2 A(y;). It will be shown that
BnY is nonempty. This property will demonstrate the possibility of choosing
the vertices y,,...,y,—;. In fact it can easily be shown by induction that
|B|=(k—2)(p+1)—(k=3)n.

Consider two cases:

(1) r=s5=0.1In this case (k=2)(p+ 1) —(k—=3)n=(k=2){(k—2)g+ 1} -
(k=3)k—1)g=q+k-2>q.
(2) rz=1.1t follows that
(k=2)(p+1)—(k=3n=(k—)p-p+k-—2
—(k=1lp—s+n
=p-—p+k—s—2
n  (k=2)n

k=it ko PRS2

=q+——+p

.
k=1
+— ptk—s—2
k—1 P

res
k—

Zq+1,

=q+ +k—-s-2

since r+s=k—1and k—5—-2>0.

Thus in both cases B contains at least m={n/(k— 1)} vertices.

If BAY =£, then B< X, which is impossible, since |X|<m and |B|=m.
Thus there exists a vertex y,_; € BAY which has degree d(y,_,)=p+ 1. In
this way one can see that
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k=1

Ay Z2k=Dp+ ) ~k=2Jn=k—-1-s>0,
1

which implies the existence of a vertex y, € ﬂ’,-‘;‘ A(y;).

It follows from the method of construction that the vertices y;, y2,..., )
form a complete subgraph with k vertices and this contradicts the hypothesis.
Thus there exist at least m vertices of degree less than or equal to p. [I. Tomescu,
Studii si Cercet. Mar., 31(3) (1979), 353-358, which extends K. Zarankiewicz’s
lemma. Colloquium Math., 1 (1947), 10-15.]

9.8 Define a graph with 1001 vertices xy, ..., X;00; as follows: The vertices
x, and x; are joined by an edge if person i and person j of the set M do not know
each other. Since each subset of 11 persons contains at least two persons who
know each other, it follows that G does not contain a complete subgraph with
11 vertices.

Now apply the result of the previous problem with n=1001 and k=11. 1t
follows that G contains at least m=101 vertices with degree less than or equal
to p=900. Thus in the complementary graph G there are at least 101 vertices
with degree greater than or equal to 1000—~900=100. This establishes the
desired result, since in G the vertices x; and x;are adjacent if and only if persons
i and j know each other.

9.9 The theorem will be proven by induction on n. Forn=1,..., k—1 the
graph with n vertices which has a maximal number of edges and does not contain
a complete subgraph with k vertices is the complete graph K,, and it has the
indicated form, that is, each class contains a single vertex. Suppose that the
theorem is true for ' <n— 1. If the graph G has n vertices and does not contain a
complete subgraph with k vertices, then Problem 9.7 implies the existence of a
vertex x with degree d(x)< p=[(k~2)n/(k—1)].

Consider the subgraph G, obtained from G by suppressing the vertex x and
all the edges which have x as an endpoint. The subgraph G, has n—1 vertices,
does not contain a complete subgraph with k vertices, and may or may not
contain a maximal number of edges with respect to this property.

If G, does not contain a maximal number of edges, then replace it by a graph
with n— [ vertices which does not contain a complete subgraph with k vertices
and has a maximal number of edges. By the induction hypothesis, this graph
contains k— | classes of vertices. There are ' classes which each contain ¢ +1
vertices. The remaining classes each contain t' vertices, where n—1=(k—1)' ++
and 0<r'<k-2. Each vertex y is joined by an edge to all the vertices which do
not belong to the same class as .

Add the vertex x to a class which contains t' vertices, and join it to all the
vertices which do not belong to the same class as x. One thus obtains a graph
with n vertices, which does not contain a complete subgraph with k vertices,
and which is unique up to isomorphism. The degree of the vertex x in the graph
thus obtained isequalton—1—-+=n—1-[(n—1)/(k—1)]. But a simple calcula-
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tion shows that n—1—[(n—1)/(k—1)]=[(k—2)n/(k—1)]. Tt follows that a
graph with n vertices and without complete subgraphs with k vertices and which
contains a maximal number of edges must have the desired structure. Thus

Min, k)=<’2'>—r <H2_1>—(k——1—r) ('2)

=4{nt—n—ri(t+ )—(k—1=ri(t - 1)},
where t =(n—r)/(k—1). One can further show that

M, k=%{n*—n—tQr+tk—1)—k+1)}

b, n—r :
—E(n N (2r—+—n—r—k+1))
=1 2 _(n_—_r)(n+r—(k—1))

2 k—1

9.10 First we show that for every choice of four points A4, B, C, D from M,
there exist at least two points which are at a distance less than or equal to
1/J2. 1f three of the points are collinear, then one of the distances is less than
orequalto < l/ﬁ and the property is seen to hold. Otherwise it will be shown
that the configuration formed from the four points contains a triangle with an
angle of at least 90°. There are two possible cases:

(1) Three points, say A4, B, C, form a triangle with the point D in its
interior. The sum of the angles from D is equal to 360°, and thus
at least one angle is greater than or equal to 120°.

(2) The four points form a convex quadrilateral. The sum of the
angles of the quadrilateral is 3607, and hence at least one angle is
greater than or equal to 90°.

Let ABC be the triangle with 42 90°, Tt follows that
a?zb% 4+ ¢*2 2 min (b2, c3).

If b>c. it can be seen that a?> 2¢? or ¢*<a%/2<} and hence c<1/4/2.

Now define a graph which has as its vertices the 3n points; two vertices are
joined by an edge if the distance between them is greater than 1/\/5. From the
property just established, one can conclude that this graph does not contain a
complete subgraph with four vertices. Thus it follows from the preceding
problem that the number of edges is at most equal to M(3n, 4)=3n2. The 3n?
distances which are larger than l/ﬁ can be chosen in the interval (1 —e, 1) for
every e>0, by grouping each n points sufficiently close to the vertices of an
equilateral triangle of side 1.
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9.11 The proof follows directly from Turan’s theorem, since M(2n, 3)=n2,
The graph which realizes this maximum number of edges and does not contain a
triangle is the complete bipartite graph K, ,.

9.12 It will be shown that for every n>2 the maximum number f(n) of
maximal complete subgraphs (cliques) in the class of graphs with n vertices
takes on the following values: f(n)=23"2for n=0(mod 3); f{n)=4 x 3"~ 1i3=1
for n=1(mod 3), and f(n)=2x 3"~ 23 for n=2 (mod 3).

For 2€<n<4 the expression for f(n) can be obtained by a simple counting
argument. In fact, if n=2 or n=3, the maximal number of cliques is obtained for
graphs consisting of isolated vertices. In the case of n=4 one must consider
both a graph which only has isolated vertices and the complete bipartite
graph K, 5.

Let G be a graph with n > 5 vertices which contains f(n) cliques. G contains at
least two nonadjacent vertices x, y, since otherwise G would be the complete
graph on n vertices K,, which contains a unique clique; this would contradict
the maximality of G.

Let V(x) be the set of vertices adjacent to x in G. Denote by G(x, y) the graph
obtained from G by suppressing all the edges incident with x and replacing them
with edges from the vertex x to each vertex in the set V().

The symbol G, will designate the subgraph obtained from G by suppressing
the vertex x, and a(x) will denote the number of complete subgraphs contained
in V(x) and which are maximal with respect to the subgraph G.. Finally, ¢(x)
is the number of cliques of G which contain x.

By suppressing the edges incident with x, one causes c(x) —a(x) cliques to
disappear. But joining x by an edge to all the vertices of V{y) creates ¢( y) cliques.
Thus if ¢(G) denotes the number of cliques in G, one has

c(Glx, y)) =c(G) + o( y)— c(x) + a(x).

It can be assumed that co(y) > ¢(x), because otherwise one only has to consider
the graph G(y, x).

Since ¢(G) is maximal, it follows that o(G(x, y))<c(G) or e(y)=c{x) and
a(x)=0. This implies that ¢(G(x, y))=c(G), and the graph G(x, y) contains the
same maximal number of cliques f(n) as the graph G. It can be proved similarly
that

c(Gly, x)=clG)+ clx)~cly)+al )

Thus, in view of the fact that ¢(x)=c(y), it follows that a(3»)=0. and hence
AGlx, y)=c(G(y, x))=c(G).

Let x be an arbitrary vertex of the graph G, and let y,.... y, be vertices
which are not adjacent to x. Transform the graph G into the graph G, =G{(y,, x),
followed by the transformation of G, into G, =G, y,, x), and so on, until one
finally transforms G,_, into G,=G,_,(y,, x), in every case preserving the
number f(n) of cliques. The graph G, has the property that the vertices
X, Y1, .-+, ¥p, are not joined to each other by an edge, and V(x)=V{(y,)= " =
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V{y,). If V(x)=7, the process terminates. Otherwise consider a vertex in V(x)
and repeat the construction for the subgraph obtained from G by suppressing

the vertices X, yi,..., ¥,
Finally a multipartite complete graph G* is obtained with the property
that its vertices can be partitioned into k classes which contain n,,...,n,

vertices respectively. Two vertices are adjacent if and only if they do not belong
to the same class. It is also the case that ¢(G*)= f(n). But ((G*)=n, - - n,, from
which it follows that
fin)=max max i,
k mp+e+ng=n

Suppose that f(n)=m;m, - m,, where m;+ -+ +m,=n. It is clear that
max (m,, ..., m,)<4,sinceif, for example, m, > 5, then 3(m; — 3)>m; or 2m; >9,
and thus the product m; -+ m, would not be a maximum. There cannot exist
two factors equal to 4, since 4 x 4 <3 x 3 x 2; also one cannot have three factors
equal to 2, since 2x2x2<3x3.

Similarly, it follows that —1<m;~m;<1 for every i, j=1,...,p. I, for ex-
ample, m; > m;+ 2, then mym;<(m;—1)(m;+ 1) =m;m;+m;—m;— L. Thus all the
factors my,..., m, are equal to 3 if n=0{mod 3). If n=1 (mod 3), then a single

factor is equal to 4 (or two factors are equal to 2), and the rest are equal to 3.
When n=2(mod 3), one factor is equal to 2 and the rest are equal to 3. [J. W.
Moon, L. Moser, Israel J. Mathematics, 3(1) (1965), 23-28.]

9.13 First we show that after the final application of the algorithm (when
one obtains a set of n— 1 edges which does not contain a cycle) there is in fact a
tree with n vertices. For suppose that the graph obtained is not connected and
has p=2 connected components which contain ny, ..., n, vertices, respectively.
Since these connected components do not contain cycles, each is a tree. It
‘ollows that the number of edges in each component isequalton, —1,...,n,—1,
respectively, and hence

n—1+-+n—l=n—p=n-1,

rom which it follows that p=1. Thus the graph is connected and without cycles,
hat is, a tree.

Suppose now that the spanning tree A obtained in the final application of the
tlgorithm is not minimal, and thus there is another tree A, such that ¢(4,) < ¢(A),
vhere f A) denotes the sum of the costs of the edges of A.

Letu,,us,...,u,—, denote the edges of A. The indices are to correspond to
he order in which the edges are obtained in the algorithm. Suppose that the
irst edge of the tree A (in this sequence) which is not an edge of 4, is the edge
. Add the edge u, to the tree 4, .

Let G, be the graph which is thus formed. It will have a unique cycle, con-
isting of u, and the unique walk in the tree A,, which joins the endpoints of
« This cycle contains at least one edge v, which does not belong to the tree A4,
ince otherwise A would contain a cycle. By suppressing the edge v, a tree A,
zsults, since the graph obtained from G, by suppressing the edge v; does not
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contain cycles and has n—1 edges. By the preceding argument it is therefore a
tree. The cost of this tree is equal to

c(A)=c(Ay)+ c(uy) = c(v;).

It follows from the definition of the algorithm that u, is an edge of minimal
cost which does not form a cycle with the edges u,, u,,..., 4, . But no edge
v, forms a cycle with these edges, since A, is a tree. Thus c(u,) < c(v;) and hence
c(A;)<c(A,). By repeating this procedure one replaces all the edges of the
tree 4, by edges of 4 and obtains a sequence of trees 4,, A3, ..., A, =A, which
by construction satisfy

c(4)2c(A)2 - 2 c(A4,)=c(4),

and thus c(A4;)>c(A4). This is a contradiction, because it has been assumed
that ¢(A4;)<c(A) and thus A4 is a minimal tree in G. This observation justifies
the algorithm.

9.14 Suppose that there are two trees of minimal cost. 4 and 4,. It follows
that one can find an edge u in A4 which is not an edge in A,. Consider the walk in
A, which joins the endpoints of the edge u. There is an edge v of this walk which
joins two vertices located in the two components of the graph obtained from 4
by suppressing the edge u. It follows that the graph A, obtained from 4 by
suppressing the edge v and inserting the edge v is a tree. This is also true for the
graph A, obtained from A, by suppressing the edge v and inserting the edge u.
Since c(u}s¢(v), one can conclude that

min (¢c(4,), c(43)) <c(A),

since c(A4,)=c(A)— c(u)+c(v) and c(A3)=c(A4)+ c(u)~ c(v). These observations
contradlct the hypothesis that ¢(A) is @ minimum.
Hence the minimal spanning tree is unique.

9.15 Let C be a complete subgraph of G of maximal cardinality, and choose
x;=1/k for i € C and x;=0 for i ¢ C, where X ={1,...,n}. It follows that

1 /ky 1 1
X X;j=—5 =<[1-—],
[L%ﬂf e (2) 2( k)

and thus f(G)=max 3, .. x;x, =31 = 1/k).
In order to prove the opposite inequality we use induction on n. If n=1,
then k=1 and f(G)=0, which implies that equality holds. Suppose that
f(G)<4(1 —1/k) for all graphs with at most n—1 vertices, and let G be a graph
with n vertices. If the maximum. f(G), is attained for x,=0 where 1 <i<n, then
J(G)= f(G"). Here G’ is the graph obtained {from G by suppressing the vertex i
and the edges incident with it. By using the induction hypothesis with respect to
G’ one can conclude that

1y 1 1
1(6)=£(G)= ( P)si(l-;),

since k'< k.
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Suppose now that f(G)is attained for all variables x,> 0. If G is not complete,
then there exist two nonadjacent vertices, say | and 2. Let F(G)=F(x,,...,x,)=
Yiijjer XiXj, and 0<c<x;. Then

Flxy—c x40 Xg, o, X )=Flxq,...,x,)+¢ (Z xp— x,),
fed ieB
where A represents the set of vertices in G which are adjacent to vertex 2, but
not adjacent to vertex 1. Similarly, B denotes the set of vertices in G which are
adjacent to vertex 1, but not adjacent to vertex 2. It remains to show that
Y eaXi=2uepXir For if Y. x;>> px; then Flx;—¢ X3+ Xa,...,X,)>
F(x,,...,x,), which is a contradiction. But if the oppesite inequality held, then
Flx;+¢,x,—¢ X3,...,x)>F(x{,...,x,) for every 0<c<x,. which con-
tradicts the maximality of F(x,,..., x,).
f c=x,, then

F(O,X1+X2, X3,...,X")=F(X),

and hence the maximum is attained for the subgraph G’ obtained from G by
suppressing the vertex 1. This reduces to the previous case if one of the variables
takes the value zero. It thus follows from the induction hypothesis applied

to G' that
1 1
f(GKi(l"E)'

If G=K,, it can be seen that

Flxg,...,x,)= Y x,x.,-=l((x1+"'+x,,)2—'zxf)

Lei<jcn 2 fieg]

| 1 | 1
=—[1- Zlg=(1=2],
2( i;x,> 2( ")

and hence the inequality is also established in this case. [T. S. Motzkin, E. G.
Straus, Canadian J. M athematics, 17(4) (1965), 533-540.]

9.16 Suppose that the arcs uy,...,u, of G are numbered so that
cluy)Zcluy)Z - 2 c(uy,). Let k be the smallest index with the property that the
set of arcs {u,,...,u,} contains the arcs of a path Dy=(a,...,b). Since
{uy,..., u_,; does not contain all the arcs of any path from a to b, it follows
that Co={u,, Uy+1,..., Uy} is an (a, b)-cut with Con A(Do) = {u,}. [Here A(D,)
denotes the set of arcs of the path D,.] It follows that

min c(u)=c(u,) and max c(u)=c(u). (1)
ueDg ueCo
Let C be an arbitrary (g, b)-cut. Then Cn A(D,) #£. Now let u; € A(D,)nC.
Since A(Do)={uy,...,u,}, one can conclude that i<k and hence

max c{u) = ofu) = cluy). 2)
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If D=(a,...,b) is any path from a to b, then A(D)nCy#F. Now let
u, € A(D)n C,. In view of the definition of C, it follows that i>k and hence
milx)1 c(uy<el(uy). (3)
It follows from (1) and (3) that maxp min,.p, c(u) =c(u;). From (1) and (2)
one can conclude that ming max,¢ c(u) = c(u,), which establishes the property
in question. [J. Edmonds, D. R. Fulkerson, J. Combinatorial Theory, 8(1970),
299.]

9.17 Let g be a function which satisfies the two conditions in the statement
of the problem, and let D=(a, x, ..., X, b) be a path in the graph G. It follows
that

ce{D)y=c(a, x;)+c(xy, x3)+ ** +clxy, b)
2g(x)+{glx)—g(x )} + -+ +{g(b)~g(xi)} =g(b).

which implies that minp ¢(D)> max, g(b). If there is a path D=(a,....b) and a
function g which satisfies the two conditions such that ¢(D)=g(b), then the
opposite inequality also holds and hence the given equality is shown to be valid.

An inductive procedure will now be given for constructing a function g on
the vertices of the graph G. Let g(a)=0. Suppose that g has been defined on a
set of vertices Sc X with a € §, and for every vertex x € S there is a path D, =
(a,...,x) in the subgraph generated by S such that ¢(D,)=g(x).

Consider all the arcs of the form (x, y) with x € S and y ¢ S. Choose one for
which the sum g(x) + c(x, y) is a minimum. Let g(y)=g(x) +c(x, y); the function
g is now defined on the set of vertices Su { y}. It will be shown that every arc
{z, w) in the subgraph generated by Su {y} satisfies the inequality

glu)—g(z)< c(z, u). (1)

If u, z € S, the validity of the inequality follows from the induction hypothesis.
If z € S and u=), then the method of choosing the arc (x, y) implies that

g(y)=glx)+clx, y)< gl2) +clz. y),

and (1) is satisfied.

Let ue S and z=y. It will be shown that in this case g(u)<g(y) and hence
gw)—g(MN<0< ey, u), and thus (1) is satisfied.

In order to prove this it will be shown by induction that the function g
increases with an increase in the number of vertices chosen in G. This property
holds for the first vertex c selected after q, since g(¢)=g(a)+ c(a, ¢)=c¢(a, ¢)=0,
and hence g(c)= g{a).

Suppose that this property holds for every set of vertices of cardinality less
than or equal to |S| constructed by the indicated procedure. Suppose further
that there exists a vertex u € S such that g(y)<g(u).

Since g(y) =g(x)+ c(x, y) = g(x), it follows that g(x)<g(y) <g(u). The induc-
tion hypothesis now implies that the vertex x was selected in the set S before
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the vertex u. Let M < S be the largest set (with respect to inclusion) which
contains x and not u constructed by the indicated procedure. At the next step
one adds the vertex u to M. Thus there exists v € M such that

glu)=g(v)+clv, u).
Since x, v € M, the inequality

g(y)=g(x)+clx, y)<g®)+ clv, u)=g(u)

contradicts the choice of u as the next vertex for which the function g is defined
by this procedure. Thus it has been shown that the function g takes increasing
values, and therefore (1) is valid and the function f satisfies both of the given
conditions. By the induction hypothesis there exists a path D, =(q, ..., x) with
c(D,)=g(x) in the subgraph generated by S. It follows that by adding the arc
(x, y) to the path D one obtains a path D, =(a, ..., x, y), whose value is equal to

¢(D,))=c(D,) +c(x, y)=g(x)+clx, y)=g(y).

Thus g has been defined on Su {y}, and satisfies the two conditions on this
set. Also, for every x € Su{y} there exists a path D, =(q, ..., x) which satisfies
¢(D,)=g(x) in the subgraph generated by Su{y}. This completes the inductive
argument. It follows that g can be defined on the set of vertices X in only one
way. Thus, in particular, g is defined at b, and a path D=(q, ..., b) and a function
g which satisfies c(D)=g(b) have been constructed.

Let c(u) be the length of the arc w e U. Then ming ¢(D) is the minimum
distance between vertices a and b in the graph G, where D=(g, ..., b) runs over
the set of paths from a to b. The described procedure provides a construction
for a unique function g: X - % with the property that g{x)>0. This is because
g(a)=0 and because it has been seen that g takes on only increasing values.
Also, for every vertex b+a one has

rr})in c(D)y=g(b).

Thus the indicated procedure is also an algorithm for finding the minimal
distances from a fixed vertex a to all vertices b=a in the graph G.

9.18 The following sum will be calculated in two different ways:

Z( PIELCENDY f(u)). (*)
xeX \uew ~(x) uew *(x)
In view of the condition (C) for the conservation of the flow for every vertex
x #a, b, it follows that the term corresponding to x#a, b in the sum (*} is zero.
Thus (*) reduces 10 Y e~y S (W)= L+ SW), since 0™ (@) =07 (h)=.
But since every arc (x, y) € U belongs to both of the sets w™(x}) and w™(y),
it follows that by regrouping terms one can express (*) in the form
Y 1 fw= fw)}=0.
uel

From this {a) follows easily.
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In order to prove (b) consider the summation:

Z( Z( Sy~ Z()f(u))- (**)
xeAd \uew " (x) uew *+(x

It can be seen that for every vertex x # b, the corresponding term in (**) is zero
and hence summation (**) reduces to 3.~ f(4)= f,. since w*(h)=£r and
a ¢ A. By regrouping terms one can write (**) in the form

Y {fw=si+ L fw= X flw= ) f- Y )

uel 4 uew ~(A) uew (A} uew ~ (A} uew *(A)
where U, is the set of arcs v which have both endpoints in the set 4. On the
other hand, if the arc u € w ~(A), then the flow f(u) appears in (**) with a plus
sign, and if u e w*(4) then the flow f{(u) appears in (**) with a minus sign,
since there will exist vertices x,, x, € A such that u e w ™ (x;) and u € w™(x,).

Comparing the two expressions for the sum (**), one sees that

L= 2 fw- Y fws< Y fw< Y cw=cw(4)
ueEw " (A} uew t(A) uew (A} uew = (A)

This is because condition (B) bounds the flow on each arc of the network and
the flow takes on non-negative values.

9.19 Let v be a walk which joins the source a and the sink b. Denote by
v™ the set of arcs of v directed in the same sense as the direction determined in
traversing the walk v from a to b. Similarly v~ is the set of arcs oriented in the
opposite direction.

Let

£=min (mig {ctu)= f(w)}, min f(u)).

For £> 0 one can increase the flow f, as follows: [ncrease the flow on each arc
u ev® by ¢, and diminish the flow by ¢ on each arc u ev™. It follows from the
method of defining ¢ that one obtains a new flow ', which satisfies

0< f'(w) < elu)

for each arc u € U. The conservation condition is also satisfied at each vertex
x#a, b. The flow at the sink increases, since f;= f,+¢> f}, and the last arc
of the walk v which terminates in b belongs to the set v™.

A walk for which ¢=0is said to be saturated. Thus if a flow f realizes max f,,
there will not exist a nonsaturated walk from a to b. Otherwise the flow could be
increased at b.

Let f be a maximal flow in the network G, and consider all the elementary
walks from a to b. Suppress all the arcs u for which there exists an elementary
walk v such that wev™ and f(u)=clu) or u ev™ and f{u)=0. Here u is the first
arc encountered with this property in traversing the walk v from a to b.

The spanning graph thus obtained has at least two connected components,
since otherwise there would exist a nonsaturated walk from g to b, which con-
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tradicts the maximality of the flow f. One of these components consists of a
subset of vertices A which contains the sink b and does not contain the source a.

Thus A defines a cut w™(A4). All the arcs u € w~(A) have the same orientation
as the walks from a to b, so that f(u)=c(u). It is also the case that all the arcs
u €ew*(A) are directed opposite to the d1rectlon of the respective walks {rom
a to b which use these arcs. Thus f(u)=0 for every u € w*(A).

The arcs from w™({4) and w*(A) respectively must have been suppressed
from the network, since otherwise the connected component A would not be
maximal with respect to inclusion, which contradicts the definition of a con-
nected component.

It follows from the preceding problem that

Y S Z Sw= Y, clu=clw™(A).
uew ~(A) uew * uew ~(A)
But it has been seen that for every ﬂow / and every cut induced by the set
Ac X with a ¢ 4 and b € A one has the inequality

oS clo™(4).

This also follows from the preceding problem.

Thus a maximal flow f and a cut w™(4) have been found {or which the
inequality becomes an equality. Hence the cut w ™ (A4) has a minimal capacity
which is equal to the maximal flow at the sink.

9.20 Tt is clear that the given algorithm has a finite number of steps, which
is bounded above, for example, by )., - (). In fact, it follows from Problem
9.18 that max, f, <c(w~(A)), where w~(A) is any cut of the network. If 4= {b},
then o~ (A)=w™(b). From this one can deduce that max, f,<c(w™ (4))=
Y ew- ) CW). Start with a zero flow on each arc, so that f,=0. At each step the
flow f,increases by e. Recall that the capacity of an arc is a non-negative integer.
Thus the values of the flow and of ¢ itself are integers, and ¢>0 implies that
e21. Therefore, at each step the flow f, increases by at least 1, and hence the
number of steps of the algorithm is bounded above by the capacity of a cut.

It will now be shown that when one can no longer mark the sink b, then the
flow obtained has the maximal value at the sink. The set of arcs which join a
marked vertex to an unmarked vertex constitutes a cut with minimal capacity.

To show this let 4 be the set of vertices which cannot be labeled by the given
algorithm. It follows that a ¢ A and b € A, since it has been assumed that the
sink of the network cannot be labeled. Thus w™(A) is a cut of the network. One
has f u) for every arc u € w~(A), since if u=(x, y) then x ¢ 4 and y € 4.
If f(u ) the vertex y could have been labeled, which contradicts the fact
that y e A Also one has f(u)=0 for every arc u € w*(A), since if u=(y, x) then
y€Aandx ¢ A. I f(u) >0, the vertex y could have been labeled by starting from
the labeled vertex x, which contradicts the fact that y € A.

By applying (b) of Problem 9.18 one can write

=Y fw- Y flu= Y cw=clo (4)

wew ~(A) uew *(A4) wew ~(A)
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But it has been shown that for every flow f and every cut w™(A4) one has
fp<clw™(A). For the given flow and cut this inequality becomes an equality.
Thus the flow f, is maximal, and the cut v ~(A4) has minimal capacity.
This reasoning also provides a new proof of the Ford-Fulkerson theorem of
the preceding problem in the case when the capacities of the arcs are integers.
Observe that this algorithm allows one to find the maximal flow after a finite
number of steps in every network G whose capacities are rational numbers.

Let the arcs of the network be u,, ..., u, with c(u,) =p;/q, where p,, g, are
non-negative integers and ¢,2> 1 for every 1 <i<m. Multiply the capacity of all
the arcs by the least common multiple [q,, ..., g ] of the denominators of these

fractions. One thus obtains a transport network G, which has the same graph
and whose capacities are integers. Let f be a flow in the network G, , and define
the flow g by

J(w) )

g(u)z[(h""'q'n]

for every u € U. The conservation condition at every vertex x=a, b and the
boundedness on each arc will be satisfied for the network G.

In fact, from §,c,- S =Y epe f(u) it follows that 3, glu)=
Yot (). Also, 0< f(W)<[qy,...,qmlc(u) implies that 0<g(u)<c(u) for
every arc u € U. If f, is maximal, then g,= f;/[q,,...,q,] iS maximal in the

network G.
In the opposite case, there is a flow A in the network G such that h, >g,.

Define the flow with components equal to [g;,...,gn,]hu) for each arc ue U
of the network G,. One obtains a flow with value at the sink equal to
(G1+- v qmlhe>[qy. .., Gmlgs= [, Which contradicts the maximality of the
flow f.

It follows that the flow g defined by (1) is maximal in the network G if and
only if the flow f is maximal in the network G,. This maximal flow can be
determined by the given algorithm in a finite number of steps, since in the
network G, all the capacities are integers.

The following problem shows that the Ford-Fulkerson algorithm may not
have a finite number of steps if the capacities of the arcs are irrational.

9.21 Let v=[a,...,b] be a walk in the network from the source to the
sink, and let the arc u € ™. The reserve of flow on this arc will be the quantity
c¢(u)= f(u) by which the flow can be increased without becoming larger than
the capacity of the arc.

It will be shown by induction that there exists a procedure for determining a
walk from a to b on which one can increase the flow according to the algorithm
of the preceding problem so that at step » the flow f, increases by a,. Start at
step 0 with a zero flow on each arc, and consider the walk [q, x, ¥1, b]. One
finds that eq=min (c, ao, ¢)=a,. Define a new flow equal to a;<c on the arcs
{a. xy), (xy, ¥1), (¥1, b). On the other arcs the flow will be equal to zero.

Let n=1. Let 4}, A3, A%, A4 be a permutation of the arcs Ay, Ay, As, Ay,
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so that A% has flow reserve 0, A, has reserve a,, 45 has reserve a,,,, and A4,
has reserve a,. . Notice that for n=1 one can take A;=A4, for 1<i<4.

Henceforth, at step n, choose a walk from a to b which includes among the
arcs A; only the arcs A5 and AY%; for example,

[a, x5, ¥a, X5, ¥4, b].

It follows that e, =min (¢ —f(a. x5), a,, c—f(¥5, X3}, Ans1, ¢=f(¥3, b)). Thus by
the induction hypothesis the amount of flow sent to b up to the present on the
arcs of the network isequal to Y 7- | a;, and thus f(a, x3)< Y ;- a,. This implies
that c— f(a,x))2¥ 2, a;>a,>a,.,. Similarly one can deduce that
c— f(y4, x3)>a, and ¢— f(y3,b)>a, and hence ¢, =a,.,. Increase the flow
on the arcs (a, x5), (x4, y2), (¥5, x3), (x5, ¥3), and (y5, b) by a,+,. The flow at b
then increases by a,. . The arcs 4', A}, A, A5 have reserves of flow equal to
0, a,— a,+,=0,+,, 0and a,, respectively.

Now choose a walk v from a to b on which one can increase the flow at b
so that A3 ev™ and v~ ={4}, A}}. For example,

v=[a, X'z’yIZAy'l’x)l’y'J’ X’;, y:U b]

with ‘5‘2=’_mir1 (C'—f(a9 X’2), Qn+ 25 c_f(y,Za yll)y C(A,l)’ C—f(X'l, yIS)a C(A/Ci)’
c— f(x5, ys), ¢ — (v, b)). The arcs 4 and 44 have their reserve of flow equal
to 0, and thus on these arcs the flow is equal to the capacity of the arc.

One first sees that ¢~ f(a, x’z)zz,i":"” a,+a,>ay+ 4, since the amount of
flow transmitted to b up to now is equal to Z’,';f a,;+a,. . All the differences
which appear in the expression for &, are by the same reasoning greater than
Gn+ - Similarly min (¢(A}), c(43)) = a,>a,+, lor n> 1. [t follows that e, =a,, 5,
and thus one increases by a,., the flow on the arcs (g, x3), (x%, ¥5), (¥2, Vih
(x7, ¥3), (x5, ya), and (y4, b). Decrease the flow by a,. , on the arcs A} and Aj}.
The flow at b is still increased by a,+-.

The reserves of flow onthe arcs A', A5. A5, A, arenow equalto a,. 5,0, an+ 5,
a,+1, respectively, and the flow f, has increased following step n by
Q.+ +0a,+2=a, and thus has the value

n
S a.
i=0
Observe that now one has a situation analogous to that existing before
applying step n. The reserve of flow of the arcs 4} leads to the following permuta-

tion of the arcs A;:
Ay A, Ay A,
Ay Ay AL AY)

Now redefine A <A}, Ay —Aj, A3—A}, A, A%, ne—n+1, and return to step n.
One can now see that the algorithm of the preceding problem will not
terminate, but after » steps one has

fb= i a; <cC.

i=1

. -,
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However, max f =4c¢, and the maximal flow can therefore be obtained as
follows:

fla, x)= flxq, y2) = f(y2, b)= fla, xo)= flx3, ¥1)
= f(y1, b)= f(a, x3)= f(x3, ya)= f(ys, b)
=f(a’ X4)=f(X4, y3)=f(y3’ b)=C*

and on the other arcs the flow will be equal to zero. [L.R. Ford, D. R. Fulkerson,
Flows in Networks, Princeton University Press, 1962.]

9.22 Let G=(A, B, U) be a bipartite graph where U is the set of edges.
Each edge has one of its endpoints in 4 and the other in B. Now construct a
network in the following manner.

Consider two new vertices, a source a and a sink b. Associate with all the
arcs (a, x) where x € 4 a capacity equalto 1. The arcs (y, b) with y € Balso havea
capacity equal to 1. For each edge [x, y] with x € 4 and y € B, one will consider
the arc (x, y) as existing in the associated network.

All of the arcs of the form (x, y) with x € A and y € B have a capacity equal
to C=|4|+1.

Thus to the bipartite graph of Figure 9.2 corresponds the network of Figure
9.3 for which C=5. It follows from the method of defining this network that
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no flow with integral components can have values other than 0 and 1 on the
arcs of the network. The arcs of the form (x, y) with x € 4 and y € B which have
flow equal to 1 determine a matching consisting of the corresponding edges
[x, y] of the graph G. In fact the arcs with flow equal to 1 cannot have a
common endpoint. since the entry arcs and the exit arcs of the network both
have capacity equal to 1. Thus they can have a maximal flow equal to 1. The
number of arcs u=(x, y) which have a flow f(u)=1 is thus equal to the number
of edges in the associated matching, which is, in turn, equal to the flow jf,
at the sink.

The maximal flow f, in the associated network corresponds to a maximal
matching in the bipartite graph G obtained by considering the arcs between
A and B which have a flow equal to 1. Tt follows that v(G)=max f,. The Ford-
Fulkerson theorem implies that max f,=miny c{w (7)), where T is a set of
vertices such that a¢ T and beT. Note that for T=AuBu{b} one has
c(@™(T))=|A| and C=|A|+ 1. It follows that the minimal capacity of a cut in
the network is attained for a cut which does not contain an arc of the form
{(x, y) with x € 4 and y € B. Thus min; c(w™(T)) =c{w ™ (T,)), where

o (To)={{a x)|xed}u{(y, b)|yeBs}, Aoc=4 and B,cB.

Now we show that A, By is a support for the bipartite graph G. To do this,
consider an arbitrary edge [x, y] € U to which corresponds the path (q, x, y, b)
in the network associated with G. Since every path from a to b contains at least
one arc of a cut in the network, it follows that either (g, x) € ™ (T,) and hence
X €Ag, or (y, b) ew™(T,) and hence y € B,. Thus one has shown that A,u B,
is a support of G of cardinality |4,0 By|=|4o|+|Bo| =]~ (To)|=clw ™ (Ty)=
v(G), since each arc in w™(Ty) has a capacity equal to 1. 1t follows that
UG)<|Aow Bo| = v(G).

On the other hand, if V' is a set of edges which form a matching and S is a
set of vertices which form a support of G, it follows that || <|S|. (This is because
the edges in V do not have an endpoint pairwise in common, but each one has
at least one vertex from S.) This implies that v(G)<7(G), which, together with
the previously established opposite inequality, establishes the equality of the
two numbers for the bipartite graphs.

9.23 The matrix A4 can be considered to be the matrix of a bipartite graph
G=(X,Y,U),where X={xy,..., %}, Y={p1, ., ¥m}. and U= {(x;, y)|ay=1}.
The maximum number of elements equal to 1 which are found on different
rows and columns corresponds to the edges of a maximal matching of G,
which contains v(G) edges. If the rows i;,...,i, and the columns j,,...,j;
together contain all the elements equal to 1 in the matrix A, then {x;,..
Xi, Yjps+ - s ¥, 15 a support of the graph G.

The minimal number of rows and columns with this property is thus equal
to 7(G). By the preceding problem, v(G)=1(G), which completes the proof.

T

9.24 Let E(n)=[4(n—1)*]. The proof is by induction on n. For n<3 the
result follows by enumerating all possible cases. Suppose that the property is
valid for all graphs with at most n vertices, and let G be a graph with n+1
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vertices. Let G, denote the subgraph obtained from G by deleting x and all
edges incident to it. It follows from the induction hypothesis that 6 ,(G,) < E(n).
Hence by using at most E(n) operations () and {f), G can be transformed into
K, vK,, where n, >0, n,>0, and n, +n,=n. If x is adjacent to p, vertices of
K, and to p, vertices of K, , then G can be transformed into K, v K, 4, or
K, ., uK, either by p, operations (x) and n,—p, operations (f§) or by p,
operations (¢) and n,—p, operations (f). Let z,=p,+n,—p, and z,=
pa+n, —p,. It follows that z; +z,=n, and hence min (z,, z,)<3n for even n
and min (z,.z2)<3(n—=1) for odd n. Finally one has &,(G)<6,(G,)+
min (z,.z,)<E(n+ 1), since E(n)+in=E(n+1) for even n and E(n)+4(n—1)=
E(n+1)for odd n.

In order to characterize the extremal graphs G with n vertices with this
property, observe that if 6 ,(G) = E(n), then for any vertex x of G one has 6,(G,)=
E(n—1). The characterization of all graphs G such that §,(G) =E(n) can now be
obtained by induction on n. For n< 3 it can be shown directly that all extremal
graphs are complete bipartite graphs. Suppose that this property is true for all
graphs with at most n vertices, and let G be a graph with n+ 1 vertices such that
,(G)=E(n+1). If the subgraph G, with »n vertices is composed only of isolated
vertices, then x is also isolated or it is adjacent to all vertices of G,, since other-
wise there would exist a vertex y#x such that G, is not a complete bipartite
graph, and hence §,(G,) < E(n) by the induction hypothesis. But this would imply
that 6,(G) < E(n+1), which is a contradiction.

Thus G contains only isolated vertices (ie, G=K;,,.,) or G=K, ,.
A similar proof can be used when G, is a graph K, , where p, ¢>0
and p+q=n It remains to show that 6K, ;)=E{n) when p, 420 and
p+q=n. For K, one may obtain a chque composed of x vertices from
the set with p vertices and y vertices from the set with g vertices of K, ,; the
remaining vertices constitute the second clique. Hence the number of opera-
tions () and () is equal to ( 22)+(” x)+(’2)+(q Ntxig=y)+yp—x)=(x=1)>-
(p—glx—y)—3n+4(p?+4%). This expressmn has a minimum equat to E(n) if
0<x<p,0<y<q, p+qg=n and this minimum is reached only if x —y =4(p—g)
for even n and x—y=4p—q—1) [or 4(p—q+1)] for odd n. For the graph
K, , with nisolated vertices one finds that () + ()= E(n) if x + y = n, and equality
holds only for x=y=4%n for even n and x=%i(n—1), y=%(n+1) for odd n.
[M. Petersdorf. Wiss. Z. Techn. Hochsch. Ilmenau 12 (1966), 257-260, and
1. Tomescu, Math. et Sci. Humaines, 42 (1973), 37-40.]

Let 5, =maxg 6,(G), where 6,(G) represents the minimum number of opera-
tions (%) and/or (f) which transform G into the union of & disjoint cliques (some
of them may be empty). It is known that &, =(;) and &, =[4(n~ 1)*] for any
2<k<n [1. Tomescu, Discrete Math., 10 (1974), 173--179.]

CHAPTER 10

10.1 The property will be established by induction on the number of
vertices of the graph G.
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If G has at most k+1 vertices, then it is evident that y(G)<k+ 1. Suppose
that the property is true for all graphs with at most n vertices, let G be a graph
with n+ 1 vertices such that the degrees of the vertices are bounded above by k,
and let x be a vertex of G. Each vertex of the graph G, obtained from G by
suppressing the vertex x and the edges incident with x has degree at most
equal to k.

It follows from the induction hypothesis that

2(G)<k+1.

Since x 15 adjacent to at most k vertices from G, one can color the vertex x
with a color which does not appear among the colors of the vertices adjacent
to x. Thus the total number of colors used to color G is not greater than k+1.
It follows that y(G)< k+1.

10.2 Tt will first be shown by induction on n that 3(G)+ ¢(G)<n+1. For
n=1 and n=2 there is in fact an equality. Suppose now that the inequality
holds for all graphs with at most n—1 vertices. and let G be a graph with n
vertices, x a vertex of G, and G, the graph obtained from G by suppressing the
vertex x and all the edges incident with x. It is clear that:

HOLKHGH+L, GG +1.

If at least one of these inequalities is strict, then the desired inequality follows,
since by the induction hypothesis one has (G,)+ x(G.) < n However, if x(G)=
7G,)+1 and y(G)=x(G,)+1, then it follows that the vertex x is adjacent to at
least one vertex colored with each of the y(G,) colors of G, ; thus dg(x) = x(G,)
and analogously dg{x)=>x(G,). It can thus be seen that y(G,)+x(G,) <dg(x)+
dg{x)=n~1 and hence x(G)+ y(G)<n+1.

Let «(G) denote the maximal number of vertices of G which induce a sub-
graph consisting of isolated vertices. It follows that y(G)a(G)=n, since each
class of a coloring with x{G) colors induces a subgraph which consists of pair-
wise nonadjacent vertices.

On the other hand, it is also the case that x(G)>a(G) since each vertex in a
set M of pairwise nonadjacent vertices in G must receive a color different from
the other colors of M, for every coloring of the vertices of G. Thus y(G)y(G)=n.
The other two inequalities now follow immediately from the inequality
(a+ b =4ab for a, be Z. [E. A. Nordhaus, J. W. Gaddum, American Math.
Monthly, 63 (1956), 176-1717.]

10.3 Consider a planar representation of the graph G. It will be shown that
the faces in the interior of the Hamiltonian cycle C can be colored with two
colors so that each two faces which have a common edge are colored differently.

Now construct the dual graph G of the faces which are found in the interior
of the cycle C as follows: Each face is represented as a new vertex located in the
interior of this face. Two vertices are adjacent if the corresponding faces have
at least one edge in common. Thus it must be shown that the vertices of G¥
can be colored with two colors so that each two adjacent vertices have different

colors.
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Fig. 10.1

The graph G¥ does not contain cycles. For otherwise an elementary cycle of
G¥ would contain in its interior a vertex x of the graph G. But x is found on the
Hamiltonian cycle C, whose edges incident with x are represented by heavy
lines in Figure 10.1. This is a contradiction, since the vertices of G} and hence
the faces of G under consideration are not contained in the interior of the
cycle C. Since Gt does not contain cycles, it follows that it does not contain
elementary cycles. One can therefore conclude from Problem 8.5 that G¥ is
bipartite.

By coloring the vertices of each part 4 and B of G with the same color one
obtains a coloring of the vertices with two colors. Since all the edges of G}
are of the form [a, b] with a €4 and b € B, it follows that each two adjacent
vertices have different colors.

In the same way, consider the dual graph G% of the faces in the exterior of C.
It can be seen that one can also color the faces outside of C with two other
colors. One has thus found a coloring with four colors of the faces in a planar
representation of the graph G, with the desired property.

10.4 Denote by (xy. y,), ..., (x,. y,) the coordinates of the points of inter-
section with respect to a pair of perpendicular axes. One can assume that the
directions of the axes are chosen so that the abscissas x,, ..., x, are pairwise
distinct, for example x; <x,< ‘' <x,. Color the vertices of the graph in this
order with three colors. If one has colored with three colors the vertices with
abscissas x,,..., X;_, then the vertex (x;, J;) has at most two adjacent vertices
which have already been colored, since there do not exist three concurrent lines.
Thus there is a third color usable for the vertex (x;, y,) for i=2,...,n The
inequality under consideration is therefore satisfied.

10.5 The property will be established by induction on the number f of
faces of the graph G. If /=1, it can easily be seen that G is connected and
does not contain cycles; it is thus a tree whose only face is the infinite face. In
this case, the formula is satisfied, since m=n—1. Suppose now that f>1 and
that the property is true for all planar connected graphs with at most /' — 1 faces.
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Let [a, b] be an edge of a cycle of G. The edge [a, b] is located on the boundary
between two faces S and T. By suppressing the edge [a, b] one obtains a new
planar connected graph G, with n, vertices, m, edges, and f, faces, in which the
faces S and T are joined to form a new face, while the other faces of G remain
unchanged. Thus n; =n,m; =m—1, and f, = / — 1. By the induction hypothesis
onehas fy=m;—n;+2andhence f=f,+1=my—n +3=m—n+2.

10.6 Since G is a planar graph with m edges, there will exist m; <m edges
on the boundary between exactly two faces. If G has no vertices of degree 1,
then m; =m. Cut out all the faces of the graph, and count in two different ways
the 2m, edges which are found on the boundary of all the faces. Since each face
has at Jeast three edges on its boundary, it follows from Euler’s formula that

2m=22m, 23 =3¥m—n+2),
or
m< 3n—6.
If G does not contain triangles, then one can show similarly that
2mz2m 24f =4m—n+2),
or
m<2n—4.
10.7 Suppose that the complete graph with five vertices is planar. Then
f=m—n+2=10-5+2=7.
It follows from the preceding problem that
20=2m23f =21,

which is a contradiction. 1f the complete bipartite graph K; ; were planar,
then one would have f =m—n+2=9—-6+2=35.

In the planar representation of the graph K, ;. no face can be triangular,
since the bipartite graphs do not contain odd cycles (Problem 8.5). Thus each
face has a boundary consisting of at least four edges. It follows analogously that

18 =2m>4f =20,

which is a contradiction.
Thus K5 and K, ; are not planar.

10.8 Let G be a graph which is not a triangulation of the plane (each face
a cycle with three vertices). Edges will be added so that each face of the resulting
graph is triangular. If the graph obtained contains a vertex x with degree
d(x)<5, then it will follow that the graph G contains a vertex of degree at most 5,
since by adding edges the degrees of the vertices increase.

Suppose therefore that G is a triangulation. In view of Euler’s formula
(Problem 10.5) one can write
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v+ f—m=2, (N

where v is the number of vertices, f is the number of faces (including the infinite
face), and m is the number of edges of the graph G. Since each face has threc
edges and each edge belongs to two faces, it follows that

3f=2m. (2)

Suppose now that each vertex has degree d(x)>6. In any graph one has the
relation

Y d(x)=2m.

since every edge [x, y] is counted twice, both in d(x) and d(y). It is also the case
that

m
2m>6t, or 5} L.

Euler’s formula and (2) lead to the conclusion that

2=r+f—m=v+2—’11 -m=v— in—SO,
3 3
which is a contradiction. It follows that every planar graph G contains at least
one vertex x such that d(x)<5.
This upper bound for the minimum degree of a planar graph cannot be
improved, as can be seen from Figure 10.2, which represents a planar graph
with 12 vertices which is regular of degree 5 (the graph of an icosahedron).

Fig. 10.2

10.9 It is sufficient to suppose that G is connected, since otherwise one
could add edges between vertices located in different connected components
in a planar representation of G. A new connected planar graph G, would be
obtained such that ¢(G,)=g.

It is also the case that the number of edges of G, is greater than the number
of edges of G.



250 Problems in Combinatorics and Graph Theory

Thus let G be a planar connected graph with n vertices, m edges, and g(G)=g.
The desired property will be established by induction on the number of vertices.
If n=g, then G is a cycle with n vertices, and hence m=n and the inequality
becomes an equality. Suppose now that the inequality is true for all planar
graphs with at most n—1 vertices, and let G be a planar graph with n vertices
and g(G)=g.

Suppose that G contains an edge [a, b] whose removal disconnects the
graph G. Denote by H the spanning graph obtained from G by suppressing the
edge [a. b]. H consists of two disjoint planar graphs G, and G, which have n,
vertices and m, edges (n, vertices and m, edges) respectively. At least one of the
two graphs G, and G, has girth equal to g; say g(G,) =g, =g¢. The other graph
is a tree or has girth g(G,)=g,>g. This property follows from the fact that
since the edge [a. b] does not belong to any cycle in the graph G, it can be con-
cluded that g(H)=¢(G).

If the graph G, is a tree, then

m2=n2—1<§%§ou—2x

Otherwise, by using the induction hypothesis it follows that

and similarly

Thus, since n, + n,=n, we can conclude that

m=m1+m;+1<

giz(n1+n2—4)+1
9 _ 9
g—2 g-2
Hence if G contains an edge whose removal causes G to become disconnected,
then the inequality is proven and it has been seen that the inequality is in
fact strict.

It remains to consider the case in which G does not contain an edge [a, b]
whose elimination transforms G into a disconnected graph. Let f; be the number
of faces which contain i edges for i>g, and let f be the total number of faces in
a planar representation of G. It follows that

Zfl=f and zlfi=2mi

izg izg

<—g—(n1+n2—4)+ (n=2).

g—2

since in this case each edge [a, b] lies on the boundary between two faces. Thus

2m=3 iz} dfi=dl.

izg
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By applying Euler’s formula (Problem 10.5) one can conclude that

2
m+2=n+f<n+-m,
g

and hence

ms< gz(n—Z).

Observe that equality holds only for f,.,= f;+,="--- =0, and thus when all
the faces of G are cycles with g vertices. This case can be realized for certain
values of n. for example, for n=g.

10.10 The property will be proven by induction on the number of vertices
of the graph G.

If G has at most five vertices, the property is immediate.

Suppose that every planar graph with at most n vertices has chromatic
number less than or equal to 5, and let G be a planar graph with n+1 vertices.
It follows from Problem 10.8 that there is a vertex x in G with degree d(x)< 5.

Denote by G, the subgraph obtained from G by suppressing the vertex x
and the edges incident with x. By the induction hypothesis the vertices of G,
can be colored by using at most five colors so that each two adjacent vertices
have different colors. If d(x)< 4 then one can find, for the vertex x, an available
color, different {rom the colors of the vertices adjacent to x. Thus the vertices
of G can be colored with at most five colors, that is, y(G)<S.

Suppose that d(x)=5 and that the vertices y,, y,, v3, V4, ¥s adjacent to x
are colored with at most four colors in the coloring with at most five colors of
G,. One can find an available color for x, and the property is established. The
only remaining case is that in which d(x)=35 and the vertices yy,...,ys are
colored with exactly five colors, say A, B, C. D. E, in the coloring of G, (Figure
10.3). Consider the connected component M which contains y, of the subgraph
of G, consisting of vertices colored with either color A or color C. If the vertex
y3 does not belong to this component, one can interchange the colors 4 and C
in M to obtain a coloring with five colors of the graph G, in which y, has the
color C.

Thus the color 4 has become available, and the vertex x can be colored with
A to obtain a coloring with five colors of the vertices of the graph G. Otherwise,
if y, and y,; belong to M, it follows that there exists a walk which joins y, and
y3 and which contains alternatingly the colors 4 and C.

Consider the connected component N which contains y, in the subgraph
G, consisting of vertices colored B or D. In this case y, ¢ N. In fact, there would
otherwise be a walk with endpoints y, and y, whose vertices are colored alter-
natingly B and D. Since the graph is planar, it would turn out that this walk
must have a vertex in common with the walk which joins y, and y, (see Figure
10.3). But this is impossible, since these two walks consist of sets of vertices for
which the sets of colors are disjoint. Thus y, ¢ N. By interchanging the colors
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B and D in the component N, one obtains a coloring of the subgraph G, with
five colors in which the vertex y, has color D. Thus the color B becomes avail-
able. One can color x with B, and this produces a coloring with five colors of
the vertices of the graph G.

In 1976 K. Appel and W. Haken proved the Four-Color Theorem. It states
that for every planar graph G one has the inequality (G)<4. They used an
electronic computer to study more than 1900 configurations which occurred
in the proof.

10.11 The graphs with the smallest number of vertices which do not contain
triangles and which have chromatic numbers »(G,)=3 and x(G;)=4 respec-
tively are illustrated in Figures 10.4 and 10.5.

Fig. 10.4
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G2
Fig. 10.5

In general, suppose the graph G has vertices x,,..., x,. does not contain
triangles, and has y(G)=k. Associate a new vertex y; with each vertex x; of G
fori=1,...,n Join the vertex y, to all the vertices adjacent to x; fori=1....,n.
Also add a new vertex z which is joined by an edge to all the vertices y,, ..., y,.
It will be shown that the graph G, which is thereby obtained does not contain
triangles and has y(G,)=k+1. Since G does not contain triangles and the
vertices y,...., ), are pairwise nonadjacent, it {follows that every triangle in G,
must have three vertices of the form x;, x;, y,. This is a contradiction, since
x; and x; are adjacent to x, and thus G contains a triangle x;, x;, x,, which con-
tradicts the hypothesis.

It will also be shown that y(G,)=k+ 1. Suppose the vertices x,,..., x, have
been colored with k colors so that each two adjacent vertices have different
colors. The vertices vy,..., ), can be colored with k colors by coloring the
vertex y, with the same color as the vertex x;fori=1,..., n. This is the minimum
number of colors with which one can color the vertices yy,..., y,, since if
p<k colors were sufficient to color the vertices y,,...,¥,, it would follow
that y(G) < k by coloring the vertex x, with the color of the vertex y;fori=1,...,n.

Since the vertex z is adjacent to all the vertices y;, it follows that y(G)=k+ 1.

By this construction, starting {rom the cycle with five vertices (Cs) of Figure
10.4, one obtains the graph represented in Figure [0.5. It has no triangles, and
its chromatic number is equal to 4. By repeating the construction one finds that
for every natural number k> 3 there exists a graph G with y(G)=k which does
not contain triangles.

10.12 Suppose that G contains three mutually adjacent vertices (u,, b,),
{ay, by). and (as, b;) such that ay=a, +b,,a3=a,;+b,, and a;=a, +b,. This
would imply that a;=a, + b, + b, >a, + b,, which is a contradiction.

Let x=1¢, and x =c, be lines with ¢, <¢,. It follows that the point (¢, ¢, — ¢;)
on the line with equation x = ¢, is adjacent to all the points with positive integer
coordinates on the line with equation x =c,. Thus the set of colors of the points
of G located on the line x =¢, is different from the set of colors of the points of
G located on the line x =c,. Suppose that the chromatic number 3(G)=m< o,
It follows that the number of lines with equation x=c, ¢>0, and ce Z is at
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most equal to the number of nonempty subsets of the set of colors, that is,
2™ —1. This is a contradiction, and hence y(G) = oc. [A. Gyarfas, Discrete Math.,
30(2) (1980), 185.]

10.13 One can assume that all the faces in a planar representation of G
are triangles, that is, G is a triangulation of the plane. In fact, if G is not a triangu-
lation, one can add new edges to the graph G until one obtains a triangulation
G,. If the desired inequality is satisfied by G, it will be satistied further for G.
since the degrees of the vertices of G, are larger than the degrees of the vertices
of G. Thus let G be a planar graph with all faces triangular for which the sum of
the squares of the degrees is maximal. Let x be a vertex of minimal degree.
It will be shown that d(x)=3.

In fact, if d(x)<2 it follows that d(x)=2 and the graph G reduces to K,
which contradicts the hypothesis that n>4. Suppose that d(x)>4, and let
X{,X,,...,X, be vertices adjacent to x such that d(x;)<d(x;) for i=2,...,r,
where r=d(x)>4 (Figure 10.6).

Suppress the edge [x, x,] and add the edge [x,, x,] to produce a new planar
graph G, without multiple edges for r>4.

Let S denote the sum of the squares of the degrees of G, and S, the sum of the
squares of the degrees of G,. It {ollows that

={d(x,)+ 112 +{d(x2) + 1)2 +{d(x)— 1}* + {d(x,) —1}2
—{d(x,)}? = {d{x,)}* ~ {d(0)}* — {dlx,}?
=2d(x,) + 2d(x,) — 2d(x) = 2d(x,) + 4 >0,

since d(x)<d(x,)<d(x)) for i=2,...,r. However, this inequality contradicts
the maximality of the graph G, and thus every graph G for which § is maximal
contains a vertex x of degree d(x)=3.

The proof of the property will now be completed by induction on n. Let
n=4, and consider a planar representation of the graph K. In this case both
sides of the inequality are equal to 36. Every other graph with four vertices has a
sum of squares of its degrees less than 36, since the degrees of some vertices
strictly decrease; the property is therefore established.

Suppose now that the property is true for all planar graphs with at most n
vertices, and let G be a planar graph with n+ 1 vertices for which the sum of the
squares of the degrees is maximal and which has all of its faces triangular. By
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the previous observation, there is a vertex x with degree d(x)=3. Let a4, b, ¢ be
vertices adjacent to x. Denote by G, the subgraph obtained from G by sup-
pressing the vertex x and the three edges incident with x. Using the earlier
notation, one sees that

S=S,+9+{d@+1}>+{dB)+ 1} +{d(c)+1}?
= {d@)}? —{d(b)}* - {d(0)}?
=S, +2{d(a)+ d(b)+d(c)} +12.

Consider three vertices g, b, ¢ which induce a complete subgraph with three
vertices in a planar graph with n vertices. It will now be shown that

d(a)+d(b)+d(c)<2n+1. (1)

In fact, if another vertex 4 is adjacent to all three vertices a, b, ¢, then an addi-
tional vertex e can be adjacent to at most two of the vertices a, b, or ¢, say with
a and with b. This follows from Problem 10.7 and the planarity of the graph G
(Figure 10.7). Thus the number of edges which join vertices a, b, ¢ to the other
n— 3 vertices of the graph G is bounded above by 2(n—3)+1 =2n-5. Recalling
the contribution of the edges [a, b], [b, c], and [a, ¢] to the degrees d(a), d(b),
d(c), one obtains

d@+db)+dc)<2n-5+6=2n+1

and thus (1) is verified.

By the induction hypothesis S; <2(n+3)?—62 and thus S<2(n+3)2—62+
22n+1)+12=2(n+4)*-62 which completes the inductive proof of the in-
equality. For n=4 it has been seen that the inequality becomes an equality for
the graph K, with degree sequence 3, 3, 3, 3. It will now be shown by induction
on n that there exists a planar triangulated graph with n vertices and such that
the degrees of the vertices which border the infinite face are equal to 3, n—1,
and n—1 respectively. For this graph the inequality also become an equality.

In fact it is easily seen that this assertion is true for n=4. Suppose that it is
true for n, and let G be a planar graph with the desired property.

Suppose that the infinite face of G is bounded by the cycle [a, b, ¢, a] with
d(@)=3, d(b)=n—-1, and d{c)=n—1. Proceed to define a planar graph G,
with the desired property as follows: Consider a new vertex x, ., (on the infinite

e a d

Fig. 10.7
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c
Fig. 10.8

face of the graph G) which is joined by edges to a, b, ¢ as in Figure 10.8. The new
infinite face of the graph G, is bounded by thecycle [b, ¢, X+ 1, b]. Also d(x,+ )=
3, d(a)=4, d(b)=n, and d(c)=n. G, is a triangulation, and S, =S+9+2n%—
2n—-12+16—9=S+4n+14. However, by the induction hypothesis S=
20n+3)?—62, and thus §,=2(n+3)>—62+4n+14=2n+4)>-62 and the
property is established.

By using the fact that the function x*~':[0, c0)~ is convex for a2, it can
be shown analogously that

Y di<2n—1)+(n—4)14"+2 x 3° (2)
i=1
for every planar graph G with n>4 vertices and o >2. Equality holds for the
planar graph constructed for a=2. It has degrees d; =d,=n—1, d3='"" =
dn—2=4! dn-1=dn=3-
For a=1 inequality (2) becomes an equality for every triangulation of the
plane and expresses the fact that the number of edges of a triangulation is equal
to 3n—6 (by Problem 10.6).

10.14 Denote by U={u,,...,u,} the set of edges of the graph G, and let
Ai={:X>{1,..., 4| f(x)= f(y) where u;=[x, y]}. The number of functions
which satisfy the desired condition is equal to

Po(A)=A"=|A, AU - LA,

One can evaluate the cardinality of the set 4,u -~ U4, by using the
Principle of Inclusion and Exclusion (Problem 2.2):

Ao udnl= Y (=), A,

vcu

1297
where p(V, ) represents the number of functions /:X—{1,..., 1} which take
on the same value {or the endpoints of every edge in V. It follows that these
functions have the same value from the set {1,..., A} for each connected com-
ponent of the spanning graph (X, V) of G. Thus p(V, 4) = A", This justifies the
expression for the chromatic polynomial of the graph G in view of the fact that
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the term A" is obtained for V =£¥ when the spanning graph (X, V) consists
only of isolated vertices and thus has n connected components.

Observe that a single term of degree n is obtained for V' =£¥, namely 1",
but terms of degree n— 1 are obtained for |V|= L. In this case there are (7)=m
terms equal to — A"~ !, and hence

Pold)=2"—min~ 4 e,

where m is the number of edges of the graph G.

If Pg(A)=A"+a; A" ' +a,A"" 24 -++ +a,, then one can show similarly that
a,=(7) —¢3(G), where ¢,(G) represents the number of triangles of the graph G.
Terms of degree n— 2 are obtained for ¢(V)=n—2, when |V'|=2 and the span-
ning graph (X, V) of G contains only two edges, adjacent or not. This also
occurs if |V|=3, when the spanning graph contains three edges which form a
triangle.

Since two edges can be chosen in (7) ways. one has indeed obtained the
expression for the coefficient a,.

10.15 Ifa A-coloring f of the graph G — e has the property that f(x)= f(y),
where e=[x, y], then f is also a A-coloring for G and vice versa. It follows that
Ps_ (A= Ps(A) is the number of those A-colorings f of G — e with the property
that f(x)= f(y).

A J-coloring f of G— e of this kind produces a A-coloring g of G |e by defining
g(z)=f(x)=f(») and g(t)= f(t) for every t+#z. Conversely, every A-coloring g
of the graph G|e induces a A-coloring f of G —e with the property f(x)= f(y)
by defining f(x)= f(y)=g(z) and f()=g(r) for t+x,y. Since both corre-
spondences are injective, it follows that

PG‘e(i)_PGM)=PG|e(}-)

for every natural number 4.
Since the equality holds for polynomials of a given degree, it follows that the
chromatic polynomials are equal for every 4.

10.16 (a) Let K, have vertex set {x;..... X,;. A A-coloring f can be
defined at x, in A ways. at x, in . —1 ways,....at x, in A—n+1 ways, so that
there are

Py (W)=i(=1) - (A=n+1)

n

possible ways of defining the function f so that it takes on pairwise different
values for all the vertices x,, ..., x,.

(b) Letxbeavertex of degree 1 of T,, and denote by T, — x the tree which is
obtained from T, by suppressing the vertex x and the edges incident with x.
A J-coloring of T,—x can be extended in A—1 ways to a 2-coloring of T,,
and thus

Pr()=(i=1)\Pr, (3.
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By continuing in this manner one sees that
Pr(A=(A=10""Pr(A)=22a=10""

since the chromatic polynomial of the tree with a single vertex is A.

{c) Let e be an edge of the cycle C,. Apply the property of Problem 10.15
to obtain

Pc (A)=Pc,-A) = P¢ 1(4),

where C,—e is a walk with n vertices. Thus from (b) it follows that P¢_ _.(4)=
Mi—1)""1 and C,|e is a cycle with n—1 vertices. Thus

P (A)=AA=1)""1 =Pc _(A),
and a repetition of this argument yields
Pe (A)=AA=1)" = 2a=1)""2+ - +(=1)""2UA=1),
since Pg,(l)=Pg,(A=AA—=1)1=2)=AA—1)>—A(A—1). One can thus write
MA=1P  =(A=14+ A= =(1~1)P+(1—1)"! for 2<p<n, and hence
Pe(W=0=1)+A-1" 1 =(A=-1y" == 24 -
(=12 A=)+ (=1 Hi=1)
=A-1)"+(=1)a~1)

10.17 Both properties will be proven by induction on the number of edges
of the graph G. For the graph with n isolated vertices one has Ps(x)=x", which
has the desired form.

Suppose now that the property of alternating signs of the coefficients of the
chromatic polynomial is true for all graphs with n vertices and m<p—1 edges.
It will be established for an arbitrary graph G with n vertices and p<(;) edges.

Let e be an edge of G. It follows from the result of Problem 10.15 that

Pg(x)=Pg-o(x) = Pgelx). 1)
Since the graphs G —e and G|e have at most p—1 edges, one can use the in-
duction hypothesis to show that
Po_odx)=X"—b,_ X" by px" " = e (=1)" by x,
P x)=x"" = Cpo g X" Ty 3 X" = o (= 1) 2y x,
where b;, ¢;>0. Substituting in (1), one finds that
Po(x)=x"= byt + X" (Byog + Ca X" 72— - (= 1) 1(b1 +¢y)x,

which completes the proof of the first property.

The graph G, which has one more edge than G — ¢, has the coeflicient a,_, =
b,-y+1.But a,_, =0 for the graph with n vertices and no edges. 1t follows that
a,-, is the number of edges in the graph G.

Now let G be a connected graph with n vertices. It will be shown that
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a;=(i_ 11) by induction on the number of edges of G. I G has the minimal number
of edges, equal to n—1, then it is a tree, and by Problem 10.16 its chromatic
polynomial is equal to

-1 n—-1 S £ Auh N RPN
Po(x)=xix—1)"" ' =x"~ X"+ X" —
1 2
(=1t ("_1> .
n—1

This establishes the inequality a;>(j_;) for 1 <i<n—1.
Suppose that the property is true for every connected graph with » vertices
and m edges such that

n—-l<m<p—1.

The property will be proved for a connected graph G with n vertices and p<(})
edges.

Suppose that G is not a tree. Then there exists an edge e such that G—e¢
is a connected graph. The graph G|e obtained by identifying the endpoints of e
is also connected, and. using the previous notation and the induction hypothesis,
one can see that ¢;=b,+¢;fori=1,...,n—1and ¢,-, =1, and hence a,->(',':f).

Since the chromatic polynomial of a graph is equal to the product of the
chromatic polynomials of its components, it follows that the smallest number s
such that x* has a nonzero coeflicient in Pg(x) is equal to the number of com-
ponents in G.

10.18 If the graph G has components G,, ..., G, then a i-coloring can be
defined on a component independent of its definition on the other components.
[t follows that

PG(’:'):: PG](}-) e PG,,()'-)'

Thus P4(4) has no roots in the interval (0. 1) if and only if each polynomial
Pg (%) has this property fori=1,...,m.

Finally, one can suppose that G is connected and proceed to show that
(= 1) Pg4(4)>0 if the graph G has n vertices and 0< 4 < 1. This property will
be established by induction on the number of edges of the graph G. If G has a
minimal number n—1 of edges, then it is a tree, Pi{A)=Ai(A—1)""" and the
property is satisfied.

Suppose now that the property is true for all connected graphs G with
m>n—1 edges. [t will be shown that the property also holds for a graph G
with n vertices and m+ 1 edges.

Since G has a number of edges which is greater than n—1, it follows that
there is an edge ¢ in G with the property that G—e¢ is connected. The graph
Gle obtained by identifying the endpoints of e is also connected; it has n—~1
vertices and at most m edges. Therefore, by the induction hypothesis

(=1y"'Pe_fH>0 and (=1)""PgA)>0 for O<i<l.
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Furthermore, it follows from Problem 10.15 that
(= 1) Py =(= 10"~ {Pg_2) = Pgy(2)}
=(= 1" P () +(—1)""2Pg(4)
>0 forevery O0<i<l.

Thus one can conclude that P¢{4) has no root in the interval (0, 1).

The fact that (3—+/5)/2 (0, 1) implies that (3—+/5)/2 is not a root of any
chromatic polynomial P4(4). Since the chromatic polynomials have rational
coefficients, it follows that (3+4/5)/2=1+1 is not a root of any chromatic
polynomial Pg(4) for any graph G.

10.19 If x is a vertex of maximum degree, then there are D edges incident
with x, which thus have a common endpoint. It follows that

q(G)=D.

The proof of g(G)< D +1 will use induction on the number m of edges of the
graph. If m=1 then g(G)=1 and D=1, so that the inequality is satisfied. Sup-
pose that g(G)< D +1 for all graphs with at most m—1 edges, and let G be a
graph with m edges and maximum degree D.

Now suppose that all the edges of G. with the exception of the edge ¢, =
[z, w,], have been colored with D+ 1 colors so that every two edges with a
common endpoint have different colors. It will be shown that under these
circumstances there exists a coloring of the edges of G with D+ 1 colors, that s,
q(G)< D+ L.

In fact, by the induction hypothesis there is a coloring with D"+ 1 colors of
the edges of the graph G, obtained from G by suppressing the edge [, w,].
But D'=D or D’=D -1, and hence D’'<D. There also exists a coloring of the
edges of G, with at most D+ 1 colors which satisfies the given condition.

It will be shown that this coloring can be extended to the edge ¢, . Since the
maximum degree in G is D, it follows that for the edges incident with v and
with wy, at least one color from among the D+ 1 colors is missing.

If the same color is missing at v and w,, then one can use it to color the edge
e; and the proof is finished. Otherwise, let o be the color missing from among
the edges incident with v, and let 5, #a be the color missing from among the
edges incident with w,.

(a) Let e;=[r, w,] be the edge incident with v which is colored f3,. There
:xists such an edge, because otherwise this color would be missing {rom among
the edges incident to v and to w,, contrary to hypothesis. Delete the color of the
>dge ¢,, and color e with ;. Suppose that the vertices t, w,, w, belong to the
same connected component of the spanning graph H(x, 5,) of G consisting of
.he vertices of G and the edges colored with o or f3;. If this were not possible,
yne could interchange the colors a and ff; in the component which contains
he vertex w,, without changing the color f3, of e,. Since the edge ¢, is colored
3. it follows that w, is not incident with another edge colored f3,. By inter-
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changing « and §, at w, it turns out that the color a becomes available and it is
also missing from among the colors of the edges incident with v. It follows that
the edge ¢, =[v, w,] can be colored with o and this yields a coloring of the
edges of the graph G with at most D+ 1 colors.

It remains to consider the case in which the vertices v, w,, w, belong to the
same component of the graph H{z, ;).

(b) Let §,+#f, be acolor which is missing from the edges incident with w,.
One can suppose that fi, is the color of an edge incident with r, for otherwise
the proof could be finished by coloring the edge ¢, with f§,. Let ey =[v, w;] be
the edge colored f3, which is incident with v. Delete the color f§, from the edge
e,, and color ¢, with fi,, since §, does not occur at w,. Following the same
reasoning as in (a), one can consider only the case in which v, w,, w; belong to
the same component of the spanning graph H(a, 3,).

(c) The number of colors is finite, and the colors themselves f,, 5. f5,...
are pairwise distinct. It follows that either one can color all the edges incident
with v (and thereby obtain a coloring of the edges of G with at most D + 1 colors)
or else one arrives at the following situation: One can no longer use operations
of type (a) or (b) to recolor the last edge [v, w,] which has color B,_,. This is
because every color missing from w, is a color f§; where i<k—1.

Similarly one can suppose that v, w;, w;,, belong to the same component C
of the spanning graph H(a, f;), and thus there is a walk with endpoints w; and
W+ which consists only of edges colored alternately a and ;. The color « does
not occur in the edges incident with v, and f§; does not occur in the edges incident
with wy, . It follows that C is a walk from v to w;,, which passes through w,
and which contains only edges colored o and f; alternately (Figure 10.9).

This walk does not contain the vertex w,, since 3; does not occur among the
colors of the edges which have an endpoint at w;. If C, is the component of
Hia, ;) which contains w,, then C and C, are disjoint. This follows because

— —~—

13,' Bi

a8 Wy

€41
ey -

w, 8; ek W

< C

Fig. 10.9
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otherwise they would form a single component, contrary to the definition of C
and the fact that the color f§, is missing at w,. Thus in the component C, one
can interchange the colors « and f, without causing the color a to occur at v
for the edge [v, w,] of color §;.

The color f; is missing at w,. It follows that after interchanging the colors
in C, the color a will be missing at w, and in v. Thus one can color the edge
[v, w ] with color a. This yields a coloring of the edge set of G with D+ 1 colors.

Thus, for example, g(G) =D + 1 for an odd cycle C,., ,, for which g(C,,,,)=3
and D=2,

10.20 The number of edges without a common endpoint which can be
colored with the same color is less than or equal to n/2. Thus for n even there
exist at most n/2 edges which can be colored with the same color, and for n odd
there exist at most (n—1)/2 edges which can be colored with the same color.
Since the complete graph K, has (3) edges, it follows that g(K,)>n—1 for n
even and g(K,)=n for n odd.

The opposite inequality will be established by means of a construction which
provides a coloring of the edges of K, with n colors for n odd and with n—1
colors for n even.

Represent the vertices of the graph K by the vertices of a regular pentagon
ABCDE. Color the sides of the pentagon with the colors I, 2,..., 5, and all the
diagonals parallel to a side with the same color as the respective side (Figure
10.10). One thus obtains a coloring of the edges of K, with five colors which
satisfies the condition that two edges which have a common endpoint have
different colors.

Observe that in this way one color becomes available at each vertex. For
example, no edge incident with A4 has color 4. The set of colors which are avail-
able at all the vertices is the set of five colors used to color the edges of K.

Fig. 10.10
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Fig. 10.11

[t follows that by taking a new vertex F and joining it to all the vertices of the
pentagon, the coloring of the edges of K5 is uniquely extended to a coloring
of the edges of K¢ with five colors. For example, the edge AF is given color 4,
which is available at vertex 4, and so on (Figure 10.11). This construction can
be generalized to any two graphs K, and K., with n odd.

10.21 Represent the chess players by the vertices of a complete graph K,,.
The matches played in one day can be represented by a set of edges which do
not have an endpoint pairwise in common. It follows that the minimum number
of days in which the tournament can end is equal to the minimum number of
colors needed to color the edges of K, so that each two edges with a common
endpoint have different colors. In fact, one can use the same color to color edges
which correspond to matches which are played in the same day. Thus the
minimum number ol days is g(K,), which (by the previous problem) is equal to
n—1 for even » and to » for odd n.

10.22 The property will be proven by induction on the number n of vertices
of the graph. For n=1 or 2 the result is immediate [or 1 < k< n. Suppose that
the property is true for all graphs with at most n— 1 vertices.

Let G be a graph with n vertices and chromatic number y(G)=k (1 <k<n).
Let x be a vertex of the graph, and let G, be the subgraph obtained by suppressing
the vertex x and the edges incident with x. The number of minimal colorings
of the graph G with x(G) colors will be denoted C,,(G).

If y(G,)=k, it follows that

ClG) K kC,(G )<k k" 1=k K,
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The inequality becomes an equality only when x is an isolated vertex and the
subgraph G, has a maximum number of minimal colorings. This follows from
the fact that the vertex x can be added to a minimal partition of G, with k
classes in at most k different ways.

If y(G,)=k—1, then a minimal coloring of G is given as follows:
{x},C,..., Cy-,, Where thesets C,, ..., C,_, consist of pairwise nonadjacent
vertices and there exist k—1 vertices x, € Cy,..., X4~ € C,—, which are
adjacent to x. Otherwise one would have y(G)<k—1.

Let X be the vertex set of G. It follows that every k-coloring of G has a class
which contains the vertex x and a subset of the set X \{xy,..., x,—J. Since
XN\{x, x;,...,x;-,} contains n—k elements, it follows from the induction
hypothesis that the number of k-colorings of X which contain in the same class
the vertex x and r vertices of the set X \{x, x,,...,x,_} is bounded above
by (":k Wk =1Y"*"" for 0O< r<n—k. Infact the r vertices can be chosen from the
n—k vertices in (":") distinct ways. The maximal number of (k—1)-colorings
of a graph G with n—k —r vertices and y(G)=k ~ 1 is equal to (k—1)""*~". Thus

n—k
CalG)< Y ( } k) (k—1y~*r =k
r=0

Equality holds only when {x, x,..., X} induces a complete subgraph and
the remaining n—k vertices are isolated. Thus it has been established by in-
duction that C,(G)<k"™* for every graph G with n vertices and chromatic
number equal to k. The upper bound is attained only when G consists of a
complete k-subgraph and n—k isolated vertices. Observe that this graph is the
unique graph G with y(G)=k and the minimal number (;) of edges. [1. Tomescu,
C. R. Acad. Sci. Paris, A272 (1971), 1301-1303.]

10.23 Let C(n, k) be the desired number of colorings. It is clear that C(n, n)=
C(n,2)=1{forevery n=2, and C(n, k)=0 for k>n. [t will be shown by induction
on n that C(n, k)=S(n—1, k—1) for every tree with n vertices. For n=2 the
property is obviously true. Suppose that the property is true for every tree with
atmost n— 1 vertices. It follows that C(n, k) =S(n—2,k—2)+(k—1)S(n -2, k—1).

In fact every tree A with n vertices contains a vertex x of degree 1 such that
the subgraph A, obtained from A by suppressing the vertex x is a tree with
n— | vertices. The set of C(n, k) colorings of A can be expressed as the union
of the set of k-colorings for which the vertex x is alone in a class of the partition
[there are S(n—2, k—2) such colorings, i.e., the number of (k~1)-colorings of
the tree A,] and of the set of k-colorings in which the vertex x occurs in a class
together with other vertices of the tree. Since x is adjacent to a unique vertex
of the tree, it follows that x can be added to exactly k—1 classes of a k-coloring
of a tree with n—1 vertices. Thus, by the induction hypothesis this set of color-
ings has cardinality (k—1)S(n—2, k— 1). It follows from the recurrence relation
for Stirling numbers of the second kind (Problem 3.4) that C(n, k)=8(n—1,k~1)
for every tree with n vertices.

10.24 The property will be proven by induction on k. For k=1 the graph G
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does not contain an edge, and it is sufficient to let H=G. In this case dy(x)=
dg(x)=0 for every x € X, and the graph H is monochromatic. since it consists
of isolated vertices.

Suppose that the property is true for all graphs which do not contain a
complete subgraph with k+1 vertices. and let G be a graph which does not
contain a complete subgraph with k + 2 vertices.

Let x be a vertex of maximum degree in G. Denote by X, the set of vertices
adjacent to x, and let G, be the subgraph induced by the set of vertices X .

Since G, does not contain a complete subgraph with k+ [ vertices. it follows
from the induction hypothesis that there exists a graph H, with vertex set X,
which is k-chromatic and satisfies

dy,(2)=dg (2) forevery zelX,.

Let H be a graph with vertex set X. In H all the vertices of X \ X, are joined
to all the vertices of X ,. Also adjacent are all pairs of vertices in X'; which were
adjacent in H,. The graph H is (k+ 1)-chromatic by construction, since y(H,) =k.
If y ¢ X, then

dp(y)=|X 1| =ds(x) > dg (),
and if vy € X, it follows that
dy(y)=1X|=1X [ +du,(3)
=X | =X [ +de,()>de(y),

which establishes the property.
Now let G be a graph with n vertices and without a complete subgraph with
k+1 vertices. Let 4,,..., A, be monochromatic subsets of vertices of H.
Denote |4, =a;, so that a;+ - +a,=n, and let U, V be the edge sets of
the graphs G and H respectively. It follows that

Ul=1 T do0<t T dux=Vi< T aay
2xeX 2xeX 1<i<j<k

since there are edges in H only between vertices from distinct sets 4; and A;.

The last sum is maximal if and only if |¢;~a;|<1. Thus a;= " =qa,=
m+1and a,,, =" =a,=m, where m=[n/k] and n=r (mod k). Observe that
this limit is attained only if the last inequality becomes an equality and hence
in the class of complete multipartite graphs. (See Turan’s theorem, Problem 9.9.)
[P. Erdos. Mat. Lapok, 21 (1970), 249-251.]

10.25 Suppose that G possesses the maximum number of edges in the class
of graphs with n vertices and chromatic number equal to k, and that the number
of vertices with color i is equal to n, for 1<i<k(ny+ -+ +n,=n). It is clear
that any two vertices of different colors are adjacent, that is, G is a complete
multipartite graph. If for example n, >n,+ 2, then one can move one vertex
from the class with n, vertices into the class with n, vertices, thus obtaining a
new multipartite complete graph G, with n vertices and m, edges. It [ollows that
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my—m=n;—1-n, 21,

which is a contradiction. Hence |m;—n;|<1 for any 1<i, j<k, and G is iso-
morphic with the Turan graph defined in Problem 9.9.

10.26 Let G be a graph with n vertices. andlet PA)=A"—a,_ A" '+ - +
(—1)"" a4 It follows that a, -, is the number of edges of G, and y(G)=1 if and
only if Ps(1)=Pg(2)="-=Pglt—1)=0 and Pg(1)>0. If Pg(A)=Pr, . (4), it
follows that #(G)=x(T{n, k))=k—1 and that G and T(n, k) have the same
number M(n, k) of edges. From Problem 10.25 one can conclude that G is
isomorphic to T(n, k). [C.-Y. Chao, G. A. Novacky, Discrete Math., 41 (1982),
139 -143.]

10.27 One can show that Pc(k):ZLo i!(’,f)C,-(G) holds, where C;(G) stands
for the number of i-colorings of G, which are partitions of the vertex set of G.
In fact, i colors can be chosen from the set of k colors in (%) different ways, and a
partition into i classes generates i! colorings, taking into account the order of
the classes. The formula for C,(G) results from the inverse binomial formulas
(Problem 2.17) if a, = Ps(k) and

k
be=k!Ci(G)= Y (=1 (’:) Peli)
=0

k [k
=Y (=1) () Pk ~1i).
i=0 1

10.28 The set of points having coordinates (0, 0), (4, 3), (3, —3),and (1,0)isa
4-clique for G, and the points (0, 0), (0, 1), (1, 0), and (1, 1) induce a 4-clique for
Gy, which implies that y(G4) =>4 and x(Gg)>4. It remains to define a 4-coloring
for G4 and Gg. In the case of G4 consider all lines with slope 1 or ~1 passing
through the points of E2 having integer coordinates (digital points). The inter-
section points of these lines are points M(p, q) where p, g€ Z and points
N(r/2, s/2) where r, se & and r, s=1 (mod 2). Let S denote the set of all such
points. Color M(p, g) €S with color a if p=g(mod?2) and with color § If
p=q+1(mod 2). Color N(r/2, s/2) € § with the color y if r=s(mod 4) and with
the color § if r=s+ 2 (mod 4). For P(u, v) € § consider the points Q=(u—4,v+%)
and R =(u—1, v—-4). Il Pis colored with the color a € {a. f. y, 6}. then all interior
points of the segments PQ and PR will also be colored with the color a. In this
way any square ABCD having vertices in S and length of a side equal to ﬁ/Z
will have its four vertices colored with ¢, §, v, 4, and the colors of the sides will
be «, a, b, c. where a, b, ¢ € {a, f5, y, 6}. In this case color all interior points of
ABCD with the color a. Thus all points of E2 wil] be colored with four colors.
Itiseasytoseethat ifd,(E, F)=1 then E and F have different colors.

A 4-coloring of Gz may be defined in a similar manner. Let S denote the set
of digital points of £2, and color the points of S in the following way: the point
M(p, q) with p, ge Z will be colored with the color o if p=1 (mod 2) and
gq=1(mod?2): § if p=0(mod?2) and g=0(mod 2); y if p=1(mod?2) and
qg=0{mod2); ¢ if p=0(mod 2) and g=1 (mod 2). If M(p, q) € S is colored with
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the color «, then all interior points of the segments MQ and MR, where Q=
(p—1, g) and R=(p, g— 1) will also be colored with the color u. Any unit square
ABCD with its vertices in S has its four vertices colored with «, f, y, 4, and the
colors of the sides are a, a, b, ¢ € {o, f, ¥, 8}. Color all interior points of ABCD
with the color a. Now if dg(E, F)=1, then points E, F € E? will have different
colors. Let G be the corresponding graph for Euclidean distance in E2. The
problem of determining x(G) is an open problem in Euclidean Ramsey theory.
It follows from Problem 14.1 that y(G)>4. The existence of a 7-coloring of the
plane covered by congruent regular hexagons of side se (L;ﬁ, 1) implies that
G)<7.

10.29 1f G has no subgraph isomorphic to K, it is clear that G has at least
p+ 1 vertices. Suppose that G has p+ 1 vertices. Because y{G)=p, it follows that
there exists a partition of its vertex set of the form {x;}, {x;},..., {x,_(}
{xp, X4} Where {x,,...,x,-} spans a complete subgraph K,_, and x, and
X,+, are not adjacent. Since G has no p-clique, it follows that x, is nonadjacent
to at least one vertex x;, and x4, is nonadjacent to at least one vertex x;,
where 1<i,j<p—1. But in this case {x{}....,{x;, X} ... {X;, Xpu1hr.. -,
{xp_1} (forigj) or {xi} ..., {xiy Xpo Xpur}y ooy {X,- ) (for i=j)is a (p=1)-
coloring of G, which contradicts the hypothesis. Thus G contains at least p+2
vertices.

Now consider a (p— 1)-clique C, two vertices a, b € C, and three new vertices
x, y, z ¢ C. By definition x is adjacent to all vertices ¢ € C such that c¢#a; y is
adjacent to all vertices ¢ € C such that ¢#b; z is adjacent to x, v and to all
vertices ¢ € C such that c#a, b. The graph G defined in this way satisfies all
the conditions in the statement of the problem, and it reduces to the five-vertex
cycle Cs for p=3.

CHAPTER 11

11.1 Denote the two vertex sets of K, , by X={x;,....x,} and Y=
{¥1,..., yn}; the edges of the graph are of the form [x;, y;] with 1 <i,j<n.

Since every Hamiltonian cycle passes through x,, one can determine the
number of ways of constructing a Hamiltonian cycle which originates and
terminates at x,;. One can leave from x, towards one of the vertices in Y in n
ways. From here one can return to a vertex of X, other than x;, in n—1 ways.
Now a continuation to a vertex in Y, other than the vertex which has already
been traversed, in n—1 ways, and so on. When one arrives at the last nonvisited
vertex in X, there will still exist a nonvisited vertex in Y which one can leave for
and return to x,. The number of cycles thus obtained is equal to

nin=1n—1)n=2)n=2)--(1)(1)=(n-1)! nl.

The family of cycles thus obtained contains every cycle exactly twice, corre-
sponding to the two directions in which the cycle can be traversed. Thus K, ,
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contains exactly +(n—1)! n! cycles which pass through each vertex exactly once.

11.2 For h=0 there are (n—1)!/2 Hamiltonian cycles in the complete
graph K,, and the formula is seen to be satisfied. In fact, every Hamiltonian
cycle determines a cyclic permutation of the vertices of K,; the number of
cyclic permutations on » elements is equal to (n—1)!. It is possible to obtain
two distinct circular permutations from the same Hamiltonian cycle by travers-
ing the cycle in both directions. Thus the number of Hamiltonian cycles in K, is
equal to 4(n—1)!. This formula can also be established by induction, since for
n=3the graph K, is a Hamiltonian cycle. Suppose the formula holds for n<m,
and let K,,., be the complete graph with m+1 vertices: x;,..., X,~;. Every
Hamiltonian cycle in K,, . can be obtained from a Hamiltonian cycle of K,
by inserting the vertex x,.; between two adjacent vertices of the cycle. Each
Hamiltonian cycle of K,, generates in this way m different cycles of K, ,, and
by the induction hypothesis K,, has {m—1)!/2 Hamiltonian cycles. It follows
that the number of Hamiltonian cycles in K, ; is equal to {{m—1)!1/2}m=m!/2,
and hence the property holds for every m>3.

Let h21, and suppose that 4 edges are each replaced by a new vertex. One
thereby obtains a complete graph with n—# vertices which has (n—h—1)!/2
Hamiltonian cycles. Let z be a vertex which has replaced the edge [x, y] in one
of the (n—h—1)!/2 Hamiltonian cycles, and let u, v be adjacent to z in this
cycle. The edge [x, ] can replace the vertex z in this Hamiltonian cycle in
exactly two distinct ways: The walk [u, z, ] is replaced by [u. x, y.v] or by
[u, y, x, v]. After carrying out this operation for all the vertices which represent
the h edges, one obtains {(n—h—1)!/2}2"=(n—h—1)!12""1 pairwise distinct
Hamiltonian cycles which pass through the h given edges.

Observe that every Hamiltonian cycle which passes through the h edges can
be obtained without repetition in this way. The h edges have no vertices in
common, and hence it follows that 2h<n.

11.3 Let the vertices of K, be numbered 0, 1. 2, .... 2k, and consider the {ol-
lowing Hamiltonian cycle:

C,=[0,1,2,2k 3,2k—1.4.2k-2.5. ..., k+3, k. k+2, k+1,0],

which is represented in Figure 11.1.

Now add | modulo 2k a total of k—1 times to all the nonzero numbers in
this sequence, with the exception that 2k is not replaced by its residue. One
thereby obtains a total of k=(n— 1)/2 Hamiltonian cycles. In order to show that
these Hamiltonian cycles are disjoint with respect to edges it is necessary to
consider the sum modulo 2k of each two consecutive nonzero numbers in the
sequence. For C, these sums form the set {2, 3}, and adding 2 modulo 2k yields

14,5), 16,7}, ..., 12k—=2,2k—1}, {0, 1}.

It can be seen that these k Hamiltonian cycles are disjoint with respect to
edges. Thisimpliesthat they cover all the edges of K, since K ,contains n(n—1)/2
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2k -1

2k -2

B+l
Fig. 11.1

edges, and the (n—1)/2 Hamiltonian cycles thus constructed each contain n
edges.

114 (a) Suppose that G does not contain a Hamiltonian cycle. Add edges
as long as possible under the condition that G does not contain a Hamiltonian
cycle. 1t follows that the degrees of the vertices increase and thus conditions
(a), (b). and (c) are always satisfied. One can therefore suppose that G is saturated,
that is, the addition of a new edge produces a new graph which contains a
Hamiltonian cycle. If [x, 3] is not an edge of G, then the addition of this edge to
G yields a Hamiltonian cycle. Thus G contains a Hamiltonian walk

L=[21=X, 22y 5 Zp-1> Z,,=_\']

which joins x and y.

Denoteby z,..., z;, the vertices adjacent with x, where 2=1i, <i, <" <i,<n.
It follows that y is not adjacent to z; _; for s=1,...,k, since otherwise G
would contain a Hamiltonian cycle

I:Zlv'-'yzi,—l7zniZn—l""vzl_,’zlj'

Thusd(y)sn—1—k=n—1-d(x)<n—-1-n/2<n/2, which contradicts the con-
dition d, = n/2. It lollows that if min (d, ..., d,)>n/2, then G contains a Hamil-
tonian cycle.

(c) Now suppose that condition (c) holds and G is not Hamiltonian, but that by
joining each two nonadjacent vertices by an edge one does obtain a Hamiltonian
cycle. Consider two nonadjacent vertices x; and x; such that k</ and the sum

k+ lismaximum. It can be seen that x; is adjacent to all the vertices X;4 1, - . . » Xn»
and hence

dezn—1 (n
In this case one finds that x; is adjacent to the vertices X4 1, -« -y Xj= 15 Xijt 15+ -«

x,, which implies that

dzn—-k-1, ¥))



270 Problems in Combinatorics and Graph Theory
Using the same reasoning as for (a), it follows that
dy+d<n—1. (3)
From the last two inequalities it can be concluded that
dsn—1—-dgsn—-1-(n—k- )=k

Let m=d,. It follows that m< k and by the hypothesis d,, <d,=m. Since k<,
one concludes that d, < d,, and by (3) one has

m=dk<;.
Hypothesis (c) implies that
nomzn—m=n—d,=2d+1, (4)
from which one has
n—dy=n—m>l. (5)

Otherwise it would be the case that
n—m<l, and hence d,.,<d,
which contradicts (4). From (5) it follows that
dy<n—|,
which contradicts inequality (1). This completes the proof.

(b) If (b) holds, let d,<k<n/2 and I=n—k. If d;>, then condition (c) is
satisfied. Otherwise d, </, and condition (b) and the fact that k<n—k or k<n/2
would imply that d,+d,_,>n and thus d,_,=n—d,=n—k. Again (c) holds,
which (as has been seen) implies the existence of a Hamiltonian cycle in the
graph G.

If (c) holds, it has been shown that either n is even and G=K,; », Or G is
pancyclic, that is, it has elementary cycles of every length k for 3<k<n.

[S. L. Hakimi, E. F. Schmeichel, J. Combinatorial Theory, B17 (1974), 22-34.]

11.5 Let x, y be any two vertices of the graph G. It will be shown that G
contains a Hamiltonian walk which joins x and y.

If x and y are not joined by an edge, then add the edge [x. y] to G. The degree
ofeach vertex remains greater than n/2, and no Hamiltonian walk with endpoints
x and y uses this edge.

Insert a new vertex z on the edge [x, ] to produce a new graph G,. The graph
G, has a Hamiltonian cycle if and only if G contains a Hamiltonian walk with
endpoints x and y. The sequence of degrees of the vertices of the graph G, is

2<d2< o Sdpy,

where d,< ' -+ <d,. are the degrees of the vertices of G.

PRSI PR PR S SR
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By hypothesis d, = (n+ 1)/2, and hence, since G, has n+ 1 vertices, condition
(c) of Problem 11.4 is satisfied, because there does not exist an index k such that
di<k<(n+1)/2. In fact d, =2 and d, = (n+1)/2 for every k=2. 1t follows that
G, has a Hamiltonian cycle or G has a Hamiltonian walk with endpoints
x and y.

11.6 Add to the graph G a new vertex y which is joined by an edge to all
other vertices of G. The graph thus obtained has 2n+2 vertices, and its degrees
are at least equal to n+1; thus by Dirac’s condition (a) of Problem 11.4, it
contains a Hamiltonian cycle.

Suppressing the vertex y and the edges incident with y yields a Hamiltonian
walk [xg, X4, ..., X5,] in the graph G.

Suppose that G does not contain a Hamiltonian cycle. It follows that if
X 1s adjacent to a vertex X;, then x,, is not adjacent to x;_, since otherwise a
Hamiltonian cycle would be formed.

The vertices x, and x,, have degree n. It is also the case that if x, is not
adjacent to x,, then x,, is adjacent to x;_,. In fact x, is adjacent to n vertices
x; and thus x,, is nonadjacent to n vertices of the form x,_,. It follows that x,,
is adjacent to all of the n remaining vertices.

Suppose first that x,, is adjacent to the vertices x, .. ., x, and x,, is adjacent
to X, . . ., Xan- 1. There exists an index { with 1 i< such that x; is not adjacent
to x,: this results from the fact that d(x,)=n and x, is adjacent to x X,_ .
Xn+1,and x,,. The vertex x; is adjacent in turn to a vertex x;for n+ 1 <j<2n—-1,
since by hypothesis d(x;)=n. In this case the graph G contains a Hamiltonian
cycle

DXt Xio gy oo X0y X ts e oo s X1y Xam o v o0 Xy Xi]

(see Figure 11.2). Otherwise there would exist an index i such that 1 <ig2n—1
and the vertex x, 4, is adjacent to x,, but x; is not adjacent to x,. It follows from
an earlier observation that the vertex x;_, is adjacent to x,,, and one thus
obtains an elementary cycle with 2n vertices in the graph G. namely

[Xim1s ey X0r Xt gs ooy Xam Xi— 1]

Let C=[y,,...,¥2n y1]beanelementary cycle with 2n vertices in the graph G,
and y, the vertex of G which does not belong to the cycle C. Since G does not
contain a Hamiltonian cycle, it follows that y, cannot be adjacent to two neigh-

x0 Xy Xit+1 Xn Xj~1 X X2n

Fig. 11.2
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boring vertices of C, for in this case C could be extended to a Hamiltonian

cycle. In view of the fact that d(y,)=n, this would imply that y, is adjacent to

all the vertices of the cycle C whose indices differ by 2 {(mod 2n), for example,

10 ¥y, ¥3...-» ¥2a—1. By replacing y,; with y, for 1 <i<n one obtains another

elementary cycle of length 2n. Repetition of this argument shows that y,; is

adjacent to ¥y, ¥, ..., yan— for i=1, ..., n Finally y, is adjacent to yg, ¥,
..+ ¥am and hence

dy)=zn+1,

which contradicts the hypothesis that G is regular of clegree n and hence d(y,)=n.
(C. St. J. A. Nash-Williams.)

An extension of this result is the following: If G is an n-regular graph of order
2n,n23,and G# K, ,, or G is an n-regular graph of order 2n+ 1,n=4, then G is
Hamiltonian-connected (every two distinct vertices of G are the endpoints of
a Hamiltonian walk in G). [1. Tomescu, J. Graph Theory, 7 (1983), 429-436].

It can be shown analogously that there is a unique regular, non-Hamiltonian
graph of degree n with 2n+ 2 vertices. It consists of two disjoint copies of the
complete graph K, ;.

11.7 Let C be an elementary cycle of maximum length in the graph G,
and suppose that C is not a Hamiltonian cycle. Denote by G, a connected
component of the subgraph obtained from G by suppressing the vertices of
the cycle C. Let x4, ..., x, be vertices of C which are adjacent to vertices of G,.
No two of these are adjacent in the cycle C. If, for example, x; and x; are adjacent,
one canreplace the edge [x;. x;] of the cycle C by a walk with endpoints x; and x;
which passes through intermediate vertices of G,. In this way a cycle longer
than C is obtained, which contradicts the hypothesis.

Now traverse the cycle C in either sense. and let y,, . ... y, be vertices which
are adjacent to xy,. . ., X, respectively. It follows from the previous observation
that y; ¢ {xy, ..., x,} for every 1<i<s. It can be shown that yy,. .., y, are pair-
wise nonadjacent. Otherwise if y; and y; were adjacent one could suppress the
edges [x;, y;]and [x;, y,] of the cycle and replace them by the edge [ y;, y,] and
a walk with endpoints x; and x; which passes through vertices of the graph G,.

The result is an elementary cycle longer than C, whose existence contradicts
the hypothesis (Figure 11.3).

Fig. 11.3
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Recall that x4, . . ., x, are all the vertices of C which are adjacent to vertices
of G,. It follows that if y, is a vertex in G,, then the set S={y¢, ¥, ..., )5 isan
independent set of vertices. By suppressing from G the vertices x,, ..., x, one

obtains at least two connected components, one of which is G,. Since the graph
G is k-connected, it must contain, by definition, disconnecting sets with at least &
vertices and hence s> k. But this implies that

IS|=s+1=k+1,

which contradicts the hypothesis. Thus G is Hamiltonian. [ V. Chvatal, P. Erdos,
Discrete Math.. 2 (1972), 111-113.]

11.8 The property will be established by induction on n. If n=3 then m>3
and hence G is the graph K, which is a Hamiltonian cycle. Suppose that the
property is true for all graphs with at most n—1 vertices, and let G be a graph
with n>4 vertices and m= ("}, ')+ 2 edges.

[t will be shown that G contains a vertex x ofdegree dix)=n—1 ord(x)=n-2.
Otherwise one would have d(x) < n—3 for every vertex x, and since Y_ d(x)=2m,

it would follow that

which contradicts the hypothesis that m > (n? — 3n+ 6)/2.
In the sequel two cases will be considered:

(a) There exists a vertex x with d(x)=n—2. Suppress the vertex x and the
n—2 edges incident with it. The result is a subgraph G, with n—1 vertices and
m, edges such that

n=3n+6 n—2
my = 3 —(n—2)=< 5 >+2.

By the induction hypothesis G, contains a Hamiltonian cycle C, which passes
through all of the n—1 vertices of G,, exactly once:

Cy={xp X1s .. Xp-2 Xql.

If there exist two adjacent vertices of the cycle, x; and x;,, (where the sum is
taken modulo n—1), which are also adjacent to x, then it is possible to insert x
between x; and x,4, so as to obtain a Hamiltonian cycle C in the graph G.

Otherwise, for every i=0,...,n—2, il x were adjacent to x, it would follow
that x is not adjacent to x,,, and hence d(x)<(n—1);2. It can thus be seen that
n—2<(n—1)/2, which contradicts the hypothesis that n=4. One can now con-
clude that G contains a Hamiltonian cycle.

(b) There does not exist a vertex x with d(x)=n— 2. It follows that there are
at least two vertices y; and y, with d(y,)=d(y,)=n—1. If not, one would have
a unique vertex of degree n—1 and the other n—1 vertices of degree less than
or equal to n—3, and hence
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(n—1)(n—2)+2\m<(n—1)+(n—1)(n—3)=(n—1)(n—2)’
2 2 2
which is a contradiction,
Now suppress the vertices y, and y, and the 2(n—1)—1=2n—13 edges

incident with them. The result is a subgraph G, with n—2 vertices and m,
edges such that

n?—3n+6 n—3
— —(2n—3)—< 5 >

If the graph G, contains a Hamiltonian cycle C, then it is evident that G also
contains a Hamiltonian cycle C obtained from C, by inserting the vertices
y, and y, in an arbitrary fashion in the cycle C,. For otherwise G, would not
contain a Hamiltonian cycle, and thus G, is obtained from K, _ , by suppressing
at least two edges. In fact, if G, has vertices x,, . . ., X, - 3, a single pair of which
(say {x,, x,) are nonadjacent, then there is a Hamiltonian cycle in G,, namely

my=

[X0v X320 X15 X35+« + s Xyo3y Xo s

forevery n> 6. By adding two edges u, and u, to the graph G, between two pairs
of nonadjacent vertices one obtains a graph G, with m3=m2+22(";3)+2
edges, which by the induction hypothesis must then contain a Hamiltonian
cycle C,.

If C, does not contain the edges u, and u,, then it has been shown that one
can insert vertices y, and y, to obtain a Hamiltonian cycle in the graph G.
Let C3=[Xg, -y Xty Xi4 15y« s Xne3» Xols U1 =[X; X;4 1], and suppose that C,
does not contain the edge u,. It follows that there is a Hamiltonian cycle C for G:

C=[Xo, e X Y Yo Xit oo Xn— 3 ,\'0].

A similar result holds when C, contains u, and does not contain u,. Suppose
that C; contains u; and u,, and let u; =[x;_, x;] and u, =[x}, x;4 ] with i<},
In this case let

C=[X0, cees Xim s Y1y Xis o e -sxja }'27xj1-1~ ceey Xp- 3, xO]'

Thus G is seen always to contain a Hamiltonian cycle.

If n=4 or n=5 it can be shown directly that in case (b} G contains a
Hamiltonian cycle. It has already been shown that under these circumstances
there are two vertices y;, and y, such that d(y,)=d(,)=3forn=4 and d(y,) =
d(y,)=4 for n=5. For n=35 it follows that m2(2)+2=8, and thus there also
exists at least one edge connecting the vertices x, x,, X3, for example [x,, x,].
One has thus found Hamiltonian cycles [xy, ¥, X3, ¥z, ;] and [x, X2 y2
X3, ¥y, X ] respectively (Figure 11.4), and the property is established by induction.
Consider the complete graph K, _,, and a vertex z different from the vertices of
K,_, and joined by an edge to a single vertex of K,_,. The graph thereby
obtained has ("_ZIJ+1 edges and does not contain a Hamiltonian cycle, since
d(z)=1.
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x2
Xy X2 x 3
y1 ¥2 Y1 y2
Fig. 11.4
11.9 (a) LetL=[xg, Xy,..., X, | be alongest elementary walk in the graph

G. It follows from the maximality of L that all the vertices which are adjacent to
X, belong to L. Since d(x)> k, there exists a vertex x; which is adjacent to x,,
and such that k<i<m. Thus C=[x,, ..., X; Xo] is an elementary cycle of
length i+12k+1.

(b) Let L be a longest elementary walk of the graph G. Suppose first that
there are vertices x; and x; such that i <j, x, is adjacent to x,, and x; is adjacent to
Xo. Similarly suppose that j—i is a minimum in the set of pairs of indices with
this property. Let C=[x,, ..., Xp Xp, Xp—1, - - - » X; Xo] b€ the elementary cycle
which is formed in this way. If j=i+1, then the cycle C has length m+1 and
must be a Hamiltonian cycle, since otherwise there would exist a vertex which
does not belong to C, but is adjacent to a vertex of the cycle C. In this case one
obtains an elementary walk longer than L, which contradicts the maximality
of the walk L. Consider the case in which j>i+2. The vertices x;.,.. ... X, -y
are not adjacent to x, or x,, and thus the cycle C contains, like the walk L,
the vertex x,, and all vertices adjacent with x,, and hence k+ 1 vertices. Since,
by hypothesis j>i+2, it also contains at least k— 1 other vertices, namely the
vertices x, with the property that x,., is adjacent to x, and x,#x;.,. All
these vertices are pairwise distinct, and thus the cycle C contains at least 2k
vertices.

Now consider the remaining case when x; is the vertex of maximum index
which is adjacent to x,, x; is the vertex of minimum index adjacent to x,, and
i<j. In this way one obtains elementary cycles C, =[x, . ... Xx; xo] and C,=
[xj ..., Xm x;]. The maximality of the walk L implies that they contain,
respectively. all the vertices adjacent to x, and x,. Since the graph G is 2-
connected, there must exist two walks L, and L, which have no vertex in com-
mon and both of which have one endpoint which belongs to C, and the other
to C,. Similarly one can assume that one of these walks has x; as endpoint.
If not, one could consider an elementary walk L, with endpoints x, and x;.
Traverse this walk from x; towards x;. One will first encounter a vertex belonging
to the cycle C, or a vertex belonging to the walk L; (1 €i<?2). In the first case
replace one of L, or L, by a subwalk of L. In the second case replace a subwalk
of L, by corresponding subwalk of L5 which begins at x;. Now suppose that the
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walk L, has an endpoint in x;, and that L, does not have a vertex in common
with L,. If L, also has an endpoint in x;, the procedure terminates. Otherwise
consider an elementary walk L, with endpoints at x; and x;. Traverse L; from x;
towards x;. Suppose that one first encounters a vertex of the walk L,. In thiscase
replace a subwalk of L, by the subwalk of L; which terminates at x;. This pro-
duces the two walks with the desired property. On the other hand, if one first
meets a vertex of the cycle C,, then instead of L, consider a subwalk of L con-
tained between x, and the first intersection of L3 with the cycle C;. One again
obtains the two walks with the given property. Suppose there exists a walk L,
with endpoints x; and x; or different walks with these endpoints. In both cases,
one obtains an elementary cycle which contains the vertices x, and x,, and all
vertices adjacent with them (Figure 11.5). The cycles C, and C, which contain
the vertices adjacent to x, and x,, respectively have at most one vertex in com-
mon (when i=j). It follows that the cycle which is thereby formed has a length
greater than or equal to 2k+ 1. [G. A. Dirac, Proc. London Math. Soc., 2 (1952),
69-81.]

X1 Tm -1 X1 Tm -1

L»

Ly
xn Ly X x xj

Fig. 11.5

11.10 The property will be established by induction on n. If n<k then
(n—1)k/2>(3), and thus there does not exist a graph with n vertices which has
more edges than K,. The assertion of the problem is, therefore, satisfied in this
case.

Suppose now that n>k and that the property is true for every graph with at
most n—1 vertices. Let G be a graph with n vertices and m>(n— 1)k/2 edges,
and suppose that G contains a vertex x with degree less than or equal to k/2.
Denote by G, the subgraph obtained by suppressing the vertex x and the edges
incident with x. It [ollows that the number of edges in G, is greater than
(n—1)k/2—k/2=(n—2)k/2. By the induction hypothesis the subgraph G, con-
tains an elementary cycle of length at least equal to k+ 1.

There is one remaining case: when each vertex x of the graph G has degree
d(x)=(k+1)/2. If G is 2-connected, then property (b) of Problem 11.9 implies
the existence of an elementary cycle of length at least equal to k+ 1. If G is not
2-connected, then it has at least one cut point z, and hence there exist two sub-
graphs G, and G, of G with vertex sets X; and X, such that X, nX,={z}.
The graphs G, and G, also do not have a common edge. If m;, m, denote the
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number of edges of G, and G,, respectively, then

k(n

1) k

and hence there exists an index i. 1 <i<2, such that
k
m,->§ (X =1).

One can therefore apply the induction hypothesis to the subgraph G;,
which also contains fewer than n vertices. It follows that G; and hence the graph
G contains an elementary cycle of length greater than or equal to k+ 1. [ P. Erdos,
T. Gallai, Acta Math. Acad. Sci. Hung.. 10 {1959), 337-356.]

11.11 Let C=(x,,..., x,, x,) be a longest elementary circuit of the graph
G. The number of vertices of C satisfies the inequality m>n/2. In fact, let Q=
(zo,...,2,) be a longest elementary path of G, and let z;,...,z, (i;< " <@
be the vertices of G such that (z;,, zy) is an arc. It follows from the maximality
of this path that z,, ..., z, belong to the path §. Since d~(zo)=n/2, it follows
that i,>k>n/2, and hence the circuit (z4, z;,...,2;,, 2o} has length greater
than »n/2, which implies that m> n/2.

Suppose that the circuit C is not Hamiltonian, and let D=(y,,..., ) be a
longest elementary path in the subgraph obtained from G by suppressing the
vertices x,, ..., X, of the circuit C. Since d ™ ( yo) = n/2, it follows that there exist
at least n/2—r arcs of the form (u. y,), where u ¢ D, since there are at most r
arcs of the form (u, yo) with u € D.

All of the arcs of the form (u. y,) with u ¢ D have their initial vertex u in C.
Denote these vertices by x;....,x; with t=zn/2—rand i; < --* <i. Similarly
one can find vertices x;,, ..., X;, s=n/2~r such that (y,, x;) is an arc of the
graph G for p=1,...,sand j; < '+ <j;. Suppose that the vertices x,, and x;,
are different. It follows that the path (x;,, ..., x;,) consisting of arcs of the circuit
C must have length (number of arcs) at least equal to r+ 2. Otherwise one would
have a circuit C, of length strictly greater than that of C, which is seen to con-
tradict the hypothesis if the path (x;,...,x;) is replaced by the path
(X(,0 ¥gs - -+ ¥es X, Of length equal to r+ 2.

Now consider an elementary path D, consisting of arcs of the circuit C
which originates at x;, 4, (taking x,+; =x,) and having length equal to r for
p=1..... t. The following two cases are possible:

(a) x;,=x;, and thus x; ¢ V(D,), where V(D,) denotes the set of
vertices of the path D,. In fact r<n—m—1<n/2-1, and the length of the
circuit C is m>n/2,

(b) x,,#x;,and hence x; ¢ V(D,), since otherwise it would follow
that the path (x,,,..., x,,) has length equal to r+ 1. But it has been shown that
such a subpath of C must have length at least equal to r+ 2.
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It is now clear that

1

xi, ¢ J V(D) for 1<g<s. (1)
p=1
On the other hand it is also the case that
U V(D,)|=t+r 2)
p=1

since the union of the sets V(D) contains pairwise distinct vertices x; 4+1,...,
X, +1- Also there exist two vertices. say x; and x;, such that the path
(Xi;+ 12 -, X;,) formed from arcs of the circuit C contains a vertex x;,. In this
case it has been seen that the path D, of length r does not contain the vertex
x;,» nor therefore the vertex x;,. It follows that the r vertices of the path D,
which are different from x;, +y, ..., x; + belong to the union of the sets V(D,)
forp=1,...,t This observation completes the proof of (2).

Observe that (1) and (2) imply that s<m—(t+r), so that

n n
m25+1+r>§—r+i—r+r=n—r. (3)

Since the path D has r+1 vertices in a subgraph with n—m vertices, it follows
that

r+l<n—m, or m€<n—r—1. 4

But (3) and (4) are contradictory, which completes the proo: that C is a Hamil-
tonian circuit.

It remains an open problem to show that under the condition of the present
problem and for n2 5 the graph G contains at least two Hamiltonian circuits
without common arcs. [C. St. J. A. Nash-Williams, The Many Facets of Graph
Theory. Lecture Notes in Mathematics, Springer-Verlag, 110 (1969), 237-243.]

11.12 Ifthetournament G contains a Hamiltonian circuit, then it is strongly
connected, since every two vertices of a circuit are joined by a path. Now sup-
pose that G is strongly connected. Since for every two vertices x, y of G there
is a path from x to y and from y to x, it follows that G contains a circuit.

Let C=(yy,..., ¥, ¥;) be an elementary circuit of G with a maximal number
of vertices. Suppose that C is not a Hamiltonian circuit, and let x be a vertex
which does not belong to C. Since the graph is complete, one can assume that
there exists an arc (y,, x). If there also exists an arc (x, y,), then (y,, x, y,, ...,
¥x» ¥1) 1s a circuit longer than C, which contradicts the hypothesis. It follows
that the arc between x and y, has the form (y,, x). In fact there exist arcs (y, X)
fori=1,..., k. Let A be the set of vertices x for which there is an arc (y,, x).
One can conclude that (y;, x) is an arc for xe€ 4 and i=1,...,k. Since G is
strongly connected, there exists an arc (x, z) with x € 4 and z ¢ A. [t follows that
z ¢ C, and since G is complete and z € A, one can find an arc of the form (z, y;).
This yields a circuit (x, z, y,,..., ¥, X) Which contains more vertices than C,

e ¢ e o P s e
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and this contradicts the hypothesis. [P. Camion, C. R. Acad. Sci. Paris, 249
(1959), 2151-2152.]

11.13 Let P=[x;, x5,...,x,] and let S be a selection of k edges of P
which generate j components. There are four possible cases:
(1) [x;,x,]eSand[x,—;,x,] €8S;
2) [xy,x;]leSand([x,-;,x,]€S;
(3) [x1,x2] ¢ Sand [x,- 1, a1 €S
4 [xy,x;]¢Sand[x,_;,x,] €S.

It is clear that the number of edge sets S which satisfy (1) is equal to the number
of solutions of the system

ay+ o +ag=k,
b1+ +bj=n—k—l,

where a;, b; are integers and a;, b;> 1; this number is {"Jk | 2

)(j 1)(see Problem
1.19). In a similar manner, in case (2) one finds a system
a,;+ - +a;=k,
byt b =n—k—1
with (" 2 2)( ) solutions for a;, b; = 1. In case (3) the corresponding system is
ay+ o Fag=k,
bi+ b =n—k~1.

having ("~ k- 2)(';:}) solutions, and for the last case the system is the same as
for the ﬁrst case. Hence

(A ()
B 6!

11.14 Let H=[x,, x5,...,X,] be a fixed Hamiltonian walk of K,, and
denote its edges by ¢; =[x, x;+] for L €ign—1. Let 4, be the set of all Hamil-
tonian walks of K, which contain the edge ¢; of H for 1 <i<n—1. Thus H(n, &)
is the number of Hamiltonian walks of K, which belong to precisely k sets A;.
By using C. Jordan’s sieve formula (Problem 2.3) we can show that

Hn k)= z<_1 (k) L

(1)

Let K<{l,...,n—=1} and |K|=/, and suppose that the set of edges E, =
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{e,}ex generates exactly j components Hy, ..., H; on H. In this case
-
N 4= )
peK 2

forany 1gj<gign~2.

In fact, let m;, m,, ..., m; be the numbers of edges in each of the components
induced by Ex on H. Contract each component H,, ..., H;. which is a subwalk
of H,to a unique vertex y,, ..., y; Theresulting graph hasn—(m; + -+~ +m))=
n—ivertices. Observe that K, _; has (n—1i)!/2 Hamiltonian walks, and that any
such walk may be expanded to a Hamiltonian walk of K, by replacing every
vertex y, by the subwalk H, of H for 1 <g<jin 2’ ways [and (2) follows]. There-
fore from (1) one obtains

n—2 : i i
Hin k)= T (=17 <l’<> @ ¥ Py, )2/

we1—x (81
+(—1y “( L )

where Pj(n, i)is given by Problem 11.13, since |ﬂpek A l=1forK={l,...,n—1}.
To obtain an expression for DH(n, &) in the case of a Hamiltonian path DH of
K}, denote its arcs by ay, . ... a,- and let 4; be the set of all Hamiltonian paths
of KX containing arc a; of DH for 1 <ig<n—1. The rest of the proof is similar to
that for the numbers H(n, k), since K*_; has (n—1i)! Hamiltonian paths, and
each such path may be expanded to a Hamiltonian path of K} in a unique way.
One also uses the identity

L=\ /n—i n—1
577
[see Problem 1.5(a)].

11.15 Since G is connected. it has a spanning tree T. It is sufficient to prove
that T possesses the property of the statement, which says that G* is
Hamiltonian-connected. Now prove by induction on n that for any tree T with
n vertices, T3 is Hamiltonian-connected. For n<4 it follows that the diameter
of T is at most three, and hence T? is the complete graph which is Hamiltonian-
connected. Suppose that all trees having at most n—1 vertices have as their
cube a Hamiltonian-connected graph, and let T be a tree with n vertices. If x
and y are two distinct vertices of T, one now considers two cases:

{(a) x and y are joined in T by an edge u={x, y]. Denote by T, and T, the
two subtrees obtained from T by deleting [x, y] such that T, contains x and
T, contains y. By the induction hypothesis 73 and T, are Hamiltonian-con-
nected. Let x, be a vertex of T, which is adjacent to x, and let y, be a vertex of
T, which is adjacent to y. If one of the trees T, or T, reduces to a single vertex,
then let x, =x or y, =y respectively. The vertices x, and y, are adjacent in T3
because d(x,, y,)<3in T. Let P, be a Hamiltonian walk with endpoints x and
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x, in T2 (which may reduce to a single vertex), and let P, be a Hamiltonian walk
with endpoints y and y, in T;. The walk composed of P, followed by edge
[x,,y:]and by P, is a Hamiltonian walk between x and y in T°>,

(b) xand y are not adjacent in T. Since T is a tree, there is a unique walk P
between x and yin T. Let v =[x, =] be the edge of P incident to x. By deleting ¢
from T one obtains two subtrees: a tree T, containing x and another tree T,
containing z. By the induction hypothesis there exists a Hamiltonian walk P,
between z and y in T3, Let x, denote a vertex of T, which is adjacent to x or
x; =x if T, reduces to x, and let P, be a Hamiltonian walk between x and x,
in T3. Sinee d(x,, z)<2 in T, it follows that T> contains the edge [x,.z]. The
walk composed of P, followed by edge [x,, z] and by P, is a Hamiltonian walk
between x and yin T°.

1t follows that if G 1s a connected graph with at least three vertices, then the
graph G is Hamiltonian. [J. Karaganis, Canad. Math. Bull., 11 (1969), 295-296;
M. Sekanina, Publ. Fac. Sci. Univ. Brno, 412 (1960}, 137-142.]

A. Hobbs proved that if G is a 2-connected graph, then its square G2 is
Hamiltoman-connected. [ Notices Amer. Math. Soc., 18 (1971), 553.]

CHAPTER 12

12.1 Suppose that the permutation pisacycle of length k,say p=[i,,..., i].
1t follows that pli,) =1,, p*(i,)=is,..., pP* (i) =1, and p*(i,)=1i,. Analogously
one can conclude that p*(j)=j for every j, and hence k is the smallest number r
such that p" =e; every multiple ks of k has the property that p*=e.

Consider the cycles p,,...,p; in the representation of the permutation p
as a product of disjoint cycles p=p, - - p;. These cycles commute among
themselves, and hence it follows that p"=p] - - pi. Therefore if p"=e one can
conclude that r is a common multiple of the lengths of the cycles of the permuta-
tion p.

12.2  Let p(n, k) denote the number of permutations of n elements which
have k cycles. Denote by cin, k) the coefficient of x* in the expansion of [x]"
that is,

(xI"=3 cln, kix* (1)

k=0

} Ttis known (Problem 3.1) that

cln, ky=|s(n, k)|,

and thus it remains to show that c(n, k}=p(n, k) for every n and k.
tfollows from (1) that c(n, 1)=(n~1)!and p(n, 1)=(n— 1)!, since the number

. of permutations which have only one cycle (circular permutations) is equal to
' ni/n, because every cycle can be written in n distinct ways by taking as the first
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element each of its n elements. It will be shown that p(n, k) and c(n, k) satisfy
the same recurrence relation.

Let X,={xy,...,x,} and X,+;=X,U!{xn+,}. Every permutation of X,.,
with k cycles may contain the element x,., alone in a cycle, with the remaining
n elements forming a permutation with k— 1 cycles. Otherwise x, 4, is contained
in a cycle together with other elements. The element x, ., can be inserted into a
cycle with p elements in exactly p distinct ways. It follows that

pin+1, k)=p(n, k=1)+nptn, k). 2)

In fact, all permutations with k cycles of the set X,+, can be obtained, without
repetitions, in two ways: one can add a new cycle consisting of x,., to each
permutation of X, with k—1 cycles, or one can insert the element x,,, in one
of n ways into each permutation of the set X, with k cycles.

It follows from (1) that

[x]"* =[x]"(x +n),

or

n+ 1 \ n
S cln+1, i)x’=( > celn, i)x’) (x +n).
i=0 i=0

By equating the coefficients of x* in the two sides one obtains the recurrence
relation

cn+1, ky=c(n, k—1)+nc(n, k). (3)

The relations (2) and (3), together with the values c(n, 1)=p(n, 1)=(n-1)!
and c(n, k)=p(n, k)=0 for n<k, uniquely determine the values of c(n, k) and
p(n, k), respectively. It follows that p(n, k)=c(n, k)=|s(n, k)| for every n and &,
since relations (2) and (3) are essentially identical.

12.3 1t follows from Problem 12.2 that the number of permutations p € S,,
which contain k cycles is equal to the coefficient of x* in the expansion of the
polynomial [x]"=x(x+1) - (x+m—1). This fact can be written in the form

Y xP=x(x+1) - (x+m=1). (1
PESM
By letting x =n in (1) one obtains the first relation.
If x 1s replaced by —x in (1) one sees that
S (=X P = (1Y (x = 1) (x—m+ 1), )
PESm
Suppose that p is of type 19 2°2-+-m~, where ¢, +2¢c,+ ** +mc,=m and
¢;320. It will be shown that sgn{p)=(—1)2*c+*c6*""" and hence the parity of p
coincides with that of the number of its even cycles.

In fact, if a cycle p=(iy, i5,...,i,] has n elements, then it can be expressed

as a product of n—1 transpositions (which are odd permutations), say

p=[i1 » i2][i2’ 13] e [in—ly ln]
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If p is of type 19 22---m~, it follows that it can be written as a product of
¢;+2¢34 4+ (m—1)c, transpositions, and hence p has the same parity as
the sum c,+ca+cg+ . Since ¢; +2¢,+3c3+ *+* +mec, =m, one can con-
clude that c(p)+m=2c, +3c,+4cs+5¢c,+ -+, which has the same parity as
¢,+cat+c+ * ,and hence sgn(p)=(—1)P*"
By replacing (— 1) with (— 1)" sgn(p) in (2) and taking x =n one sees that
Y sgn(p)n?=[nl,
pESm
which establishes the second identity. [M. Marcus, American Math. Monthly,
78(9) (1971), 1028-1029.]

12.4 First we evaluate the number of permutations of an n-element set X

containing p cycles labeled with a,,...,a,, such that the cycle with label «,
contains x; elements (x;>1 for i=1,...,p and x, + - - +x,=n). The number
of arrangements of X in p boxes a,, ..., a, such that box a; contains x; objects
fori=1,...,pisequal tonl/x;! - x,! (Problem 1.15). The number of circular

permutations having x; elements in a cycle is equal to (x;—1}!, and hence the
number of permutations of X such that cycle «; contains x; elements for every
i=1,...,pis equal to

n! n!

e m ) (x, = 1) =
xll"-x,,!(x1 b=l Xy X,

It follows that the number of all permutations of X having p labeled cycles
is obtained by summing these numbers for all representations n=x, + = +x,,
where x;> 1 for i=1,....p. and where the order of the parts x,, ..., x, is taken
into consideration. If one erases the labels of the cycles, it turns out that there
are (1/ph Y n!/x, '+~ x, permutations of X with p cycles. But, by Problem 12.2,
this number is also equal to |s(n, p)|, which establishes the equation in the
statement of this problem.

125 The element n+ 1 can be inserted into a cycle of length p formed from
elements of theset {1, ..., n} in p distinct ways. Thus nd(n. k) counts the permuta-
tions p € S, without fixed points and with k cycles which contain the element
n+1 in a cycle of length g=3. Also nd(n—1, k—1) is the number of those
permutations which contain the element n+1 in a cycle of length 2. In fact,
the element n+1 can form a cycle of length 2 with each of the remaining n
elements. The rest of the n—1 elements form a permutation of n—1 elements
with k~1 cycles without fixed points. This observation implies (a).

Every permutation of 2k elements with k cycles and without cycles of length
1 contains only cycles of length 2 and thus is of type 2*. It follows that

2k)!
(2"k)’=IX3XSX e x(2k—1).

d(2k, k)=

In order to prove (c) recall that the number of permutations p € S, with
k cycles is equal to c(n, k)= s(n, k)| =(— 1)"**s(n, k), where s(n, k) is the Stirling



number of the first kind. (Problem 12.2). Let 4; denote the set of permutations
p €S, for which p(i)=1i and which have k cycles. By applying the Principle of
Inclusion and Exclusion one can conclude that

d(n, K)y=c(n, k)—|A,WAsu * UA,

=c(n, k)— Z |4+ Y |AinAl--
i= 1gi<jgn
But 3, i <. .<ienldi,n " N A contains () terms, each of which is equal
to c(n—j, k—j). This is because p € 4; n *** N A, implies that p(i,)=i,...,
pi;)=1i,, and because the restriction of the permutation p to the remaining
elements is a permutation of n—j elements with k —j cycles. [P. Appell, Arch.
Math. Phys., 65 (1880), 171-175; J. Kaucky, Mat. Casopis Sloven. Akad. Vied,
21 (1971), 82--86.]

12.6 Conjugation is an equivalence relation, since it is

(1) reflexive: s =ese™ !, where e is the identity permutation;

(2) symmetric: s=gtg~' implies that t=g  'sg=hsh™', where h=
g teS,;

(3) transitive: s=gtg™! and t=huh™' imply s=ghuh”'g™'=
(ghyu(gh)™*, where the permutation gh € S,,.

In order to prove the necessity of the condition in (b), suppose that s and t
are conjugate, that is, there exists g € S, such that s=gtg ™' Write the permuta-
tion ¢ as a product of disjoint cycles as follows:

t=[tytys idltartas 12 Umitmz " tkds

and let g(1,,)=s5,,. The fact that s=gtg~" implies that

s(s11)=gtg~ (s, )=gtlt1)=glty5) =54, ...,

and hence the decomposition of the permutation s as a product of cycles is
given by

s=[511512" " 51 [S21822 " 521] “ [Sm1Sm2 " Sk ]-

It follows that two conjugate permutations can be decomposed into the same
number of cycles having respectively the same lengths.

In order to prove the sufficiency of the condition, define the permutation g
by first considering the decompositions into cycles of the permutations s and 1.
Then let g(t,,)=s,,. The decompositions of s and t as products of disjoint
cycles both contain each of the numbers 1,..., n exactly once. It follows that
g €S, and, as in the previous calculation, one can show that s=gtg~". This
observation completes the proof of the sufficiency of the condition.

The proof of Cauchy's formula can now be given. Let f be a permutation
which has J; cycles of length s for 1 <s< k. Express f as a product of cycles
written in increasing order of length:




k

f=0*-1% [**].I..[**]...

—_—
T
],

,q As Ay
where the stars represent the numbers 1,..., n. By suppressing parentheses one
obtains a permutation a, a, - * - a, of integers from the set {1, ..., n}. The number
of such permutations is n!.

However, the same permutation f generates 4;! -+ 4, ! 11272 k*« different
permutations of the set {1,....n}. Infact one can permute the 4; cycles of length
i (1<i<k) in the representation of f as a product of cycles in A, 14,0+ 4!
distinct ways. On the other hand. each cycle of length i can be written in i distinct
ways by taking as its first element each of the 7 elements. There are thus a total
of 1#12%2 - k*x representations. Starting with all the h(2,, ..., 4,) permutations
which contain A; cycles with s elements, for s=1,...,k one can write each
cycle of length s in s different ways. By also permuting the cycles which contain
the same number of elements in all possible ways, it is easy to show that one

can obtain without repetitions all the n! permutations of the set {1,...,n}. It
follows that

By, ooy AdAg L A 1h2% e =g,

from which Cauchy’s formula follows.

An equivalence class is characterized by the number of cycles and their
lengths ny, ..., n,, which must satisfy n, + - -+ +n,=n. One can assume that
ny=n,z " 2n, since the order of the cycles in the product is not important,
inasmuch as the product of disjoint cycles is commutative. Thus the number of

equivalence classes is precisely the number P(n) of partitions of the integer n.

12,7 Cauchy’s identity can be obtained from the relation

z h(C‘,Cz,.-.,Cn)'—‘n!,

cyF2ct "f0+nc,.=n
by means of Problem 3.6 or by using part (c) of the preceding problem.
12.8 Calculate the number of permutations in which the number 1 is
contained in a cycle of length k. The elements of this cycle can be chosen in

§ (:71) distinct ways, since after fixing the element 1 there stil] remain k—1

elements which belong to the set {2,..., n} of cardinality n—1.
With these k elements one can form (k —~1)! distinct cycles with k elements.

4 There are (n—k)! distinct permutations of the remaining n—k elements. Thus

the number of permutations in which 1 occurs in a cycle with k elements is

{equal to

n—1
(,(_1>(k~1)!(n—k)!=(n—1)!.

The desired probability is therefore (n—1)!/n!=1/n and is independent of k.
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12.9 Count the permutations in which 1 and 2 belong to different cycles.
If the cycle which contains 1 has length k, one can select the other k— 1 elements

from theset {3,...,n} in
n-2
k-1

distinct ways. There are (k— I}! circular permutations of these k elements and
{n—k)! permutations of the n— k remaining elements. The number of permuta-
tions in which 1 and 2 belong to different cycles is equal to

b (Z:f) (k=1)1(n— 1))

k=1 -
=(n=2! Y (n—k)
k=1
=(n=2)! ”(”_1)=”3!,

and thus the desired probability is equal to %.

12,10 For 1<k<n let p,(n) denote the number of permutations of the set
{1,...,n} which cortain the element i in a cycle of length k. The sum
pi{ny+ - +p,(n) represents the number of elements which are contained in
cycles of length k in all the n! permutations of the set {1,...,n}. It {ollows that

Cy=={py(n)+ - +pa(n)}

Fad Bl

represents the total number of cycles of length k in the n! permutations.

The average number of cycles of length k in a permutation of theset {1,...,n}
is equal to (1/n!)C,=1/k. This follows from the fact that by Problem 12.8,
pi{n)/n!=1/nfor every i=1,...,n

One can thus conclude that the average number of cycles in a permutation
of the set {1,...,n} is equal to

n

)

1 1
=l+z+ " +-=lnn,
k=1 2 n

x| —

since

lim <1 +%+ e +% —In n>=y=0.5772 cl (Euler’s constant).
n—=ow

12,11 Since pZ=e, it follows that the permutation p has all its cycles of
length 1 or 2. Thus the set of permutations p € S, such that p>=e can be written
in the form A,u B,, where 4, is the set of permutations p € S, with p? =e which
satisfy p(n) = n, and B, consists of those permutations p € S, for which p? =e and
in which the element n is contained in a cycle of length 2 in p. It follows that
P,=|A,|+|B,|=P,_, +(n—1)P,_,. In fact, if p(n)=n, the other n—1 elements



—_, = s

Solutions 287

form a permutation g € S,_, for which g*=e. If p € B,. then the element n
can turn a cycle of length 2 with each of the other n—1 elements; the remaining
elements form a permutation r € S,_, for which r?=e.

In order to prove (b) let i denote the number of cycles of length 1 (fixed
points) of the permutation p, and let j denote the number of cycles of length 2.
[t follows that

P,=Perm(1'2/; n)=n! ¥ (i!j12%)"1

where the summation is taken over all representations of n in the form i +2j=n
A with i,j>(). The exponential generating function of the number P, is

nt \ " (12 ) 2
P —--— —_— | == .——,—-‘-—=E’I'€I /2=6X t+—1
";, i név—o(mzjqz!]!zJ)nr ,,;.L;oz! i )

Let P,(m) be the number of permutations p € S, for which p™=e. It can be
4 shown that

i m)£=ﬂp<2 i)-
n=0 kim k

[E. Jacobstahl, Norske Vid. Selsk. Forh. (Trondheim), 21 {1949), 49-51; S. D.
% Chowla, 1. N, Herstein, W. R. Scott, ibid., 25 (1952), 29-31.]

é 12.12 Suppose that the permutation p € S has the following representatlon
jas a product of transpositions: p=t,t, - t,. It follows that pt,t,_; - t, =¢,
§1he identity permutation in S,,.

4 Every permutation p can be associated with a digraph G, with vertex set

i ,n}. The graph’s connected components are elementary circuits which

worrespond to the cycles of the permutation p, since by definition the arc (i, j)
} sexists if and only if j=p(i). Consider the result on this graph if p is multiplied
, by a transposition [a, b] and thus g=p[a, b].

! Since the transposition [a, b] takes a into b and b into g, it follows that the
1 -graph G, is obtained from G, by replacing the arcs (q, p(a)) and (b, p(b)) with
-the arcs (a, p(b)) and (b, p(a)), respectively.

Suppose that a and b are located in two distinct circuits of the graph G,.
These two circuits will generate a single circuit in the graph G,. On the other
‘hand, if @ and b belong to the same circuit in G, then this circuit decomposes
into two circuits without common vertices in G,, as represented in Figure 12.1.

The graph of the identity permutation ¢ € S, consists of n circuits of length 1.
By multiplying a permutation p with a transposition t one sees that
e(pty < c(p)+ 1. Thus it follows that the number r of transpositions in the repre-
sentation of p as a product of transpositions satisfies the inequality

=cley<clpy+r, or rzn—c(p)

The number n— ¢(p) of transpositions can be attained, since each cycle of length
mcan be written as a product of m— 1 transpositions:

v; [ilx iZ""vim]::[il' iZ][i27 i3]'”[im-19 im]

e - =
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p(b) b

Fig. 12.1

Thus if the permutation ps#e is of type 19122+ n" it can be expressed as a
product of Y {_, ¢;(i—1)=n—c(p) transpositions, since ¢; +2c,+ ** +nc,=n.

12.13 1In order to prove the necessity of the condition, suppose that the
graph (X, T) is connected. Since this graph has n vertices and n—1 edges, it
must be a tree. In fact, if it contained a cycle, then one could suppress an arbitrary
edge of the cycle to obtain a connected graph. By repeating this process we
arrive at a tree with n vertices and n— 1 edges, which contradicts the hypothesis
that(X, T)hasn—1edges.If (X, T)is not connected, then there exist two vertices
of the graph, say a and b, which belong to different connected components.
Since [ is a circular permutation, it follows that there is a number r<n—1
such that f"(a)=b. On the other hand the permutation f is a product of trans-
positions from T and transforms each vertex from X into a vertex in the same
connected component as itself. Thus /" has this property, which implies that
S"(a)#b. It follows that (X, T) is connected, that is, it is a tree.

To prove the sufficiency, suppose that (X, T) is a tree. Consider the sequence
of permutations g; =ty, ga=g1t2, g3 =galss- -, gGn-1= 1.

It will be shown that the two elements i and j which define the transposition
t,=[i,j] are not located in the same circuit of the graph of the permutation
tity- .-y forg=2,...,n—1.(This graph is defined as in Problem 12.12.)

If i and j belonged to the same circuit in the graph of the permutation
tity " t,-y, then in this sequence of transpositions there would exist trans-
positions [, i,], [iy, i2], - - ., [, j1(k=1), which correspond to a walk from
itoj. But in this case the graph (X, T) contains the edges [, i1, .. ., [i,j] and
t,=[i,j1. 1t therefore contains a cycle, and this contradicts the hypothesis
that it is a tree.

If i and j do not belong to the same circuit in the graph of the permutation
gg-1=1yty " " 14-1, then the graph of g,=g,-,¢, can be obtained {rom the
graph of the permutation g,_, by joining the two circuits which contain i and},

 mns e s
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respectively. It follows that the number of its connected components is ¢(G, ) =
c(Gy, ,)—1. But ¢(Gy)=n~1, since the graph G, consists of one circuit with
two vertices and n —2 circuits which each contain a single vertex. Thus ¢(G,,} =

n—2,c(Gy)=n=3....,c(G;)=1, Since G, is connected and has a single con-
nected component, it reduces to a circuit with n vertices, and hence f isa circular
permutation.

R

Let A(f) denote the number of representations of a circular permutation f
as a product of n—1 transpositions. Thus the number of products of n—1
transpositions which generate all (n— 1)! circular permutations of n elements
is equal to (n— Y A(f). This is because the number A( f) does not depend on the
circular permutation f. but is a function of n.

In view of the preceding result, it can be seen that the only productst,t,...1,_;
4 of n—1 transpositions which generate a circular permutation of n elements are
2 those for which the graph (X, T) is a tree. It follows that the products of n—1
1 transpositions which generate all circular permutations of n elements can be
1 obtained in the following manner: For each tree (X, T) which has its vertices
labeled with the numbers 1,...,n,let r,t,- - t,-, be the product of the trans-
positions associated with its edges. Now permute the transpositions t,.t5,.... o~
in (n—1)! distinct ways to obtain distinct products which generate circular
permutations,

The number of 1abeled trees with n vertices is equal to n"~ 2 (Cayley’s formula,
1 Problem 6.15). Two such trees which contain at least two different edges will
generate different products of transpositions. Thus (n—1)!4(/)=(n—-1)!n""2,
and hence A(f)=n""2 that is, the number of ways in which a circular permuta-
tion on n elements can be written as a product of n—1 transpositions is equal
to the number of labeled trees with n vertices. [J. Dénes, Magyar Tud. Akad.
Mat. Kutaté Int. Kozl 4(1959), 63-71; O. Dziobek, Sitzungsber. Berl. Math. G.,
17 (1917), 64--67.]

12.14 In order to prove (a), observe that if p, =a,a, - - a, is a permutation
4 inS,and p,=a,a,-; """ a, then

1(P1)+1(P2)=(;)-

In fact, if i <j then there is exactly one value of the index k for which p,(i) > p,(j)
(1 €k<2). Thus the number of inversions from p, and from p, is equal to the
number of pairs (i, j) with i <j, that is, (3).

It follows that one can arrange the permutations in S, in pairs so that one has
(;) inversions together. But S, contains n! permutations, and hence there are
in! pairs, which implies (a).

IfI(p )=k, then I{p,)=(3)— k. The correspondence thus defined between the
permutations in S, which have k inversions and the permutations in S, with
+ (5)—k inversions is injective and surjective and hence a bijection. This estab-
lishes (b).

The recurrence relation (¢) will follow from (d).

ke n srans b AL
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In order to prove (d), start with the following equation:

n+1

UA

n+l

pin+1, k)=

where
={p|p €Sper, Hp)=k,and p(i)=n+1}.

If the element n+1 is found at position i, then it is in inversion with all the
n+1—1i elements which are found at positions i+1,...,n+1. Thus if p € 4,,
then by suppressing the element n + 1 from position i one obtains a permutation
p; €S, such that I{p)=k—n+i—1. The correspondence which is thereby
defined associates with a permutation p € 4; a permutation p, € S,. Since it is a
bijection between the set A4; and the set of permutations in S, with k—n+i-1
inversions, it follows that

lAi|=p(n, k—n+i-1)

Part (d) now follows by using (1).
Every permutation in S, has at most (3) inversions. The maximum number

of inversions is attained only for the permutation n, n—1,..., 1. It follows that
p(n, (5))=1 and p(n, i)=0 for i>(3). The only permutation with no inversions
is the identity permutation 1, 2,.. ., n, and hence p(n, 0)= 1. These initial values

together with recurrence relation (d) yield a row-by-row determination of the
matrix of numbers p(n, k).
In order to prove (c), observe that if k <n, then it follows from (d) that

p(n, k)y=pn—1,k)+pn—1,k—-1)+ -+ +p(n—=1,0),
pin,k—=1)=pn—1,k—1)+pn—-1,k—=2)+ - +pln—1,0),

and hence p(n, k)=pn—1, k)+p(n, k—=1).
For (e), let

(41 +x+x2)(L+x+ - +x"")=3 cln, k)xk.

k20

The term of maximum degree is x! *2* " *®~ 0 =@ and thus c(n, (})) =1, and
c(n, k)=0 for k>(3). The constant term is 1, which implies that c(n 0)=1.
In order to obtain a recurrence relation for the numbers ¢(n, k) observe that

S oen+ 1, k)xb=(1+x) - (L+x- +x")

k20

=<Z C(n, i)Xl> (1-+—x_+_ ce +X").

i20
By equating the coefficient of x* on the two sides one finds that
cln+ 1, k)=c(n, k) +cln k=1+ - +c(n k—n),

where ¢(n, i)=0for i <0.
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Since the numbers c(n, k) and p(n, k) have the same initial values and satisty
the same recurrence relation, which uniquely determine them, it follows that
c(n, ky=p(n, k) for every n and k. This completes the proof of equation (e).

12.15 Write a given permutation p € S, as a product of disjoint cycles.
Include cycles of length 1 (fixed points of p), and write the cycles so that their
largest elements are written first. These first elements are to occur in increasing
order from cycle to cycle. For example, the permutation

(b 2345 6T
P=\3 45 21 76/

will be written in the form
=[4, 215, 1, 37[7, 61.

In this way the last cycle will always begin with the element n. The sequence
of numbers obtained in this way can be considered to be another permutation
f(p). In the previous example one has

1 23 45 6 7
f(p)=<4 2 5137 6>'
The permutation p can be uniquely reconstructed from the permutation
)€ S,: The last cycle of p begins with the number n. The next to last begins

with the largest number which is not contained in the last cycle, and so on.
If the permutation p contains k cycles, then the permutation p, = f(p} will

=. © contain exactly k elements j for which p{j)>p,(i) for every i<}, and these will
" be the first elements in these k cycles of the permutation p.

The permutation p with k cycles can be uniquely reconstructed from the

i permutation p; = f(p) which contains k elements j for which p,(j)>p,{i) for
: every i<j. It follows that f is a bijection between the set of permutations p € S,
* with k cycles and the set of permutations p, € S, which have the property stated

in the problem.

The number of permutations p € S, with k cycles is equal to |s(n, k)| by
Problem 12.2. This observation completes the proof. [A. Rényi, Colloguium
Aarhus (1962), 104-117.]

12.16 It is clear that d(/, g)=0 implies f(i)=gli) for every i=1,....n, and
hence f=g¢g and d(f,g)=20 for every f,geS,. Furthermore d(f,g)=d(g, ),
and for f, g, h €S, one has

|/8) = g < 76 = hi)| + (i) = (1))
for every i=1,..., n, which umplies that
max | £ () (i)
<max {|£() = hii)] + () = g(i)]}

<max | /(i) = h(i)| +max h(i) - g(i)],
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or

d(f, gy<d(f, h)+d(h, g).

Hence d(/, g) is a metric or distance on S,. If p € S, and d(e,, p}< 1, where g,
is the identity permutation in S,, then either p(n)=n or p(nj=n—1 and p(n—1)
=n, since otherwise one would have d(e, p)> 2.

Let g, r denote the restrictions of p to the first n—1 and n~2 elements of
{1,..., n} respectively. In the first case one can conclude that d(e,_,, g)< 1, and
in the second case d(e,-,, r)< 1. Thus F(n, )=F(n—1, 1)+ F(n—2, 1), which,
together with the values F(1, 1)=1 and F(2, 1)=2, yields the equation F(n, )=
F,foreveryn>1.

12.17 Define the permanent of a square matrix A=(a;;); ;=1....., by the
equation

per A= Z alp(l)a2p(2) T anp(n)»

peSa
where p runs through the set of permutations of {1,...,n}. Observe that

111000 0

111100

111110

01 1 1 11

a,=per

01 11 11
001111

0 000111

In this nth-order matrix the element 1 occurs in the successive rows
3,4.55....,5, 4,3 times, while the remaining elements are zero. In the sum-
mation which defines the permanent of this matrix, only the products which
correspond to permutations p which satisfy |p(i)—i|<2 for i=1,...,n have
value 1; the remaining values are zero, and this observation justifies the given
equality.

From properties of permutations one can conclude that the permanent can
be obtained by an expansion on a row or column analogous to the way in which a
determinant is expanded, with the single difference that all the permanents in
the expansion occur with a plus sign.

Expanding this permanent on the first row yields

an=an—l+bn—1+cn—1!

where
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111 O It 1 O
111t 1111
01 1 11 01 1 11
11 111 01 1 11
b,,=per N Cp=Der
: L 1
] 11

11
0 11l 0 L1y
By expanding b, and ¢, on their first columns one can see that
by=an-1+ba1,
Cn=bp_1 +dn1,

T i S U

Y where
110 0
1111
3 01 1 11
1t 1 11
d,=per
X
1
i Lot
; 0
i I 11
33 and all the given matrices have order n. Expansion of d, gives
E d,,=a,,_1+e,,_1,
\ where
: L1t 0
01 11
01t 11
1t 1 11

e, =per

1
P11

0 111

Expanding ¢, on the first column, one can conclude that e,=a,-,. These
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recurrence relations determine a,, b,, ¢,, d,, e, for every n with initial values
forn=2:a,=by=c,=d,=2,e,=1. Let

i1 100 a,
1 1000 by
A={0 1 0 1 0|, @rv,=f cu
1 00 01 d,
1 00 00 en
The given recurrence relations can be expressed in matrix form as follows:
Up=AVyy =A%, = = A"y, = A",
Here
1 1
0 1
vo=| 0 |, vy=Avg=| 0 |,
0 1
0 1
Uy =AU1 =

— N NN

which coincide with the directly obtained values for the case n=2. Thus a,
can be expressed as the scalar product of the vector consisting of the first row
of the matrix A" and the vector vy, that is, {4"),;. [D. H. Lehmer, in: Comb.
Theory Appl., Coll. Math. Soc. J. Bolyai, 4, North-Holland, 1970, 755-770.]

12.18 The desired number is the permanent of the matrix

1 -1 00 -~ 00

I -1 10 00

: n=p
1 1 11 1 0

1 1 1 1 11

. p

1 -1 11 - 11
—_——

p n—p

By expanding the permanent on the first row of the matrix one can obtain the
recurrence relation

A(n, p)=pA(n—1, p).
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Thus A(n, p)=pA(n—1,p)= - =p" PA(p, p)=p"~p!, since Al(p,p) is the
number p! of permutations of the set {1, 2,...,p}.

12.19 For an up—-down permutation of the set {1,...,n} the number 1
may be found in one of the positions of rank 1, 3, 5,..., while the number n

can be found in one of the positions of rank 2,4, 6,....

Suppose the number 1 is found in position 2k + 1. The number of up~down
permutations of the set {1,.. ., n} with this property is equal to ("3, ) AzcAn- 1 - 21
This follows from the fact that the numbers at positions 1, 2,..., 2k can be
3 chosenin ("z_k‘) ways from 2, 3,. .., n, and the number of up~down permutations
with 2k positions is equal to 4,,. At the same time the number of up-down
I permutations formed with the remaining elements on the positions 2k+2,...,n
is equal to A, - 5. 1f the number n occurs in the position of rank 2k, then one
can show analogously that the number of up—down permutations is equal to

! (2"[_11 YAk~ 1A, - 2. From this follows the recurrence relation

~1 -1 -1
2A,,=<n0 )AoA"-1+(nl >A1A,,_2+(n2 )AzA,,_3+"'

+(n—l) An_le, where A0=A1=1.

n—1

. Notice that each up—down permutation with the number 1 in position 2i+1

. and the number n in position 2j is counted exactly twice: once among the up-
down permutations with the number 1 in position 2i+1 and once among the
up-down permutations with the number n in position 2;. If @, = 4,/k! for k=0,
then this recurrence relation can be written

2na,=agay-1+a10,-2+ *** +a,-ap,
and hence the generating function of the numbers a;,
f(xX)=ap+ayx+ax2+ayx>+ -,

satisfies the differential equation f'(x)/{1+ f*(x)} =4 with initial condition
S{0)=a,=1. The solution of this equation yields

arctan /‘=%+C, or f=tan <§+ C>,

where C =7/4. Thus

m\ I+sinx
= =sec x+tanx.

X
Jix)=tan (Tz cosx

[D. André, C. R. Acad. Sci. Paris, 88 (1879), 965-967.]

There are many extensions of this classical result (L. Carlitz, Discrete Mathe-
matics, 4 (1973), 273-286; L. Carlitz, R. Scoville, Duke Mathematical J., 39(4)
(1972), 583-598; etc.]
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12.20 1t follows from the given conditions that
p()<pB3)<p(S)<p(T< -+ and p(l)<pld)<p(6)<p(8)< .

Thus p(l)<min(p(3), p(4), p(5), p(6),...). One can show analogously that
pli)<min;; ;.5 p(j).

Let the number sought be denoted g(n) for every n>1. It can be seen that
g(1)=l and g(2) =2, since both of the permutations 1, 2 and 2, | satisfy the given
conditions. The set of permutations of the set {1,...,n} which are 2-ordered
and 3-ordered can be written in the form A,u B,, where A, is the set of permuta-
tions of the set {1,...,n} which are 2-ordered and 3-ordered and for which
p(l)=1. The set B, consists of those permutations of the set {1,..., n} which are
2-ordered and 3-ordered and for which p(1)=2 and p(2)=1.

In fact, if the permutation p is 2-ordered and 3-ordered and p(1)=2, then
p(2)=1, since otherwise the number 1 would appear in one of the positions

3,4,...,n; this contradicts the inequality

p(1)<min(p(3), p(d),..., p(n)). (n
In the same way one can show that p(1)<2, since if p(1) > 3 at least one of the
numbers 1 or 2 appears in one of the positions 3, 4, ..., n, and this again con-

tradicts (1).

It is clear that the sets 4, and B, are disjoint, and thus g(n)=|4,|+|B,|=
g(n—1)+g(n=2), since A4, has the same cardinality as the set of permutations
of the set {2, ..., n} which are 2-ordered and 3-ordered. The set B, has the same
cardinality as the set of permutations of the set {3, ..., n} which are 2-ordered
and 3-ordered.

Since g(1)=F, and g(2)=F, and the numbers g(n) satisfy the same recur-
rence relation of the Fibonacci numbers, it follows that g(n)=F, for every n> 1.
[H. B. Mann, Econometrica, 13 (1945), 256.]

12.21 It follows from the proof of the preceding problem that
u;<ming, , 4., and hence the sequence can contain at most two consecutive
terms which are equal.

Let F{p, q) denote the number of sequences (uy,...,u,) where u;,...,u,
belong to a set consisting of p pairwise distinct numbers which satisfy the
conditions u;<u;,,(1<i<n—2) and w;<uy;,.3(1<i<n—-3). It follows that
S(ny=F(n, n).

Suppose that uy,...,u,€{1,...,p}. If the sequence u,,...,u, begins with
1 and u,>2, then the number of such sequences is equal to F(p—1,q—1),
while if u, =1, the number of these sequences is equal to F(p—1, g—2), since
in positions 3, 4,...,q there must be numbers from the set {2,..., p} which
satisfy the given conditions. If the sequence begins with u, =k, then u, =k
and u, =1, or u; =k and u,=2,...,0r uy =k and u,=k, or u,=2k+1. Thus
in this case the number of the sequences (u,, ..., u,g) is equal to F(p—k, g—1)+
kF(p—k, q—?2). Finally one can conclude that the numbers F(p, q) satisfy the
recurrence relation
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F(p,q)=F(p—1,9—1)+F(p—2,9q-1)+F(p-3,9—-1)+

+F(p—1,q—2)+2F(p—2,9-2)+3F(p—-3,9—-2+ -

for every p, = 3.

1t is also true that F(r, )=r and F(r,2)=r%, F(1.r)=0for r23, F(r,2r)=1
when the unique sequence 112233 ---rr is obtained, and F(r, 2r+1)=
F(r,2r+2)=--+ =0. One can also conclude that F(2.3)=2, since in this case
there exist sequences 112 and 122 which satisfy the given conditions. These
initial conditions yield the following table of numbers F(i. j) in which the first
two rows and the first two columns are determined from the initial conditions:

?\\\;J 1 2 3 4 5 6 7 8 9 10
L ‘ { 1, 0 0 0 0 O 0 0 O
2 12 4, 2 1 0 0 0 0 O O
30379 TRTYT00000 0
4 |4 160 24 31 2 13 4 1 0 0
5 15 25! S0 8 8 75 42 19 5 |
6 |6 36 126 — — 288 — — — —
7 17 49 .

The number F(p, g) with p, ¢> 3 is obtained by adding the numbers from column
g—1 and the numbers from column g —2 multiplied by 1, 2. 3,4.5,..., respec-
tively, and located in row p—1 and above.

In particular, f{6)=F(6, 6)=288.

12.22 It is clear that A(n n)=1, since there exists a unique permutation
with n falls, namely n, n—1,..., 1; and A(n, 1)=1, since the unique permutation
with one fall is the identity permutation. By definition, one has A(n, 0)=0 and
Y-, A(n, ky=n!. Consider the set Q of the A(n—1, k) permutations of the
set {L,...,n—1} which have k falls. One can obtain k4(n— 1, k) permutations
of the set {1,..., n} which have k falls each by inserting (in k ways) the element n
between any two positions p(i) and p(i+1) such that p(i)>p(i+1) [and also
after p(n—1)], for every permutation p € Q.

The set R of the A(n—1, k—1) permutations of {1,...,n—1} which have
k—1 falls yields (n—k+1)A(n—1, k— 1) permutations of the set {1,..., n} with
k falls by inserting (in n— k+ 1 ways) the element n between any two positions
p(i) and p(i+ 1) such that p(i)<p(i+ 1), and also to the left of p(1), for every
permutation p € R. In this case the number of possible ways is equal to
n—(k—1)=n—k+1, and the number of falls increases by one. By using these
two procedures one obtains all A(n, k) permutations p € S, with k falls, without
repetitions, and hence (a) follows.

By using this recurrence relation one can compute in tabular form the



298 Problems in Combinatorics and Graph Theory

numbers A(n, k) row by row, taking into account that A(n. k)=0 for k>n. For
n<6 the table is given below:

n\\\li 1 2 3 4 5 6
I 11 0 0 0 00
2 1 1 0 0 00
3 1 4 1 0 00
4 111 11 1 00
5 1 26 66 26 1 0O
6 1 57 302 302 57 1

In order to prove (b), let P, , be the set of permutations p € S, with k falls,
and let /° be the function which associates the permutation p=p(1)p(2) -
p(n) € S, with the permutation f{p)=p(n)p(n—1)---p(1)eS,. It is clear that
p hasafall at p{i) if and only if f(p) does not have afallat p(i+1)fori<i<n-—1.
By definition f(p) has a fall at p(1) and p has a fall at p(n). Thus f{(p) € P, ;4| -4
Since f:P, =P, ,+1 -« is @ bijection, it follows that [P, ,[=|P, .1 -« that is,
(b) holds.

In order to obtain (c) we prove that the identity

S Aln, ) (’"+k“1>=m" (1)
k=1 n

holds for fixed n>1 and for any integer m> 1.

Consider the set of m" words a,a, - a,, where the g; are integers and
I<a;<m. One can sort this sequence so as to obtain the unique sequence
Ap ) ap) S Sy, Where p(1)p(2) - - - p(n) is a particular permutation of the
set {1,...,n}, under the condition that a,y=a,;., implies that p(i)<p(i+1)
for any 1 <i<n— 1. This condition is equivalent to the following: if p(i) > p(i + 1)
then apy <apa+y) for any 1 <i<n~1. It will now be shown that if the permuta-
tion p(1) - p(n) has k falls, then the number of words a,a, - - a, sorted in the
abovementioned way by the permutation p is equal to ("7 7). Indeed, if p €5,
has k falls, then the desired number of words is equal to the number of sequences
a,a, " a,such that

1<, ©8,5 Q * Qapm<m, 2)

where the sign &) between a,, and a,;., is < if the permutation p does not
have a fall at p(i) and is < otherwise. But the number of sequences satisfying (2)
is equal to the number of sequences b, b, - - b, composed of positive integers
which satisfy the following conditions:

I<h, <bh, < <b,_ <b,<m+n—k (3)

Let by =a,,; let by =a,, if p has a fall at p(1) and b, =a,,,+ | otherwise:
if by=ap,+s,let b,y =ap,+1+sif phasafall at p(r) and b,o; =apeey+5+1
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otherwise, for any r=2. This correspondence is a bijection between the set of
sequences satis{lying (2) and the set of sequences satisfying (3). But the number
of sequences b, b, - - b, which satisfy (3) is equal to the number of n-element
subsets of the set {1,...,m+n—k}, that is, (’"*:_"). Hence one has defined a
function g which associates to every sequence a=a, - * a,, where 1 <a;<m, a
permutation p=g(a) which sorts this sequence as previously described.

Let A,={a=a, """ a,|g(a) has k falls}. It follows that

|Ag = Aln, k) ("’ +:_k>

and the sets 4;...., A, are pairwise disjoint. One can write
p v . m+n—k
m'= 3, |Ay=} A(n,k)< )
k=1 k=1 n
" —1+(n—k+1 n k-1
=Y Amn—k+1) ("’ et ))= S Aln k)("’+ )
k=1 n k=1 n

which 1s (1). Since (1) holds for every m= 1, it follows that polynomial identity (c)
also holds, because the polynomials on both sides take equal values for an
infinite number of values of the variable x.

{(d) may be deduced from (c) as follows. For x=1 one finds that A(n n)=
A(n, 1)=1. For x=2 it can be seen that A(n,n—1)=A(n, 2)=2"—n—1, which
is in accordance with (d). Suppose that (d) is true for A(n. 5}, where | <s<k—1,
It will be shown that this relation is also true for s=k%.

Let x=k in (c) to obtain

k"=A(n,n-—k+1)<Z)+A(n,n—k+2) (”:1>+ Al ) <n+k—1>’

n

or

k= A, )+ Al k= 1) (”:1>+ Al ) (”“Lﬁ‘l).

The induction hypothesis yields

k-1

A(n» k)= Z ('_ 1)pc(n, P)(k—P)"v

p=0

where the coefficient c(n, p)=)F_, (- 1)5+‘("',+_15)(":S) for p=1andc(n 0)=1. 1t
is now necessary to show that c(n, p)=(":l ), or equivalently that the following

identity holds:
2 +1 +
Y (=1pt ('; S)("n S>=0 4)
s=0 -

forany p>1. By using Newton’s generalized binomial formula one can conclude
that
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I=(l—x)*(1=x)""*

___{1_<n+l>x+<n+l>x2+,,,+(_1),.+1x,,+,}
1 2
{ <n+1> <n+2> . (,H.S) . }
x9l+ x+ X4+ X
1 2 S

In the expansion of the product on the right-hand side the coefficient of x?
vanishes for any p>1, so that Z (= 1P~5("7*) (21 )=0. By multiplying both
members by (—1)'"? and using the equality (E”) ("**), one obtains (4).
Similarly. the Eulerian number A(n, k) may be defined as the number of permuta-
tions of {1,...,n} with & rises. By definition, a permutation p(1)- - p(n) has a
rise at p(i )1fp( i)< p(i+ 1); by convention, there is a rise to the left of p(1). [L. Euler,
Institutiones Calculi Differentialis, St. Petersburg, 1755, 485-487; see also
L. Euler, Opera Omnia, 1913, Vol. 1, Section 10, 373--375.]

1223 Let
1 2 e
o= .
n n—1 - 1

Since p? is an even permutation, it follows that [(g)=( ) 0 (mod 2), which
implies that n=0 or 1 (mod 4). Two cases will be con51dered

{a) Let n=4m. Here p has no fixed points. In fact, if there exists a € {1,....4m}
such that p(a)=a, then o(a)=p(pla))=a, so dm—a+1=a, and a is not an
integer. Now let k,ie{l,...,4m} such that p(k}=i. One can write g(k)=

(plk))=pli), or pli)y=dm—k+1; a(i)=p(pli)) =p(dm—k+ 1), or pldm—k+1)=
dm—i+1; ocdm—k+1)=p(pdm—k+1))=p(dm—i+1), and hence
p(dém—i+1)=k. The numbers in the set A={k, i,dm—k+1, 4m—i+1} are
pairwise distinct. For otherwise, if k=i, then k would be a fixed point; if k=
4m—k+1, then k would not be an integer; if k=4m—i+1, then k would be a
fixed point of p; and so on.

[t follows that p(4)=A, and the restriction p, of p to the set {1,...,4m}\4
belongs to S,_, and satisfies p? =a,. Here 0'1 denotes the unique permutation
of the set {1,...,4m}\ 4 having I(o,)=("7,") inversions.

Since p?=g 1mp11es that p(k) ¢ {k, 4m — k+ 1} for every k, one can conclude
that the recurrence relation satisfied by N(4m) is

N(dm)=(4m—~2)N (4m —4).
It follows that
N@m)=(4m—2)(dm—6)- - 6N(4)=2x6x '+ x{dm=2)

2m)! .
=2"{Ix3x5x%x - ><(2m—1)}=(l‘), since N(4)=2.
m!
(b) If n=4m+1 then p’Cm+1)=0(2m+1)=2m+1. Let a=p(2m+1). It
can be shown that
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ala)=pp2m+ 1)) =p(p?2m+ 1) =p2m + ) =a.

Since 2m+ 1 is the unique fixed point of ¢, it follows that p2m+1)=2m+1

and p has no other fixed points. The restriction of p to the set {1,...,4m+1}\

{2m+1} has properties analogous to those of p, and hence one can conclude that
(2m)!

CHAPTER 13

13.1 Consider the axis of symmetry xx’ of the rectangle which is parallel
to the sides AC and BD (Figure 13.2). The desired number of configurations
is equal to

N{+N,,

where N, represents the number of configurations which coincide with their
images with respect to a reflection in xx'. The number N, represents one-half
the number of configurations which are not self-corresponding under a reflec-

536
i
666
i
586
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tion in xx'. Excluding the configuration which contains no perforations, it
follows that

Ni+2N,=2°~1=511,

In order to find the value of N, consider the configurations of the six per-
forations located on the same side of the axis xx’ and on the axis xx’ under a
symmetry with respect to xx'. The result is that N; =2%—1=63. The desired
number is thus

Ny+N,=L(N, +2N,+N,)=4(511+63)=287.

Suppose the side AR contains n perforations and the side AC contains m
perforations, so that there are a total of mn perforations. Proceeding as before,
it follows that

NJ =2m[(u+1)/21_1

and N;+2N,=2"—1. Thus the desired number of ways of performing a
perforation is equal to

Ny+Ny=4(N,+ 2N, + N)=42m 4 2= 021 9
=2mn—1 +2m[(n+1)/2]—1 ~1.

[I. Tomescu, Problem 0:59, Gazeta Matematica, 84(7) (1979).]
13.2 First we show that x ~ ¥(G) is an equivalence relation. It satisfies:

(1) Reflexivity: x ~ x(G), since x =e(x), where e is the identity permu-
tation, e € G.

(2) Symmetry: x~ y(G) implies that y~x(G), because there exists
g € G such that y=g(x) and hence x=¢"!(y) with g~ € G.

(3) Transitivity: x~y(G) and y~z(G) implies x~z(G), since there
exist g;, g, € G such that y=g,(x) and z=g,(y) and hence z=
g29:(x) with g,g, € G.

In order to prove Burnside’s lemma let G,={g|g € G, g(k)=k} be the set
of permutations which leave fixed the element k. For every k=1,...,n the set
G, is a subgroup of G, since if f, g € G, then fg € G, because fg(k)= f(k)=k.
The set G, is nonempty, since the identity permutation satisfies e(k)=k for
every k=1,...,n.

Let O, denote the orbit of the group G which contains the element k. It will
be shown that

[Gil-|04] =1G].

In fact, since G, is a subgroup of G, one can consider the set G/G, whose classes
are sets of the form Gya= {ga|g € G, }, which form a partition of the set G and
whose cardinality is equal to |G/G,| =|G|/|G,|. It will be shown that this number
is equal to |O,| by constructing a bijection from O, to G/G,. Observe that
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g(iy=h(i)=k with g, h ¢ G implies that hg~!'(k)=h(i}=k, that is, hg~' € G, or
heGy.

For every element i € O, there exists a permutation g; € G such that g,(i}=k.
since i~ k(G). The bijection f : 0> G/G, isdefined asfollows: f(i)=G,g, € G/G,,
where the permutation g; satisfies g,(i) = k. The mapping f is well defined, since
if there exist two permutations h, g € G such that g(i) = h(i) =k, then it has been
shown that h € G, g, that is, the class of h coincides with the class of g, so Gih=
Gkg-

The mapping f is injective. In fact, i, j € Oy and i#j imply the existence of
two permutations h, g € G such that g(i)=h(j)=k and thus hg " '(k)=h(i) £ k=
h(j), since h, being a permutation, is injective and is; implies that h(i) # h{j).

But hg~!(k)#k means that hg~! ¢ G, or h ¢ G,g, and hence G,g+# Gh or
fY#(j). Also, [ is surjective for the class Gg if the image of the element
g l(k)=1€0,, since g(l)=k and hence |~ k(G). Since the mapping [ is bi-
jective, it follows that |0,|=|G/G,|=(G|/|G,|. Now count the elements in X
which are invariant under the permutations g € G in two different ways:

Shig=TlGl= T ¥ G

keX i

denote the orbits of the group G. It has been seen that if
_J, ke O, then lG,-T:le|=(G[/lO,-‘, and hence
' : &...16
2, 4ilg)= 3. |04 —'=QIGI,
g9eG i=1 |01)

~ which implies that g=(1/|G]) }_,.c A,(g).

13.3 Denote by R(, R,,..., R, the clockwise rotations of the regular poly-
gon about its center through an angle 2n/n, 4n/n, ..., 27 respectively. These
rotations form a group with respect to the composition of rotations; R, is the
identity element of the group. Two polygons P, and P, with k vertices are con-
sidered to be identical if there exists a rotation R,, with angle 2zm/n such that

Py =Rm(P2)-

By Burnside’s lemma of the preceding problem, the desired number is equal to

12
- E Al(Rm)’ (1)
M=

where A,(R,,) represents the number of polygons P with k vertices which are
invariant under R,,, that is, R,,(P)=P. Observe that if one applies the rotation
R,, successively to a vertex A of the regular polygon with n vertices, then the
smallest index d for which Ré(A)=A is equal to d =n/(m, n). In fact it must be
the case that n | dm or n/(m,n) | d-{m/(m, n)}. This implies that the smallest
integer d which satisfies this relation is n/(m, n), since the numbers n/(m, n) and
m/(m, n) are relatively prime.

Represent the vertices of the regular polygon with n vertices by the numbers
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0,1,...,n—1. The rotation R, defines a permutation of these numbers, the
image of the number i being the number i+ m (mod n), as is seen by considering
the vertices of the regular polygon to be numbered 0, ...,n—1 in the clockwise
sense. Thus if the polygon P with k vertices is invariant under the rotation R,
then this defines a permutation of the k vertices of P, which can be expressed in
the following form as a product of disjoint cycles:

[ilviZ)""id][jlvjz'-"vjd]'”[tl-tb--'-[d]’ (2)

where all the cycles have the same length d=n/(m, n). It follows that d | k or
n | k(m, n), and the number of cycles in (2) is equal to k/d = k(m, n)/n.

Consider the permutation induced by R,, on the set X of vertices of the poly-
gon P and written as a product of disjoint cycles. It will be shown that every
(m, n) consecutive numbers modulonof the set {0, 1,..., n—1} have the property
that no pair of them belong to the same cycle of the permutation induced by
R,, on X. For suppose the contrary. One can then show that there exist two
numbers 0< a, b<n—1 such that 0<|a—b|<(m, n)—1 and such that they are
found on the same cycle as c. It follows that c+pm=a (mod n) and c+gm=b
(mod n), and hence

a=c+pm—rn and b=c+qgm—sn,
where r, s 0 are integers. Thus one has
la=bl=|(p=gm+(s—r)n| > (m, n)

because a# b, and this contradicts the inequality |a—b|<(m, n—1.

It follows that for every (m, n) consecutive numbers (modulo n) of the set
{0,...,n—1} there are exactly k{m, n)/n distinct numbers which belong to
different cycles of the permutation (2) induced by R,, on X. For otherwise the
number of elements in X would be smaller than {k(m, n)/n}{n/(m. n}} =k, which
is a contradiction. In order to find the number of polygons P with k vertices
which are invariant under R,,, one must find the number of permutations of
form (2) where d=n/(m, n) which contain k(m, n)/n cycles. The permutation (2)
is uniquely determined if one chooses an element in each cycle; the other el-
ements of the cycles are obtained by repeated addition of m {modulo n) to the
number chosen. Thus if n | k(m, n), then the number 1,(R,,) is equal to the
number of ways of choosing k(m, n)/n elements from among (m, n) elements,
that is, it is equal to

(m, n)
J(n, k,m)y=| kim, n) |. (3)
n

If nisnot a divisor of k(m, n) then 4,(R,,)=0. In view of (1) the desired number
has the form

S|

Y. Sk m). 4
n )kaml.n)
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By using the notation d=n/(m, n), the condition n | k(m, n) becomes d | k, and
since d | n, it follows that d | (n. k).

Now calculate the number of terms in summation (4) which have the same
value, Assume that d is fixed and m takes values between 1 and n such that
k(m, n) is divisible by n. If e=m/(m, n) then e<n/(im,n)=d and (e, d)=1. The
condition n | k(m, n) is satisfied if d | (n, k). Thus for fixed d, f(n, k, m) takes the
same value for all numbers ¢ which are prime to and less than d. The number ¢
uniquely determines m by m=elm, n)=e¢njd. It follows that the number of
convex polygons with k vertices which cannot be obtained from one another

by a rotation is equal to
1 n/‘d
- (D(d) ( ) 3
ny I%,k) kjd

where @(d) is Euler's function which gives the number of positive integers
smaller than and prime to d (Problem 2.4).

13.4 Proceeding as in the preceding problem, it can be seen that the number
of colorings with k colors of the vertices of the regular polygon with n vertices
which cannot be obtained from one another by a rotation is equal to

1 n

- Z ;“I(Rm)v

Nm=1
where 4,(R,,) represents the number of k-colorings invariant under the rotation
R,, of angle 2nm/n. One can show analogously that if a k-coloring is invariant
under a rotation R,,, then this rotation defines a permutation of the n vertices
which can be expressed in the following form as a product of disjoint cycles:

Gia.o gt i) Lin, L i8], (1)

where d =n/(m, n) and p=(m, n). Each cycle in (1) is formed from numbers of the
set {0,...,n—1} corresponding to vertices of the regular polygon which are
colored with the same color.

Also, every (m, n) consecutive numbers modulo n in the set {0,...,n—1}
belong to different cycles in (1). Thus the number of k-colorings invariant under
R, isequal to the number of colorings with k colors of (m, n) consecutive numbers
modulo n from {0,...,n~1}, that is. to the number of functions

g:iil o m )=, k)

It follows that 4;(R,)=k"". Finally the desired number of k-colorings is
equal to
1 & 1
_ k(n.m)=_ w(d)kn,'d.
n mz—‘:l n d;n
13.5 One first obtains a formula for g,. If in the representation of the
permutation p € S, as a product of disjoint cycles there are d, cycles of length
“kfor k=1,...,n, then p is said to be a permutation of type 1929 - p?_where
dy+2d,+ - +nd,=n.
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Suppose that the graph G=(X, U) has vertex set X=1{1,...,n}. Every
permutation p in S, can be considered to be a permutation of the set of graphs
G by defining p(G)=(X, p(U)), where p(U)={[p(i), p(j)]|[i, j] € U}. One first
determines the number d(p) of graphs G with n vertices such that p(G)=G,
that is, the number of fixed points of p. Let G be a graph such that p(G)=G,
and suppose that p is of type 192%2 - - n». The graph G can be partitioned into
subgraphs G,, G,, ... such that two vertices i and j belong to the same sub-
graph if and only if i and j belong to the same cycle in p. Among the subgraphs
G; there are d, which contain exactly k vertices. for k=1,...,n.

Suppose that {1,2,...,k} and {k+1,k+2....,k+1} are sets of vertices for
two of these subgraphs G, and G,. One can assume that the permutation p
contains the cycles [1,...,k] and [k+1,...,k+1]. The [k/2] possible edges
between the vertex 1 and the vertices 2, 3,. .., [k/2] + 1 in the graph G uniquely
determine the existence of the other edges of G, in view of the condition p(G)=G.

Similarly the (k, 1) possible edges between the vertex 1 and the vertices
k+ifori=1,...,(k ) uniquely determine the existence or nonexistence of the
other edges which join vertices of G, and vertices of G, in view of the con-
dition p(G)=G. Thus if p(G)=G, one can select in an arbitrary manner the
existence of a number of edges equal to

k k<l k odd keven

1 n
5( él(k, l)dkd(“ Z dk)

k odd

G,= Zl (k, k) (‘;*>+ Y (kDdidy+ Y, %d,,(k—l)+ Y %kdk
k

Thus d(p)=2%¢, from which (a) follows, since the number of permutations of
type 1429 -+ n?" is equal to n!/N,and |S,|=n!.

In order to prove (b) one can proceed analogously. Two vertices x, y can be
nonadjacent, joined by the arc (x.y) or the arc (y, x), or joined by both the
arc (x, y) and the arc (y, x). There are thus four possible cases. Also, in the
expression for G, the summation kan $kd, must be replaced by
Y 4 even 3(k—2)d,. For two vertices u, v of an even cycle of length k, separated by
the maximal distance k/2. there are only two possibilities: either u and v are
nonadjacent, or u and v are joined by both arcs (u, v) and (v, u), since the existence
of a single arc would contradict the invariance of the graph G under the per-
mutation p. Thus by applying Burnside’s formula one obtains the numerator of
d,, which is expressed by

454"2.,..,.dt ><2>:"""d‘ =204'

from which (b) follows.

The formula for ¢, can be established analogously in view of the fact that there
are three possible ways to join two vertices by arcs. Consider a tournament, and
suppose the permutation p under which G is invariant contains a cycle of even
length. say [i,, i5,..., 1], and that G contains the arc (i, i,4+,). Since p(G)=G,
it follows that G also contains the arcs (i,, iy 5), (i, fk+3), - - -, (x4 1. i1)- But the
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existence of both arcs (iy, ig+,) and (iy+;, iy) contradicts the definition of a
tournament, and hence in this case d(p)=0. Otherwise, if p(G)=G, one can
choose an arbitrary direction only for

S ddik—1+ Y (k. K) <d2k>+2 (k, Ddyd =
k=1 k=1

5 ( Z (k, I)dkdl_ Z dk>=Td
k<l k=1 k=1

arcs; the orientation of the remaining arcs is uniquely determined by the orienta-
tion of these arcs, and the numbers d,, d3, ds, . . . satisfy (3).

The values of the numbers g, d,, and ¢, up to n="7 are given in the following
table:

n gn d, t
1 1 1 1
2 2 3 1
3 4 16 2
4 11 218 4
5 34 9,608 12
6 156 1,540,944 56
7 1044 882,033,440 456

13.6 The relation f|~ f, is an equivalence relation. It satisfies:

(1) Reflexivity: /' ~ f because [ = fe, where e is the identity permuta-
tion and ¢ € G.

(2) Symmetry: [, ~ [, implies that f,~ f,, since there exists g€ G
such that fig=f, and thus f,g™'=f,and g7 ' €G.

(3) Transitivity: fi~f, and f,~ f; imply that fy~ f;. since
fig= Sz and f3h=f; with g, h € G implies (f1g)h= fi(gh)= {3,
where gh € G, since G is a group.

Let F denote the set of the m" colorings f:X—A. For every permutation
g of X the mapping f—3(f)=fg is an injection of F into F. In fact, [, # f,
implies the existence of an object i € X such that f,(i)# f,(i). Let j=¢~ '(i). It
follows that fig(j)= f1(i}# f(i)= f29(j) and thus f,g# f,g9. The mapping
g:F—F is injective, and since F is finite, this mapping must be surjective and
hence a bijection. In other words § € S, where S denotes the set of permutations
of the set F.

The equation ¢(g) =g defines a mapping

©:G-S.

This mapping is injective, since if g, # g, there exists k € X such that g,(k)# g, (k).
It will be shown that the functions g, :F—>F and g,:F—F are different,
» that is, there exists f € F such that fg, # fg,, in view of the definition of 4.
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If m=2there is a coloring f which uses different colors for the distinct elements
g.lk) and g,(k), since F is the set of all functions [ : X — 4.

Thus f(g,(k)# f(ga(k)) or fg,(k)# fg,(k), from which it follows that fg,
and fg, are different and ¢ is an injection. If m=1, then ¢ no longer is injective.
However, in this case the number of colorings is equal to 1, so all the objects
have the same color and P(G;1,...,1)=(1/|G}},.c 1 =1, which completes
the proof of the property.

Let G={g|geG)}. Since @ is an injection, it follows that there exists a
bijection ¢,:G—G<S defined by ¢,(g)=0(g) for every geG, and hence
|G| =|G].

The set G is a subgroup of the group S of permutations of the set F ofcolormgs,
since Gy, §, €G implies that g,g, € G. In fact g,g(f)=5,(fg2)= f(g291)=
g29:(f), and thus the product of two elements of G, say §, and g, is an element
of G which corresponds to the product g,g, € G. Since S is a finite group, it
follows that G is a subgroup of S.

According to the given definition, two colorings f; and [, are equivalent if
there exists g € G such that f,g=f, or g(f,)= [, and thus they belong to the
same orbit of the group G. This implies that the number of equivalence classes
is equal to the number of orbits of the group G. By Burnside's theorem (Problem
13.2) this number is equal to

44(g).
Gt
where 4,(g) represents the number of fixed points of the permutation 7 or the
number of colorings f such that §(f)= f or fg= f. But fg= f implies that
is constant for every cycle of the permutation g, since otherwise one would have
Jg= /.

Thus there exist as many colorings f with the property fg= f as there are
functions on the set of cycles which contain 4,(g)+ - - +1,(g) elements in the
set of the m colors, namely, m*'9' """ "4 In view of the fact that |G|=|G|,
one finds that the number of equivalence classes is equal to

1

— ml'-l(g)'*'""*')-n(y):P(G‘-m’”"m)‘
|G| gt

13.7 Consider the set X whose six elements are the faces of a cube, which
will be denoted 1...., 6 as in Figure 13.3. The vertices of the cube are labeled
a.b.c,d e, f, g, h

Now use Polya’s method to count the equivalence classes of the colorings,
that is, the mappings f:X—>A={a,...,a,). The group G of rotations of the
cube will be determined; it is a subgroup of the group of permutations of the
set X,

The rotations which leave the cube invariant can be expressed as follows as a
product of disjoint cycles and omitting cycles of length 1:
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5}

Fig. 13.3

(1) about the axis abcd-efgh: [2, 6,4, 5], [2, 4116, 5], [2, 5,4, 6];
(2) about the axis befg—adhe: [1, 5, 3, 6], [1, 31[5, 6], [1, 6, 3, 51;
(3) about the axis abfe-dcgh: [1, 2, 3, 4], [{, 31[2, 47, [1, 4, 3, 2];
{4) about the axis a—g: [1, 4, S][6, 3, 2], [ 1, 5, 4][6, 2, 3];

(5) about the axis b-h: [1, 5, 2][6, 4, 3], [1, 2, 5][6, 3, 4];

(6) about the axis c-¢: 1, 2, 6][3, 4, 5], [1, 6, 2113, 5, 4];
(7) about the axis d-f: [1, 6,4][3, 5, 2], [1, 4, 6][3, 2, 5];
(8) about the axis ab-hg: (1, 51[3, 61[2, 4];
(9) about the axis be—eh: [1, 2(3, 4][5, 6];

(10) about the axis cd—ef : [ 1, 6][3, 5][2, 4]:

(11) about the axis ad- fg: [, 41[2, 315, 6];

{12) about the axis bf -dh: [2, 5][6, 4][1, 3];

(13) about the axis cg-de: [2., 6][5, 4][1, 3].

The axis bcfg—adhe means the axis determined by the centers of the squares
befg and adhe. The axis ab-hg is the axis determined by the midpoints of the
edges ab and hg, and so on. Since cycles of length 1 are not represented, the
permutation 2, 6, 4, 5] is in fact [1[37[2, 6, 4, 5], the permutation [2, 4][6, 5]
is (1703712, 4](6, 5], and so on.

Thisprocedure, together with the identity permutatione =[1][2][3][4][5][6],
yields a group G of 24 permutations, written as products of cycles, and hence the
cycle index polynomial of the group of rotations of the cube is

P(G; xy,. .., x¢) =22(x$ + 3x2x2 + 6x3x, + 6x3 + 8x32).
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By using Polya’s theorem from Problem 13.6 one finds that the number of
ways of coloring the faces of a cube with m colors is equal to

P(G;m,...,m)=2(m®+3m* +12m> + 8m?).

13.8 In the solution to Problem 13.3 it was shown that the rotation R,
of angle 2nm/n of a regular polygon about its center can be written as a product
of (n, m) cycles of equal length d =n/(m, n):

[ilviZ""'Iid][jlajZ-"'5jd].“[tlv[2""7ld]’

where the numbers iy, ..., iz /1, oy Jase- oy t1y..., Igare the numbers O, 1,. ..,
n—1 which represent the vertices of the regular polygon. Thus the cycle index
polynomial is equal to

1 1
{n,m) /d _ /d
= Z Xpimm == 2, X4 Y == 2. o(d)xi",
Nain mgn Ngin
(m,n)=nid

because if e =m/(m, n) then the conditions m< n and (m, n)=n/d are satisfied if
and only if e<d and (e,d)=1. An application of Polya’s theorem shows that
the number of colorings with k colors of the vertices of a regular polygon with
n vertices which are not obtained from one another by a rotation is equal to
(L) Ty, oK™

In general, if G is a finite group with p elements, one can consider its repre-
sentation as a group of permutations by defining for every a € G

a(x)=xa

for every x € G. Thus a becomes a permutation of the set G which can be de-
composed into p/k cycles of length k, where k is the order of the element ain G.
In fact xa™=x if and only if " =1. Proceeding as before, one finds that the
cycle index polynomial of the group G is equal to

1
@ ngd‘ﬂ(G, d)a
dlip

where p=|G| and ¢(G, d) is the number of elements of order d in the group G.
Observe that in Problem 13.1 the group of rotations about the axis xx’ which
leave invariant the rectangle ABCD is formed from permutations

G={e=[13[2][3][4][5][6][7][81[9] and [2][5IC8]L!, 31[4,6], (7,91}
in the notation of Figure 13.1. The cycle index polynomial is thus given by
P(G; x1, x;)=4(x] +x}x3).

The number of possible perforations is equal to the number of coloring
schemes with two colors, excluding the case when there are no perforations on
the ticket. Thus the number is equal to

P(G;2,2)—1=32°+2%—-1=287.

|

!
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§ Ifthere existed, for example, two types of perforations, of different diameters,
then it would follow from Pdlya’s theorem that the number of possible perfora-
tions of a ticket is equal to

P(G:3.3)—1=43°+3%-1=10205.

139 In the solution to Problem 13.3, it was shown that if ¢ is a cycle of
Hlength k. then the permutation ¢ has (k.i) cycles, each of length k/(k.:). It
jlollows that the contribution to the cycle index polynomial of G of the permuta-
lion f!is equal to

.
(ki) 9

! kﬂ [Xk,‘(;(),(] 4,
: =1

iThe upper limit in this product may be taken to be r because r is the least
tommon multiple of the cycle lengths of f. [J. H. Redfield, Amer. J. Math,,
49(1927), 433-455.]

13.10 The automorphism group of this graph is G={[1][2]{3][4].
230470, 33, [13031302, 43, [1, 3302, 41}, and hence

P(G; xy, X3, X3, Xg) =%(x} +2xix, + x3).

13.11 Denote this number by MG(m). It is clear that MG{m)=P(m, 1)+
P(m, 2)+ P(m, 3), since any multigraph with three unlabeled vertices and m
dges corresponds to a partition of m into at most three parts. One finds that
Pm, =1, P(m,2)=[m/2],and P(m, 3)=P(m—-3,1)+ P(m—3,2)+ P(m—13,3)=
MG(m—3) (see Problem 5.2). Thus MG(m)=1+[m/2]+ MG(m -3} for any
123, where MG(Q)=1.

The formula for MG(m) now follows by induction on m, since MG(0}=
MG(L) =1, MG(2)=2, MG(3)=3, MG{4) =4, and MG(5)=5.

Suppose that the expression for MG{m) is valid for m<n— 1, The fact that it
Iso holds for m = nfollows from consideration of the casesn=0, 1, ..., S{mod 6).

13.12 Letw{a)=a,+a,+ - +a,for any Boolean vector (ay, ..., a,). Then
IKw(a)<n. and if [ is symmetric, it follows that f(a)= {(b) for any a, b € B
ach that w(a)=w(b). Thus it is sufficient to define any symmetric Boolean
unction of n variables for vy =(0,...,0), v, =(1,0,...,0),v,=(1,1,0,...,0),...,
,={1,1,.... 1) to either be O or 1, where w(v;) =i for any 0<i<n. This can be
fone in exactly 2" ! ways.

‘HAPTER 14

14.1 Consider the graph of Figure 14.1 in which all edges have length equal
0 1. Suppose that the property does not hold, and assume that A4 is colored g,
1is colored b, D is colored ¢, and thus that F is colored a. One can conclude
nalogously that G is colored a and hence there are two points F and G at a
istance 1 which have the same color; this contradicts the hypothesis.
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Fig. 14.1

14.2  Suppose that the two colors are red and blue. For every coloring there

will be two points M and N with the same color, say red. If the midpoint P of !

the segment MN is red, then one has obtained three equidistant collinear points
with the same color. Otherwise, suppose that P is blue. If the point N, which is
symmetric to N with respect to M is red, then the points N, M, and N are red.
If N, is blue, consider the point M| which is symmetric to M with respect to N.

¢
t
it

If M, is red, then the desired points are M, N, M ;. Otherwise M, is blue and i

thus N, P, and M, are three equidistant collinear blue points.

Thus in any coloring of the points of the plane with red and blue there will fe

exist three equidistant collinear points of the same color, say red. Denote these
points by 4, B, C. Construct the equilateral triangle AFC so that B, E, D are the

midpoints of its edges (Figure 14.2). If F is red, then AF C is the desired triangle. *

Otherwise F is blue. If D and E are blue, then the equilateral triangle DEF has
blue vertices and the problem is solved. Otherwise at least one of the points D
and E is red. Suppose that D is red and thus the triangle ABD has the desired
property. In order to show that there exists a 2-coloring of the points of the
plane in which no equilateral triangle of side | is monochromatic, consider
the plane together with an x—y rectangular coordinate system. The lines y=
(«/3/2)k with k an integer partition the plane into a network of parallel bands.
Suppose that the band bounded by the lines (/3/2)k and (/3/2)(k + 1) contains
all the points of the line (ﬁ/Z)k and none of the points of the line (/3/2)(k + 1).

Fig. 14.2
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E
Fig. 14.3

iere  Now color the points of the plane red and blue so that all the points of a
>of band have the same color but each two neighboring bands have different colors.
ints Since each band has width I/Z which is equal to the altitude of an equilateral
his triangle of side |, it follows that every equilateral triangle of side 1 has vertices
ed. in two adjacent bands and thus does not have all of its vertices the same color.

hij 14.3 If all the points of the plane have the same color, then the property

is evident. Otherwise there will exist two points 4, B at a distance 2, with dif-

., ferent colors. In fact every two points of the plane which have different colors
I can be joined by a polygonal line which has all of its segments of length 2, and
el’s‘e one of these segments must have endpoints of different colors. In Figure 14.3

€
that
e, suppose tha

128 AC=CB=AD=DC=AE=EC=1
3D and

-ed

the DE=BD=BE=_/3.

je_r Let A be colored red and B colored blue. One can assume that C is red, for

'= otherwise one could make the argument below for the points which are sym-
d memc to D and E with respect to the perpendicular bisector of AB. If D or E is

$ red, then one obtains an equilateral monochromatic triangle of side 1. If D and E
1) arej)lue, then the triangle BED has all of its vertices blue and side length equal
10 /3.

14.4 Consider an equilateral monochromatic (say red) triangle ABC of
side ¢. In Figure 14.4, BDE and CHF are equilateral triangles of side b, triangle
EFG is congruent to ABC, and BE and CF are perpendicular to AB.

By Problem 14.3 there exists a monochromatic equilateral triangle ABC of
ide ae{l,/3}. If a=1, then let b=4/3, and if a=4/3, then let b=1. The
rriangles ABE, DBC, GFC. EFH, ACH, and DEG are all congruent to the
original triangle T. Now A, B, and C are all red. If there are no monochromatic
wriangles congruent to T, then by considering triangles ABE, DBC, and ACH,
ne can see that E, D, and H must be blue. Triangle DEG forces G to be red.
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Fig. 14.4

Triangles CFG and EFH force F to be blue and red, respectively, which is a
contradiction. Thus one of the six triangles must be monochromatic.

It has been conjectured that for any 2-coloring of the plane there exists a
monochromatic triangle which is congruent to a given triangle T unless T is
equilateral, and moreover, that any 2-coloring of the plane with no mono-
chromatic equilateral triangle of side 4 in fact has monochromatic equilateral
triangles of side d' for all d'#d. [P. Erdds, P. Montgomery, B. L. Rothschild,
J. Spencer, E. G. Strauss, J. Combinatorial Theory (A), 14 (1973), 341-363.]

14.5 1t will be shown that in any partition of E into two sets X and Y, at
least one of the sets contains the vertices of a right triangle. Indeed, one can find
points A’ on BC, B’ on CA, and C’ on AB such that the triangle A'B’C" is equi-
lateral with edges perpendicular to the edges of ABC if one chooses

A'C B'A (CB 1
BC Ca AB 3
A

(see Figure 14.5).

1
c <

Fig. 14.5
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Suppose that there exists a partition E=Xu Y such that neither X nor Y
icontains the vertices of a right triangle. At least two vertices from A4', B', and C’
ibelong to the same class, say A’ € X and B’ € X. Then all points of the segment
:BC which are different from A’ belong to Y, and hence €' € X. But this again
-implies that all points of the segment AB which are different from C’ belong to

Y, and hence Y contains the vertices of a right triangle, which is a contradiction.
[Problem proposed at the 24th International Mathematical Olympiad, Paris,
1983.]

14.6 Let E(a. b)=ah(a—bfa+b)=a’b—ab>. If one of the numbers a or b is
equal to zero, it follows that E(a, b)=0, which is a multiple of 10. Since E{—a,b)=
E(a, —b)= —E(a, b) and E(—a, —b)=E(a, b), one need only consider the case
in which all three numbers are positive integers.

It can easily be seen that for every a and b, E(a, b) is even, since if g and b are
both odd, both their sum and their difference are even.

It remains to show that among three pairwise distinct positive numbers there
will be two numbers g and b such that E(a, b) is a multiple of 5. If one of the
three numbers is itself a multiple of 5, then the property is immediate.

Suppose on the other hand that the last digit of the three numbers belongs to
theset {1,2,3,4,6,7.8,9}. 1t will be shown that for every choice of three numbers
from this set there exist two whose sum or difference is a multiple of 5.

Consider the graph with eight vertices in Figure 14.6. Two vertices 1 and
j(i#))are adjacent if and only if i +j or i—j is a multiple of 5. This graph reduces
to two complete subgraphs C, ={1, 4, 6.9} and C,={2, 3, 7, 8}. Thus for any
choice of three vertices of this graph there will be at least two which are in the
same connected component of G, and therefore have their sum or difference a

multiple of 5. This completes the proof of the property.
1 4 2 3
9 6 8 7
Fig. 14.6
14.7 1t will be shown that every sequence of numbers a;, ¢,, ..., Gpy+ CON-

tains either an increasing subsequence with at least m+ | terms or a decreasing
subsequence with at least n+ 1 terms.

Suppose that every increasing sequence has at most m terms and every
decreasing sequence has at most n terms.

For each term «; define the numbers ¢; and d; as the numbers of terms in a
longest increasing or decreasing sequence which begins with a;. The mapping
which associates with every term ¢; the ordered pair (¢;, d;) is injective. In fact,
let i<j and @;<a;. In this case one has ¢,z ¢;+ 1 and hence ¢; #¢; or (¢;, d;) =
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(¢c;, d)). 1f a, = a; then d;>d;+1, that is, d;#+d;, and hence (¢, d})#(c;, d)). But
this implies that the number of elements of the given sequence is less than or
equal to the number of elements in the Cartesian product {1,2....,m}x
{1,2,...,n}, that is, mn+ 1 <mn, which is a contradiction.

14.8 Let t(x) denote the maximum length of a sequence x=a, <a;< '
which satisfies f(a,)< f(a,)< -+ -. Since f(1)=1, it follows that max t(x)=1t(1).
1t must be shown that t(1)=n. Use induction on n. For n=1 the property is
immediate, since 1(1)=1. Suppose that the property holds for every number
m<n—1, and show that t(1) > n. Under these conditions one can first show that
if t(x)=t(1)—k then f(x)<2* for k=0,...,t(1)—1.

Suppose on the other hand that f(x)>2* and t(x)>t(1)— k. It follows from
the fact that 1< f(i)<i that x>2¥ and k<n—1.

Let x=a, < <aygand f(a,)< - < f(ayy). By the induction hypothesis
there exists a sequence 1 €b, < - <b, 1 <2* with f(b;)< *** < f(bx+ ), Since
k+1<n—1. One can thus conclude that

f(bl)sf(bz)g Sf(bk+1)€bk+1<2k<f(al)< sf(ar(x))v

and hence t(1) > t(x)+ k+ 1, which contradicts the inequality t(x)=t(1)—k.
Now observe that if t(x)=1t(y) and x#y, one has f(x)# f(y). In fact, if, for
example, x <y, then f(x)> f(y), since otherwise t(x)>t(y).
The inequality t(x) > t(1)— k implies that f(x)< 2% It follows from this and
the preceding observation that

[{x|tx)=12(1)—k}|<2*  for O<k<i(l)-1.

Since the number of elements in the domain of f is equal to 27!, one can con-
clude that
-1

H1)—1 :
7= Y x|Hx)=tl—k}|< Y 2*=2-1,
k=0 k=0

and hence t(1) > n.
In order to show that 2"~! is the best possible value with this property,
define the integer-valued function g on the set {1,...,2" '~ 1} by

g2*+p)=2—p  (k=0,...,n=2, 0<p<2‘-1).

It follows that g(i)<ifor i=1,...,2" ' =1, and the values taken on by g form
n—1 intervals which are strictly decreasing sequences. If 1<a; < - <a,<
2""'—1and f(a,)< - < f(a) then two f(a;) and f(a;) with i#j cannot both
belong to the same interval, and hence t<n—1. [E. Harzheim, Publ. Math.
Debrecen, 14 (1967),45-51.]

14.9 If the convex covering of the nine points (the smallest convex polygon
which contains the nine points in its interior or on the sides) has at least five
vertices, then the property is immediate.

Now analyze the remaining cases in which the convex covering is a quadri-
lateral or a triangle.

X



(a) Suppose that the convex covering is the quadrilateral MNPQ (Figure
14.7). If the other five points form a convex pentagon, the proof is finished.
Otherwise there exist four points which do not form a convex quadrilateral.
Let D be the interior point of the triangle ABC. Among the angles ADB, BDC,
_ CDA, there exists one which contains two vertices of the quadrilateral, for

example, M and N. One has thus obtained a convex pentagon MNBDA.

. (b) Ifthe convex covering of the nine points is the triangle ABC, then one
must analyze two subcases:

(1) The convex covering of the six remaining points is a quadrilateral
MNPQ. Let U, V be the two other points in the interior of the
quadrilateral. If the line UV intersects two adjacent edges of
MNPQ, then a convex pentagon is produced (Figure 14.8).

Fig. 14.7

Fig. 14.8



318

2)

Problems in Combinatorics and Graph Theory

Suppose that UV intersects the opposite edges MN and PQ. The
half lines UM, UN, VQ, VP divide the exterior of the quadri-
lateral MNPQ into four regions. If the region bounded by the
lines UN, NP, VP or the region bounded by the lines UM, MQ,
VQ contains at least one of the points 4, B, C, then a convex
pentagon is obtained (Figure 14.8). Otherwise one of the regions
bounded by the half lines UN, UM or VP, and VQ contains two
of the points A, B, C. The result is a convex pentagon with these
points as vertices. The line AB no longer cuts the segments VP,
¥ Q, since the convex covering of the nine points is the triangle
ABC.

Suppose that the convex covering of the six points in the interior
of the triangle ABC is another triangle MNP, and let U, V be two
of the remaining points in the interior of the triangle MNP
(Figure 14.9). Now assume that the line UV intersects the seg-
ments MN and MP. If one of the angles MUN and MV P con-
tains at least two of the points A, B, C, then one obtains a convex
pentagon as in Figure 14.9, since, by hypothesis, the convex
covering of the nine points is the triangle ABC. Otherwise, at
least one of the points A, B, C is found in the region bounded by
the segment UV and the half lines UN and VP, which again
yields a convex pentagon. It is indicated with heavy lines in
Figure 14.9.

Fig. 14.9

i
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It has been conjectured that for every choice of 2"~ 241 points in the plane
;such that no three are collinear there are m which are the vertices of a convex
_polygon. The conjecture has been verified through m=>5. It has also been shown
‘that there is a choice of 2™~ 2 points in the plane with no three collinear such
‘that no m points form a convex polygon.

14.10 Suppose that there exists a coloring of the edges of the graph G
‘which does not induce a monochromatic triangle and which uses different
colors for the edges of the cycle C,. Thus there exist two adjacent edges of C,
-which have different colors, say [A,, A,] red and [A4,, A,] blue.

Consider an arbitrary vertex B;of the cycle C,,. One can assume, for example,
that the edge [B,, A,] is red. Since there is no monochromatic triangle, it follows
that the edge [ 4,, B,] is blue.

Let B, ., be a vertex joined by an edge to B, in the cycle C,, (taking B,, ., = B,).
If the edge [B,., 4,] is red, then the edge [B,.,, A4,] is blue, and hence, no
matter whether the edge [B;, B, ] is colored red or blue, one of the triangles
B,;B;. A, or B;B,, A, is monochromatic (see Figure 14.10), which contradicts
the hypothesis.

Thus if the edge [B), A,] is colored red, then the edge [B;. ;, A,] is colored
blue. Analogously if the edge [B;, A,] is colored blue, then one finds that the
¢dge [B;.,, A2] must be colored red by replacing A; with 4; in the preceding
argument, Traverse the cycle C,,, starting from the vertex B; with the edge
[B;, A;] colored red and passing through the neighboring vertices. One will
again meet B;, which implies that [B;, A,] must be colored blue, since m is odd.
This yields a contradiction which establishes that all the edges of the cycle C,
have the same color. It can be shown analogously, since n is also odd, that all
the edges of the cycle C,, must also be colored with the same color.

It remains to show that the two colors of the cycles C, and C,, are identical.
Suppose that there exists a coloring without monochromatic triangles with the
property that all the edges of the cycle C, are blue and all the edges of the cycle
C., are red. Suppose, without loss of generality, that the edge [4,, B,] is red
(otherwise the colors red and blue can be interchanged). (See Figure 14.11)

It follows from the nonexistence of a monochromatic triangle that [A4,, B,]
is blue, [4,, B, is red, [A,, B,] is blue, and hence [ A4, . B,] is red. Now replace

B; B

)

Fig, 14.10
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B, by B, and repeat the argument. It turns out that for every two adjacent
vertices B, and B;,, of the cycle C,, the colors of the edges [A4,, B;] and
[A;, B+ ] are different. But this conclusion leads to a contradiction, since the
cycle C,, i1s odd. It follows that the m+n edges of the cycles C,, and C, are
colored with the same color.

(For m=n=35 this problem was proposed at the 21st International Mathe-
matical Olympiad in London in 1979))

14.11 The property will be established by induction on p+gq. For p=1 or
g =11t isimmediate. Suppose now that p, g> 1. Let x be a vertex of the complete
graph with n, vertices which is colored with two colors. Denote by d,(x) the
number of red edges which have an endpoint at x, and by d,(x) the number of
blue edges which have an endpoint at x.

Since

d,(x}+d,,(x)=n0—1=<p:q>—-l

()
p—-1 P
it foflows that either

d,(x)><p+q_l> or d,,(x)><p+q—l>.
p—1 p

Suppose, for example, that the first inequality holds, and let G be the complete
subgraph induced by the vertices which are joined by red edges to x. (The
second inequality can be treated analogously.) Since G has at least (”;ﬂ]l)
vertices and its edges are colored red and blue, it follows from the induction
hypothesis that G contains either a complete red subgraph with p vertices or a
complete blue subgraph with g+1 vertices. In the second case, the proof is
finished. But in the first case G contains a complete red subgraph with vertex
set H, where |H|=p. However, in this case Hu {x} is a complete red subgraph
with p+1 vertices, and the proof is finished. It is clear that R(p, q) = R(g, p) and
R(p, 2)=p. The only known nontrivial values of the numbers R(p, g) with

B,

B,

Bj

Fig, 14.11
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p,q=3 are given in the following table, where £ signifies the fact that only a
lower bound ¢ and an upper bound b are known:

P N 3 4 S 6 7 8 9
28
6 1 — 3
3 9 14 8 23 59 6
25 34
4 9 18 R T
25 38 38
5 9 =2 = =
28 55 94
34 38 102
1 i = —
6 8 36 94 178
7 23
28
T
9 36

14.12 Consider the complete graph K with five vertices as being repre-
sented by a regular pentagon together with all its diagonals. Color the sides of
the pentagon red and the diagonals blue. There are no monochromatic triangles,
and hence R(3, 3)>6.

In order to prove the opposite inequality, it remains to show that every
coloring of the edges of K¢ with red and blue will yield at least one monochro-
matic triangle.

Let x be a vertex of K¢. There are five edges which originate at x. and hence
at least three of these have the same color, say red. Thus there exist three vertices
ay, ay, az which are joined to x by red edges. If one of the edges determined by
ay,a,,as,say [a;,a,], isred. then there is a red triangle x, a, , a,. Otherwise the
triangle with vertices a,, a,, a, has all of its edges blue.

Thus every coloring of K¢ with two colors contains a monochromatic
triangle.

14.13 The upper bound follows from Problem 14.11. In fact, it has been seen
that
2k-2
<
Rk, k) < k1 )

forp=g=k—1.
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Observe that

2k=2 _2(2k—3)(2k—4 (21(—4 ,
(k—1>_ k—1 \k—2><4 k=2) D
For k=2 one has
2k=2\__  a-s
i
Suppose that
2k-2
< 2k-3 (2
(i) )

for every 2< k< p. It then [ollows from (1) that

<2p><4<2p_2><4><22p—3=22p—1’
p p—1

and thus (2) is true for every k> 2. In order to obtain the lower bound one can
suppose that the index k>4. In fact for k=2, R(2,2)=2=2"2, and for k=3
one finds that R(3, 3)=6>2./2 by Problem 14.12.

Let n={2%?}, that is, the smallest integer which is greater than or equal to
242, Let Xbe theset of () edges of the complete graph K ,, and let E={E,, ..., E.}
be the family of subsets of X defined as [ollows: E; is the lamily ol edges of a
complete subgraph with k vertices in K,. Since there are (;) such complete
subgraphs, it follows that m=(;). By a similar argument one can show that
r=|E;|=() for every 1<i<m, since K, has (5) edges.

By the given definition, it is possible to color the elements of X with two colors
so that no subset in the family E has all elements of the same color il and only
il the complete graph K, can be colored with two colors so that there is no
complete monochromatic subgraph with k vertices. Thus n< R(k, k) if one can
color the elements of X with two colors so that no subset in the family E is mono-
chromatic. By Problem 4.24 this condition holds for m< 2"~ !, or

(e

The validity of inequality (3) follows from the fact that (}) <(n—1)*/2*"" for
every k>3 and n—1<2%2 One can therefore conclude that

212
n 2"‘ 2,9 ky
<>< = K2kl ot

k) ST

since (5)—1—(k?2—k+1)=k2-220if k> 4.
Finally, it follows from (3) that

R(k, ky>nz 242,
14.14 Problem 14.11 shows that

< oe Tt O O O = ®

—- e o A e
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a,+a,— 2>

Rla,, =R ,05)<
{ay, ay) slay, ay) ( a—1

which is the first step in the proof by induction on &.

Let k=3, and suppose that the numbers R, - (b,,...,b,- ) exist for all
values by, ....b,-=1. It will be shown that
Ray,. - a)<SRy-y(@r, ..y ai-ys Rolay -y, ar))
In order to do this, let G be the complete graph with R, (a,,...,a -3,
R,(ax-,, ay)) vertices. Color its edges arbitrarily with the colors ¢y, ..., ¢,. For

the time being recolor the edges which have colors ¢, - and ¢, with a new color d.

By the induction hypothesis there are two possible cases. Either there exists
an index i, 1<i< k-2, such that the graph G contains a complete subgraph
with g; vertices and with all edges colored ¢, (in which case the proof is finished),
or G contains a complete subgraph G, with R,(a,-,, a,) vertices and with all
edges colored d. In the graph G, replace the color d with color ¢, -, or ¢, which
originally existed for the edges of G. From the definition of the Ramsey number
Ra(@i-1, ap) it follows that G, (and hence G) contains either a complete sub-
graph with a, _, vertices and with all edges colored ¢, _,, or a complete subgraph
with g, vertices and with all edges colored ¢;.

14.15 Observe that

[kw1=[§ ¥}=k .

=0l j=oj!.

The proof will use induction on k.

For k=2 it follows from Problem 14.12 that R,(3, 3)=6.

Let x be an arbitrary vertex of a complete graph G with [k!e]+1 vertices
whose edges are colored with the colors c¢y,...,¢. The vertex x is thus an
endpoint of [k! €] edges in G. Since

k 1 k-1 1\
ke=y Soraey &2
j=o0l- J-

j=0

=1+k[(k—-1)!e],

it follows that among the [k!e] edges with an endpoint at x there will exist
at least 1+ [(k—1)!e] edges with the same color, say ¢,. Let X be the set of
vertices which are joined to x by an edge of color ¢,. If X contains two vertices
joined by an edge of color ¢, then these two vertices, together with x, form a
monochromatic triangle of color ¢y, and the property is proved.

Otherwise X induces a complete subgraph G, with 1 +[(k—1}!¢e] vertices
of G, whose edges are colored with k—1 colors. By the induction hypothesis
G, (and hence G) contains a monochromatic triangle whose sides all have one
of the colors ¢,, .. ., ¢; this completes the proof of the inequality.

Observe that R,(3, 3, 3)<[3!e]+1=17. In order to prove the opposite
inequality one must find a coloring with three colors of the edges of the com-
plete graph K¢, which does not contain a monochromatic triangle.
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Thus let M ={1, 2, 3, 4, 5} be the set of vertices of a pentagon P, and let X
be the set of vertices of the graph K ;4. Denote by Y the family of the 16 subsets
of M of even cardinality (empty set, ten subsets with two elements, and five
subsets with four elements). Let 4 2 B=(4 \B)u (B \4) denote the symmetric
difference of the sets 4 and B. It is clear that if 4, Be Y and A#B,then A2 B
is a subset of M with two or four elements. Let f be any bijection from X to Y.

The edges of K¢ will be colored as follows: If a, b € X and a#b, color the
edge [a, b] according to the following rule: With color ¢, if f{a) & f(b)is a side
of Py with color ¢, if f(a) & f(b)is a diagonal of P; with color ¢4 if | f(a) & f(b)|=4.
It must be shown that in this case there are no monochromatic triangles.

Suppose that there is a triangle with sides colored c¢; and having vertices
a, b, ¢. It can be seen that f(a) 2 f(b), f(a) & f(c), and f(b) & f(c) are sides of the
polygon P. But {f(a) & f(b)} & { f(b) & f(c)} = f(a) & f(c), and thus f(a) e f()
cannot be a side of the polygon P. In fact, if the sides f(a) & f(b) and f(b) ¢ f(c)
have a common vertex, then their symmetric difference is a diagonal of the
pentagon P and hence the side [a, c] is colored c,. If the sides have no common
vertex, then their symmetric difference has cardinality 4 and thus the side
[a, c] is colored ¢4, which is a contradiction. An analogous argument can be
used if it is supposed that the monochromatic triangle is colored ¢, or ¢,.

14.16 Denote by n, the maximum number of vertices of a complete graph
which admits a coloring of its edges with k colors and without a monochromatic
triangle. It will be shown that n,>2n,_,.

Consider two copies of a complete graph with n,_, vertices with edges
colored ¢,,..., ¢ and without a monochromatic triangle, and color with a
new color ¢, all the edges which join pairs of vertices which belong to the two
copies of the complete graph with n,_; vertices. One thus obtains a complete
graph with 2n, _ vertices with its edges colored with k colors and which does
not contain a monochromatic triangle. This justifies the inequality n, > 2n,_,.
Since n, =2, it follows that R,(3)=n,+122*+1. [R. E. Greenwood, A. M.
Gleason, Canadian J. Math., 7 (1955), 9-20.]

14.17 Since nz k!¢, by Problem 14.15 it follows that in any coloring of the
complete graph K, ., with k colors at least one monochromatic triangle will
appear. Let 4; denote the set of natural numbers in class i for i=1, 2,...,k.
Denote the vertices of K,.; by the numbers 1,2,...,n+ 1, and color the edge
[i, j]1 with color p il |i—j| € 4,. Il a monochromatic triangle has vertices i, j, k,
then x=|i—j|, y=|j—k|, and z=|i— k| belong to the same class. Suppose, for
example, that i<j<k. Then x4 y=2z, which completes the proof. [1. Schur,
Jahresb. Deutschen Math.-Ver., 25 (1916), 114--117.]

The Schur function is defined as follows: S(k)=max {r|{1,2,...,r} can be
partitioned into k subsets (possibly empty) with the property that none of them
contain numbers x, y, z such that x + y=z}. The result of this problem implies
that S(k)<[k!e]—1. The only known values of the Schur function are the
following: S(1)=1, S(2)=4, S(3)=13, S(4)=44. The last value was found in
1961 by using a computer.
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14.18 Let no(k)="{k!e]. If the nonempty subsets of the set {1, 2,...,n} are
colored with k colors, then color the edge [i, j] (where 1<i<j<n+1) of the
complete graph K, ., with vertices 1, 2,...,n+1 with the same color as the
subset {i,...,j—1}. According to Problem 14.15, K,.; contains a mono-
chromatic triangle.

Suppose that the vertices of this triangle are p, g, r where l<p<qg<r<n+1.
It follows that X={p,...,q—1}, Y={q,...,r—=1},and XuY={p,...,r—1;
have the same color.

14.19 The property will be established by induction on r. Let r=2, denote
the vertices of K, by xy.%3,...,X,,...,and let r(x;) denote the number of red
edges incident with x;; the two colors will be called red and blue.

Two cases will be examined:

(a) There exist a countable infinity of vertices x;, x;,,..., which satisfy
r(x;)<oo. Define inductively the vertices y,, y,...,of the complete infinite
monochromatic subgraph as follows: Let y, =x; ; y, is the first of the vertices
x;, which is not joined to y; by a red edge, and therefore y, is joined to y, by a
blue edge. There will exist such a vertex y, because there exist only a finite
number of red edges which are incident with y,. The vertex y, is the first vertex
among the vertices with indices greater than the index of y, which are joined
by a blue edge to y, and y,, and so on. The process can be continued indefinitely,
since the set of vertices x;, with j> 1 is infinite and each such vertex is incident
with a finite number of red edges. It follows that the complete infinite subgraph
generated by the set of vertices { y1, y,, ...} has all of its edges blue.

{b) Suppose that (a) does not hold, and assume that the graph K ., does not
contain a complete infinite subgraph with all of its edges blue. Let X, =
{x|r(x)=oo}. It follows that X, is an infinite set. Choose y, € X, and denote
by X1 <X, the subset of vertices of X; which are joined to y, by a red edge.
Since (a) does not hold, it follows that the vertices of K, which do not belong
to X, are finite in number, and thus X | is an infinite set. Denote by X, = X the
subset of vertices of X'; which are incident with an infinite number of red edges
with both endpoints in Xi. If X, is finite, it follows that X \X, is an infinite
set of vertices which are incident with a finite number of red edges which have
both endpoints in X{. The problem is thus reduced to case (a) for the complete
infinite subgraph with vertex set X|. There is a complete infinite subgraph of
K, with all edges blue which contradicts the hypothesis. Thus X, is infinite
and one can choose y, € X,,

It has been shown that the hypothesis that X7\ X, is an infinite set leads
to a contradiction, and thus X'; \ X, must be finite. Since y, is incident with an
infinite number of red edges with endpoints in X, and since X| \X, is finite,
it follows that the subset X< X, of vertices in X, which are joined to y, by a
red edge is infinite, Let X 3 = X', be the subset of vertices of X, which are incident
with an infinite number of red edges with both endpoints in X;. As before, one
finds that X5 is an infinite set, so that one may choose y; € X3, and so on.

By induction, a complete infinite graph generated by the set of vertices
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{¥1, ¥2,...} is produced. Tt has all of its edges red. This establishes the result
forr=2.

Suppose that the property holds for all colorings of K, with at most r—1
colors, and consider a4 coloring of K . with r colors: ¢, ¢5,..., ., where r>3.
Recolor the edges which are colored ¢,_, or ¢, with a new color ¢,.;. By the
induction hypothesis for r—1 colors, there exists a complete infinite mono-
chromatic subgraph. If the color of the edges of this graph is one of the colors
Cyy.-.»Crma, then the proof is finished. Otherwise there exists a complete
infinite subgraph with all edges colored ¢, .. By recoloring the edges of this
graph which originally were colored c, -, and ¢, with these colors and applying
the property for two colors, one obtains a complete infinite subgraph with all
edges having the same color (c,_, or c¢.). The property is thus demonstrated
for every r.

14.20 Denote the vertices of the complete graph K, by numbers from the
set {1,2,...;. Theedge [, j] is colored red if i< j and ;< a;. It is colored yellow
if i<j and a;>a;, and blue if i <j and a;=gq;. By using the preceding problem
one can show the existence of a complete infinite monochromatic subgraph. If
its color is red, then there will be an infinite strictly increasing subsequence;
for yellow one finds an infinite strictly decreasing subsequence, and for blue an
infinite constant subsequence,

1421 First we show that for every infinite set 4 of points in the plane there
is an infinite subset A, of collinear points or an infinite subset A, of points such
that no three points are collinear. Consider all the lines determined by pairs of
points from A. If one of them contains an infinite number of points of 4, then
the property is demonstrated. Otherwise each line determined by two points
of A contains a finite number of points of 4.

In this case carry out the following construction: Let x, and x, be two
points of 4. Denote by B, the set obtained from A4 by eliminating all the points
of the line x,x,, including x, and x,. It follows that B, is an infinite set. Let
x5 € B,. Denote by B, the set obtained from B, by eliminating all points on the
lines x,x; and x3x, which belong to 4. It follows that B, contains an infinite
number of points. If a set of points {x,,...,x,} has been obtained with the
property that no three are collinear, and if B, _ ; is the infinite set of points which
belong to the set A and are not found on any of the lines determined by pairs of
points from {x,,..., x,}, then let x,., € B,_,. Denote by B, the infinite subset
of points of B, _ ; which are not found on any line x,x,+y,...,X,.%,4+,,and soon.
It has thus been shown by induction that this construction can be continued
indefinitely, and thus A contains an infinite subset {x;,x,....} of points with
the property that no three are collinear.

Now let 4 be an infinite set of points in space. If there exists a line determined
by a pair of points in 4 which contains an infinite set 4, of points of 4, then 4,
is a set of the type discussed in case (1). Otherwise, if there exist three points in
A which determine a plane containing an infinite number of points of A. then
by applying the previous result one obtains a set A4, as discussed in case (2).
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Otherwise, every pair of points of A4 determines a line which contains only a
finite number of points of 4, and every three noncollinear points of A determine
a plane which contains a finite number of points of A4.

Now make the following construction: Let x;, x, € A. Eliminate from the
set A all the points of the line x,x, to obtain an infinite set B,. Let x5 € B;.
Eliminate from B, all points of the plane x, x,x, and obtain an infinite set B,.
Let x, € B,. It follows that x, does not belong to the plane x,x,x3, nor there-
foretothelines x, x,.x,; x5, and x,x5. Eliminate from B, all points of the planes
X1X3Xq, X1X3X4, and x,x3x, to obtain an infinite subset B, of A.

If one has found points x,, . . ., x, with the property that no {four are coplanar
and an infinite subset B,_, of A with the property that it does not contain any
point of the (3) planes determined by x,,...,x,, then let x,., € B,_,. The
infinite set B, is obtained from B,_, by eliminating all points of the planes
determined by x,., and the (}) lines determined by pairs of points from the
set {xy,..., %}

It has been shown by induction that this construction can be continued
indefinitely, and hence A contains an infinite subset A3={x{, x,, ...} of points
with the property that no four are coplanar.

14.22 Suppose that the property is false. Let the two classes be A and B,
and suppose that 5 € A. It follows that the numbers 1 and 9 do not both belong
to A. In view of the symmetry, without loss of generality it is sufficient to con-
sider only the following two cases:

(a) 1eAand9 e B.SincelandS5areinclass 4, it follows that 3 € B;3,9 ¢ B
impliesthat 6 € 4; 5,6 € 4 implies that 4 € B; 3,4 e Bimpliesthat2e€ A4;5,6 € 4
implies that 7 € B; and 7,9 € B implies that 8 € A. Thus {2, 5, 8} < 4, and hence
the class A contains an arithmetic progression with three terms.

(b) 1 eB and9 eB. There are two subcases:

(1) 7eA. In this case 5, 7 € A implies that 6 € B and 3 € B. Thus
{3,6,9} =B, and B contains an arithmetic progression with
three terms.

(2) 7 e€B. From the fact that 7, 9e B it follows that 8 e 4, 1,7 € B
implies 4e A: 4,5 € A implies 3 € B; and 1,3 € B implies 2 € A.
One has again found an arithmetic progression {2, 5, 8} 4.

The property is no longer true if one considers the set {1,..., 8}. This result
is a particular case of a theorem due to van der Waerden which states that for
every two positive integers k, f, there exists a natural number W(k, t) which is
the smallest integer with the following property: If the set {{,2,..., W(k, 1)} is
partitioned into k classes, there will always exist a class of the partition which
contains an arithmetic progression with ¢+ 1 terms. [B. L. van der Waerden,
Nieuw. Archief voor Wiskunde, 15 (1927), 212-216.]

The following values of the van der Waerden numbers are known:
W, )=t+1, Wk, )=k+ 1, W(2,2)=9, W(2, 3)=35, W(3,2)=27, W(4,2)=176,
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W(2,4)=178. [M. D. Beeler, E. P, O’'Neil, Discrete Mathematics, 28(2) (1979),
135-146.]

1423 Let M=M, UM, be a partition of M into two classes, and let
P={0,1,...,8}. Define a decomposition P=P, U P, as follows: k € P; if and
only if 2¥e M, for every 0<k<8(1<i<2). It follows that P,AP,=27. 1i
P, =7, then P, will contain three numbers g, b, and ¢ in arithmetic progression.
If P, #&¥ and P,#¥, then P, u P, is a partition of P into two classes, and by
Problem 14.22 at least one class, say P,, will contain an arithmetic progression
with three terms a, b, and c. It follows that 2° 2%, and 2°is a geometric progression
and 29, 2%, 2° e M ,.

14.24 The answer is yes. To see this define a sequence of sets 4,, n=1,2,.. .,
as follows:

A={1,2} and A,.,=A,0(A4,+3") for nz1,

where 4 + b denotes the set {a+b|a € A}.

Let a, be the greatest element of A,. These numbers satisfy the following
recurrence formula: a,, , =a,+ 3" and hence by induction a,=4(3"+1), since
a,=2. One can show, also by induction, that none of these sets contains an
arithmetic triple. This is obviously true for 4,. Assume that A, contains no
arithmetic triple and that A4, ; does contain such a triple: x, y, z€ 4, such
that z— y=y—x>0. By the induction hypothesis, this triple cannot be con-
tained in A, or in 4,+3", and, since 4,+ 3" is located on the real axis to the
right of 4,, it follows that x € 4, and z € 4,+ 3" Thus

x e[1,a,], ze[3"+1,3"+a,],
whence
y=4%(x+2) € [$(3"+2), $(3"+2a,)] =[3(3"+2), 32 x 3"+ 1)].

Thus this interval is disjoint both from A4, and A, + 3", since 3(3"+2)>3(3"+1)
and (2 x 3"+ 1)< 3"+ 1. It follows that y ¢ A, ,, which is a contradiction. One
can conclude from the construction of the A,’s that A,,, has twice as many
elements as A, (the sets A, and 4,+3" being disjoint). Hence the cardinality
of A,1s 2".

For n=11 this reduces to a problem proposed at the 24th International
Mathematical Olympiad (Paris, 1983): Is it possible to choose 1983 distinct
positive integers, all less than or equal to 10%, and no three of which are con-
secutive terms of an arithmetic progression?

14.25 First we establish the following inequality:
R(3, )<R(@GB, t~1)+1t. (N

By definition there exists a graph G with R(3,t)—1 vertices which does not
contain a triangle (subgraph K,) or an independent set with ¢ vertices. Let x
be a vertex of G. Since G does not contain a triangle, every two vertices which
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are adjacent to x are themselves nonadjacent. Let d(x)=d. It follows that

d<t—1, since G does not contain an independent set with ¢ vertices. Let G,

denote the subgraph obtained from G by suppressing the vertex x and the d

vertices adjacent to x. It follows that G, contains R(3,t)—d —2=p, vertices.
Since d<t—1, one has

The graph G, does not contain a triangle, since G has this property. Similarly,
G, cannot contain an independent set with t — 1 vertices, since if it did. the same
set together with the vertex x would yield a set of t pairwise nonadjacent vertices
in G. Thus R(3, t — 1) >p,, which implies (1). Now apply induction on t > 2. For
t=2 one has R(3, =3 while (t* +3)/2> 3. and thus the property holds. Suppose
thatitis validfort<n—1.n>3.and let r=n. Take nto be odd, and let n =2k + 1.
It follows from (1) that

R(3, 2k+1)<R(3, 2k) +2k +1,
and hence, by the induction hypothesis,

4k 43
R(, 2k+1)<—k-2f—+2k+1,

or

2k+1)2+3

R(3, 2k+ 1)< 2k 4+ 2k 42 =

Thus the property is established for n odd.
Now let n=2k be even. By again applying (1) and the induction hypothesis
it can be shown that

_1\2
R(3.2k)<R(3. 2k — 1)+2k<(2"#+2k=2k2+2.

The proof is concluded by showing that the last inequality for R(3, 2k) is strict.
that is, that in fact R(3,2k)<2k?+1 <(4k?+3)/2. Suppose that there exists a
value of the index k> 2 for which R(3, 2k)=2k? +2. Thus there exists a graph H
with 2k? + [ vertices which contains neither a triangle nor an independent set
with 2k vertices.

If there existed a vertex y with d(y)> 2k. then no two vertices adjacent to y
would be selfadjacent. It follows that H contains an independent set with 2k
vertices, which contradicts the hypothesis. Hence for every vertex x of H one
has d(x)<2k—1. Since H has an odd number of vertices and the sum of the
degrees of its vertices is even, it follows that not all the vertices of H can have
the even degree 2k — 1. Hence H contains a vertex z such that d(z)=d<2k-2.
Consider the graph H, obtained from H by suppressing the vertex z and all the
vertices adjacent to z. It can be seen from the induction hypothesis that H,
has g, vertices, where
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12
q0=2k2—d>%2—)ﬁ>R(3,2k—1).

Thus H, contains either a triangle or an independent set with 2k—1 vertices.
If H, contains a triangle, then H has the same property. If H, contains an
independent set with 2k —1 vertices. then this set together with the vertex z
yields an independent set with 2k vertices in the graph H. This leads to a con-
tradiction and completes the proof of the theorem.

M. Ajtai, J. Komlos, and E. Szemerédi proved that R(3,1)<100:%/Int
[J. Combinatorial Theory A29(3)(1980),354~360],and C. Naraand S. Tachibana
recently showed that R(3,6)<(;)—5 for every t3>13 [Discrete Math., 45 (1983),
323-326].

14.26 Suppose that the partite sets of G are A and B and hence |A|=|B|=
2p+ 1. Assume that the two colors are a and b, and let u € A. It {ollows that u is
adjacent to at least p+1 vertices of B by edges having the same color, say a.
Let U< B denote the set of vertices of B which are adjacent to u by edges having
color g, so that |U|2p+ 1. Let C, be the connected component composed only
of edges with color a and containing the vertex v € A. Suppose that |C,n A/=
x>=1. It follows that every vertex of 4 that does not belong to C, is adjacent to
all vertices of U by edges of color b only. Denote the number of these vertices
which are found in AN\C, by y>0. It follows that the x vertices of 4nC,
together with the vertices of U are included in the connected component C,
having all edges of color a, and the y vertices of A which do not belong to C,
together with the vertices of U are contained in a connected component of G
having all edges of color b. Let |[U|=r>p+1. One must show that
max (x +r, y+r)=2p+2. Suppose that x+r<2p+1 and y+r<2p+1. In this
case x+y+2r<4p+2, but one can write x+y+2r=2p+14+2r22p+1+
2(p+1)=4p+3, which is a contradiction. This completes the proof.

In order to see that the bound 2p+2 cannot be improved, consider the
partitions A=A, U 4, and B=B,UB,, where |4,|=|B,|=p, |4,|=|B,|=p+1.
Now color with a all the edges between A, and B, and between A4, and B,,
and with b all the remaining edges of Ky;41 2541

1427 (a) Itis necessary to show that if G is not connected, then its com-
plement G is connected. Let x and y be two vertices of G. If x and y are not
adjacent in G, they are adjacent in G, and therefore x and y belong to the same
component C, of G. Since G is not connected, there exists a vertex z¢ C,,
which implies that z is not adjacent to x and to y in G. It follows that [x, z, y]
is a walk of length 2 in G between x and y, and that G is connected.

(b) Suppose that the edges of K, are colored with three colors g, b, c. It will
first be shown that there exists a monochromatic connected spanning subgraph
of K, with at least [(n+ 1)/2] vertices. If one of the three colors is not used, it
follows from {a) that this property holds. Suppose that K, contains edges having
colors g, b, and ¢, and let R denote a connected component of the spanning
subgraph of K, composed of all edges with the color a. If |R] =n, the property is
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verified. Otherwise, let x be a vertex of K, such that x € R. It follows that all
edges joining x with the vertices of R have color b or ¢. Hence one can assume
that there exist at least ¥|R| vertices of R which are adjacent to x by edges with
color b. Let V' be the set of these vertices of R, and let W be the connected com-
ponent of the spanning subgraph of K, composed of all edges with color b.
which contains x. If y is a vertex of K, such that y ¢ R and y ¢ W, it follows that
all edges between y and the vertices of ¥ have the color ¢. Let Q be the connected
component of the spanning subgraph of K, consisting of all edges with the
color ¢, which contains y. If there do not exist vertices y having the above-
mentioned property, then 0= The sets R, W, Q together contain all the
vertices of K,. Indeed, every vertex z ¢ R is connected with any vertex of V by
an edge with color b or c. and hence ze Wor z e Q.

If Q=4 then |R| + |W|>n, and therefore max (|R|, |W|)>n;2, which implies
that max (|R|, |W|)=[(n+1)/2]. Otherwise, since V<R, V< W, and V < Q, one
can write

R|

|R|+|W\+|Q|>n+2|V|>n+27=n+|R‘,

or |W|+|Q|>n, which implies that max (|W|, |Q]) > [(n+ 1)/2]. Thus it has been
shown that f3(n)=[(n+1)/2]. If n#2 (mod 4), the opposite inequality also holds.
Let X denote the vertex set of K,,, and consider an equipartition

X=X1UX2UX3UX4

such that —1<|X,|—|X;|<1foreveryij=1,...,4. Color the edges of K, in the
following way: all edges between X, X, and between X, X, with the color a:
all edges between X, X, and between X ,, X5 with the color b; and all edges
between X, X; and between X,, X, with the color ¢. All edges having both
endsin a set X; where 1 <i<4 will be colored arbitrarily with the colors g, b, or c.
If n#2(mod 4) it is clear that the maximum number of vertices of a mono-
chromatic connected spanning subgraph of K, is equal to [(n+ 1)/2], and hence
in this case it follows that f,(n)=[(n+1)/2]. If n=2 (mod 4), then for the above-
defined coloring of the edge set of K, the maximum number of vertices of a
monochromatic connected spanning subgraph is equal to n/2 + 1, and therefore
in this case f,(n)<n/2+1. In order to prove the opposite inequality consider
an arbitrary coloring with the colors a, b, and c of the edges of K, for n=4p+2
(p>1). It has been shown that there exists a monochromatic connected span-
ning subgraph of K, with at least [{(n+1)/2]=2p+ 1 vertices. Let H be such a
subgraph, and suppose that the edges of H have the color ¢. If A denotes the
connected component composed of edges with the color ¢, which contains the
vertices of H, and if [4)>2p+2. it follows that f3(n)>n/2+ 1. Hence in this
case the equality f;(m)=n/2+1 holds for n=2(mod 4). Otherwise, one has
|4|=2p+1, and if B denotes the set of the remaining vertices, it follows that
|B|=2p+ 1. No edge having one extremity in A and the other in B is colored
with the color ¢, and hence the bipartite complete graph whose partite sets are
A and B has edges with the colors a or b only. By Problem 14.26 there exists a
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monochromatic connected spanning subgraph of K, with 2p+2=n/2+1
vertices. This observation completes the proof. [L. Gerencsér, A. Gyarfas,
Annales Univ. Sci. Budapest. R. Eétvos, Sect. Math., X (1967), 167-170; B.
Andrasfai, Ibid.. XIII (1970}, 103--107 (1971).]

1428 We prove that R(K, ,, K, ,)<m+n by considering a coloring of
the edges of K, , , using red and green. At each vertex there are m+n— 1 incident
edges, so that if fewer than m are red, then at least n are green. If m is odd, then
m—1is even and hence there exists a regular graph of degree m—1 onm+n—1
vertices (see Problem 8.8). Moreover, the complementary graph is regular of
degree n—1. One can therefore 2-color K,,,+,-, so that there is no red K, ,
and no green K, ,. Thus in this case R(X, ., K,.,)=m-+n. If m and n are both
even, then there is no regular graph of degree m—1 on m+n—1 vertices, in
view of the fact that there would be an odd number of vertices of odd degree.
It follows that R(K, ., K, ,)<m+n—1. But there does exist a regular graph
of degree m—1 on m+n—2 vertices, so that R(K; ., K, )=m+n-1
[F. Harary, Graph Theory and Applications, Proceedings of the Conference at
Western Michigan University, May 10-13, 1972, Lecture Notes in Math,,
Springer-Verlag, 1972, 125-138.]

1429 Let k=(n—1)/(m—1). Form a 2-coloring of K, 4+,-2 by taking k+1
copies of K, - all having only red edges, and interconnecting them by blue
edges. No red T,, has been formed, since T,, has m vertices. Also, no blue K, ,
has been formed, since the largest blue degree in Kp4p—2 is k(m—1)=n-1.
This shows that R(T,,,, K, ,)=m+n—1. Next we show by induction on m that

R(T,, K, )<m+n-1 for m22. (D

For m=2, (1) is immediate, since if K,+, has no red T,, it follows that it has
only blue edges, and hence any vertex of K,. is a center of a blue star K, ,.
Assume (1) to be true for all m’<m— 1, and form the tree T,,_; by removing an
endpoint x of T, and the edge [x, y] incident to x in T,,. In a 2-colored K4, -,
one can assume by induction that there is either a blue K, , or ared T,.-,.
Suppose that the latter choice obtains. Since there are m+n—1—(m—1)=n
vertices v; of K, , ,, which are not vertices of the red T,,_,, and K,,,,_, con-
tains no blue K, ,, it follows that some edge from y to some v; must be red. But
this forms a red T, in K,,+,-,. Thus, by induction (1) holds and the proof is
complete.

The corresponding results for the case in which m—1 does not divide n—1
are much more complicated, and a complete solution has not been obtained.
However, in this case (1) still holds and, in fact, for almost all trees
Tns R(T,,, Ky ,}=m+n-2 for n sufficiently large. [S. A. Burr, Graphs and
Combinatorics, Lecture Notes in Mathematics, 406, Springer-Verlag, Berlin,
1974, 52-75.]

1430 Form a 2-coloring of K, - ,, by taking m — | copies of K, all having
only green edges, and interconnect them by red edges. This coloring contains no
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red K,, and no green K, ,, and hence R(K,,, K, ,)=(m— l)n+ 1. The inequality
R(K,, K »)<(m—1)n+1 can be obtained for m=2 and nz1 as a corollary of
Turan’s theorem (Problem 9.9). Indeed, in a graph G with p=(m—Un+1
vertices and minimum degree (m—2)n+1 (the complement has maximum
degree n— 1), the number ¢ of edges is bounded below by ¢ = (mn—n+ }{mn—
2n+1)/2. The number of edges in Turan’s graph with (m—1)n+ 1 vertices and
m—121 parts is equal to

m—2'(mn—n+1)2—1
m—1 2
_n(m=2)(mn—n+2)

= 5 .

M(mn—-n+1,m)=

The inequality

(mn—=n+1)mn—-2n+1) nim-2)mn—n+2)
) > )

is equivalent to n+ 1 >0, which holds for n2 1. Hence g>M{mn—n+1, m) and
by Turan's theorem G must contain K,,. For m=1 the result is obvious.

This formula was generalized to R(K,,. T,+,), where T,,, is any tree with
n+ 1 vertices, by V. Chvétal [J. Graph Theory (1) (1977), 937.

14.31 Itwillbeshownthatr(m)y=m*—m—1.Let{l,..., m*~m—-2}=AUB
be a partition into two classes, where

A={1,2,....m=2,(m- 1)}, (m-1)*+1,...,m*—m—-2}
and
B=Im—1,m,...,(m—1)? =1},
Each of A and B is m-sum-free, that is, the equation
X1+ " F Xyt =Xy

has a solution which is neither in 4 nor in B.
Ifxy,...,x,-, belong to {1,...,m—2}, then

m-1<x,+ " +xp- 1 <M= )im-2) <mim—2)=(m-1)> -1,

and hence x, + -+ +x,_, € B. If the sum x, + - - +x,,_ also contains terms

from the set {(m—1)%,...,m*—m—2}, then the smallest of its values is
I+ +1l+m=-1)=m*-m—-1¢A.
Similarly if x,....,x,-, are terms from B, one can conclude that

Xy + o+ Xmo 2 (m=1)% or X, + - +Xx,-, ¢B. It follows that r(m)>m?*—
m—1.

It will now be shown that the opposite inequality also holds. In other words,
every partition of the set {1,...,m*~m—1} contains a class which is not
m-sum-free.
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Suppose that this property does not hold. Let 1 € 4. It follows thatm—1 € B
and (m—1)*> € A. Now consider two cases: (a) m € A and (b) m € B.

(a) If me A one can see that m*—2m+1=m+ -+ +m+1, that is,
A is not m-sum-free.

(b) If me B, then since (m—1)+m+ - +m=m*—m—1 it follows
that m>—=m—1 € A. In this case one can write

T+ +1l+m*=2m+1=m*—m—1;
thus A4 is not m-sum-free, and this contradicts the hypothesis.

[A. Beutelspacher, W. Brestovansky, Combinatorial Theory, Proceedings,
Lecture Notes Math,, Springer-Verlag, Berlin, 969 (1982), 30-38.]



Bibliography

M. Aigner, Combinatorial Theory, Springer-Verlag, Berlin Heidelberg, 1979.
C. Berge, Principes de Combinatoire, Dunod, Paris, 1968.
C. Berge, Graphes et Hypergraphes, Dunod, Paris, 1970.

M. Behzad, G. Chartrand, L. Lesniak-Foster, Graphs and Digraphs, Prindle, Weber and Schmidt,
Boston, 1979.

B. Bollobas. Graph Theory. An Introductory Course, Springer-Veriag, New York Heidelberg. 1979.
L. Comtet, Analyse Combinatoire. I, 11. Presses Universitaires de France. Paris. 1970
L. R. Ford, Jr,, D. R. Fulkerson, Flows in Networks, Princeton University Press, 1962.

A. M., Gleason, R. E. Greenwood, L. M. Kelly, The W.L. Putnam Mathematical Competition. Prob-
lems and Solutions: 1938 - 1964, The Mathematical Association of America, 1980.

J. E. Graver, M. E. Watkins, Combinatorics with Emphasis on the Theory of Graphs, Springer-Verlag,
New York - Heidelberg - Berlin, 1977.

M. Hall, Jr., Combinatorial Theory, Blaisdell, Waltham, Massachuselts-Toronto- London. 1967.
F. Harary, Graph Theory, Addison-Wesley, Reading, Massachusetts, 1969.

D. E. Knuth, The Art of Computer Programming, Vol. I: Fundamental Algorithms, 2nd ed., Addison-
Wesley, Reading, Massachusetts, 1973.

L. Lovasz, Combinatorial Problems and Exercises, Akademiai Kiado, Budapest, 1979.

J. W. Moon, Counting Labelled Trees, Canadian Mathematical Monographs. 1, Canadian Mathe-
matical Congress, 1970.

J. W. Moon, Topics on Tournaments, Holt, Rinehart and Winston, New York, 1968.
H. Ryser, Combinatorial Mathematics, Wiley, New York, 1963.

L. Tomescu, Introduction to Combinatorics, Collet's, London-Wellingborough, 1973,
N. Vilenkin, Combinatorial Mathematics for Recreation, Mir, Moscow, 1972,

R. J. Wilson, Introduction to Graph Theory, Longman, London, 1975.

18




 
 
    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     same as current
      

        
     1
     1
     1
     351
     176
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1b
     Quite Imposing Plus 2
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     same as current
      

        
     1
     1
     1
     351
     176
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1b
     Quite Imposing Plus 2
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     same as current
      

        
     1
     1
     1
     351
     176
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1b
     Quite Imposing Plus 2
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     same as current
      

        
     1
     1
     1
     351
     176
    
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1b
     Quite Imposing Plus 2
     1
      

   1
  

 HistoryList_V1
 qi2base



