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Preface 

This book is a translation of Proh/eme de ComhinulOricil ~i Teol'ia Gl'Uj/<rilol'. 
which was published in Bucharest, Romania in 1981. In Romania, graph theory 
is taught in the faculty of mathematics and in particular in what is known as the 
chair of informatics (=computer Students in preparatory schools 
which specialize in mathematics and also receive instruction in this 

Thus the selection of problems presented includes some which are 
and self-contained and others which were acces-

in research journals. The author has used the text to prepare 
Romanian candidates for in International Mathematical 
Olympiads. 

Each problem is accompanied by a complete and detailed solution together 
with appropriate referenees to the mathematical literature. This should enable 
mature students to use the book independently. Teachers of courses in com­
binatorics and graph theory will also find the text useful as a supplement. 
since important concepts are in the problems themselves. Even in 
the more the reader will learn the important concepts 

Revisions in the Romanian edition have been made, and about 60 
new problems and solutions have been added. The careful translation of this 
material by Professor Melter will make available to users of English-language 
texts a unique collection of problems in an expanding field of mathematics 
which has many scientific applications. 

The author and translator are to Ms. Linda Kallansrude for her 
typing and to the staff of John & Sons for their interest 

and concern in the of this book. 

BudWI'I':,'{, ROIJli/lliu 

F""fllllrl' 1985 

lOAS Tm1Escu 
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Glossary of Terms Used 

Abel's Identity: See Problem 1.29. 

Arborescence with root a: A digraph with the property that for every point 
x=f.=a there is a unique path from a to x. 

Articulation point (or cut point): A point x of a connected graph G with the 
property that the subgraph Gx obtained from G by removing the point x 
is no longer connected. 

Automorphism: An isomorphism of a graph G with itself. 
Balanced incomplete block design (BIED): See Problem 4.37. 
Bell's number. denoted Bn: The number of all partitions of a set with n elements: 

thus Bn=S(n. l)+S(n. 2)+' . +S(n. n) (see Stirling number). 
Bicovering of a set X: A family of nonempty subsets of X such that each element 

of X is contained in exactly two subsets of the family. 
Block of a graph G: A maximal 2-connected subgraph of G. Each two blocks 

of a graph which is not itself 2-connected have in common at most one 
point, which must be a point of articulation. 

Burnside's lemma: See Problem 13.2. 
Cardinal number of a finite set X: The number of elements in X: it is denoted IXI. 
Catalan number. denoted Cn : The number of ways in which parentheses can be 

inserted in a nonassociative product of n factors. The numerical value of 
the Catalan numbers is given by the formula Cn=(l/n)enn_-12). 

Cauchy's formula: See Problem 12.6. 
Cauchy's identities: See Problems 3.35 and 12.7. 
Cayley's formula: The number of labeled trees with n vertices is equal to n"- 2. 

Center of a connected graph G: The set of vertices Xo of minimum eccentricity. 
i.e., e(xo)=min e(x)=p(G) where p(G) is the radius of G. 

Characteristic equation of a linear recurrence relation: See Problem 1.31. 

Chromatic index q(G): The minimum number of colors with which the edges 
of G can be colored if every two edges with a common endpoint are colored 
with distinct colors. 

Chromatic number X(G): The minimum number of colors with which the vertices 
of G can be colored if every two adjacent vertices have distinct colors. 

ix 



x Problems in Combinatorics and Graph Theory 

Chromatic polynomial of a graph: See Problem 10.14. 
Circuit: A D= in a G such that Xo=X, and the arcs 

, x d, (x 1 , 1, x,) are distinct. The circuit is said to be 
elementary if all the vertices of the circuit, with the of the first 
and last (which coincide), are pairwise distinct. The length of a circuit 
is equal to the number of arcs it contains. 

Clique: A complete of a 
k-coloring of a : Let G == (X, If). A of G consists of a partition 

X == V'" V Xk of the set of such that no vertices in the same 
class are adjacent. It may also be defined as a function f: V -> {I, 2, ... , k: 
such that [i, jJ E V implies f(i) '*' f(j). 

Combinations of 11 things taken k at a time, number of, (or simply 11 take k, or 
binomial coefficient) ~)=n(n-l) ... (n k + 1 )/k!: The number of ways of 

k objects from a set of n By definition (~) = 1 if k =0 and 
n Likewise (Z)=O if n<k. This notation is also utilized when n is 
rational or n < O. Further details are in the text. (See, e.g., Problem 
1 

Numbers of combinations of 11 thIngs taken k at a time with replacement: The 
number of words of length k formed from an alphabet A with n 

letters on which is defined a total order. The words are thus of the form 
Cl C2' • Co. where C1 ~ C2 ~ ... ~ Ck and c, E A for I ~ i~k. The numerical 
value of n take k with replacemen tis n(n + 1) ... (n + k - 1)/ k!. The number 
of strictly words of length k with letters in A is equal to (~). 

Complement of a graph: Let G If). The complement of G is a graph 
G = (X, U). It has the same set of vertices X as G. Two vertices are adjacent 
in G if and only if they are not adjacent in G. 

(11, k, A)-configuration: See Problem 4.38. 
Covering of a set X: A family of distinct nonempty whose 

union is X. A A of X which is made up of k subsets is said to be 
Irreducible if the union of every k - I subsets of A is a proper subset of X. 

Cut of a network G == (X, V, c) with source a and sink b: The set of arcs OJ - (A) = 
{(x, Y) I x !1 A, YEA} where A a !1 A, and b EA. The capacity of the 
cut w-(A) is the sum of the of the arc~ of w-(A). 

(a, b)-cut of a : A set C of arcs with the property that every path from 
vertex a to vertex b (a::/=b) contains at least one arc of C. 

Cycle in a : A walk W=[xo, XI' ... ,x,J with the property that Xo=X, 

and all the edges [xo, xd, [xI> X2J, .... [Xr-l, xrl are pairwise distinct. 
The cycle is said to be elementary if all its vertices (except the first and the 
last) are distinct. The length of a cycle is equal to the number of in it. 

Degree of a vertex x: (I) In a graph the degree of a vertex x, denoted d(x), 
is the number of incident with x. (2) If G is a digraph, then the 
indegree of a vertex x is the number of arcs which terminate at x, 
of the form x): its outdegree is the number of arcs of the form 
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that is, which originate at x. It follows that d-
Diameter of a connected graph G: The maximum distance between a pair of 

vertices of G. The diameter is denoted d(G). 
Distance between vertices x and y: Let x and y be vertices of a connected 

G. The distance d(x, y) is the length of a shortest walk in G from x to y. 

Dixon's formula: See Problem 1.8. 
I<,..,'"ntrl"ltv of a vertex x of a connected graph: e(x) max, d(x, y), where 

d(x, y) is the distance between x and y. 

Erdos-Ko-Rado theorem: See Problem 4.22. 
Eulerian cycle (circuit): A cycle (circuit) in a graph G which passes through all 

the (arcs) of G. 
Euler's formula for a planar graph G: If G is connected and contains n vertices 

and m then every planar of G has m - n + 2 faces. 
Euler's function cp(n): The number of smaller than n and prime 

to n. If the of n into factors contains distinct prime 
factors Ph' . , ,Pq , then 

cp(n)=n(l-
\ 

Euler's identities: See Problems 1.37 
Eulerian number: See Problem 12.22. 

and 5.6. 

Euler's Pentagonal Theorem: The recurrence relation for the number pen) of 
partitions of an integer n. See Problem 5.8, 

Face of a planar representation of a G. A connected component 
of the topological space obtained from the plane the 
and vertices of the planar of G. The boundary of each face 
is a closed Jordan curve, of the of an elementary cycle 
of G. The infinite race is the unique unbounded connected component 
obtained in this way. 

Ferrers diagram: Let n=nl +n2+ .. , +nk be a partition of an integer n. A 
Ferrers is a table with n cells. In the first line there are n t cells. 
in the second line n2 etc. The cells are arranged beneath each other 
and are on the left. A Ferrers is symmetric if there are the 
same number of cells in line i and column i for every j~ 1. This symmetry 
is with respect to the of the diagram. 

Fibonacci numbers: Numbers defined = 1 and Fn+2 =Fn+ t +Fn for 
each n~O. 

Filter basis: A system S of nonempty subsets of a set X with the property that 
for every A, Be S there exists C e S such that C cAn B. 

Flow in a network: See Problem 9.18. 
Ford-Fulkerson algorithm: See Problem 9.20. 



Ford-Fulkerson theorem: In every network the maximum value of the exit 
flow is to the minimum of a cut Problem 9.19). 

Gauss's number [:Jq : The number of subspaces of dimension k of an n­
dimensional vector space over a field with q where q is a power 
of a prime. An for the value of Gauss's number is in 
Problem 3.33. 

Generating function: Let (an) be a sequence of numbers. Its generating function 
is the sum of the series 0 • The expression I:' .. 0 onx" In! is called 
the exponential function of the sequence (an), These series are 
considered as formal series to which can be applied, 
without consideration of their convergence. In the 
functions in actual use are defined by means of series which are convergent 
for all real numbers or for an interval of real numbers of positive 
but the convergence of the series will not be established in this book. The 
series which we use depend on the expansions of e" and 
In(l +x), on Newton's binomial formula, and on the sum of 
an infinite geometrical progression. 

Girth of a G: The denoted g( G). of the shortest 
in the G. 

Graph: (I) a graph G is an ordered pair of sets (X, U), where X is a finite set 
called the set of vertices or nodes, and U contains unordered of 
distinct elements of X called If an is denoted y], then x, Y 
are called its endpoints, the vertices x and yare said to be in the 
graph and the vertices x and yare by definition incident with the 
[x, y]. (2) A digraph (directed graph) G is an ordered pair of sets (X, U), 
where X is caned the set of vertices or nodes, and U contains ordered 
pairs of distinct elements of X, called arcs. If an arc is denoted u = 
then x is called its initial vertex and y its terminal vertex; the arc is said to 
be directed from x to y. One also says that the vertices x and yare adjacent 
in G and incident with the arc (x. y). A spanning graph of a graph G = (X, U) 
is a graph = (X, V) where V cU. It is thus a graph G 1 obtained from G 
by certain (arcs). A subgraph of a graph G is a graph 
H = (Y, V) where Y eX; the of V are those (arcs) in U 
which have both endpoints in the set of vertices Y. A subgraph H of G 
induced, or by the set of vertices Y is obtained from G by sup-

all the vertices of X'\. Y and all the arcs incident with them. 

Graph. bipartite A graph G U) for which there exists a partition of X 
intheformX=Av AIlB=QJ,suchthateach uofthe has 
one endpoint in A and the other in B. A bipartite is said to be com-
plete if it contains all edges of the form [a, b] where a E A and b E B. If 
IAI=p and iBI=q, the complete bipartite graph is denoted Kp,q. 

Graph. k-chromatic: A graph G with chromatic number X(G)=k. 

Graph, k-colorable: A graph G with chromatic number k. It is thus a 
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graph whose vertices can be colored with k colors so that each two adjacent 
vertices have different colors. 

Graph, complete, on n vertices: A denoted Kn , in which every two vertices 
are adjacent. It has G) The complete graph on a denumerably 
infinite set of vertices is denoted . A is complete if each two 
distinct vertices x and yare with respect to either the arc (x, 
the arc (y, x), or both. In the complete digraph, denoted K!, each two 
distinct vertices x and.r are joined by both the arcs (x, y) and It has 
n(n I) arcs. 

Graph. connected: A G with the property that every two vertices are the 
endpoints of a walk in G. If G is not connected, then it has at least two 
connected components (maximal connected subgraphs, which are pairwise 
disjoint with to vertices). A connected with at least k + I 
vertices is k-connected if the obtained every set Y of 
vertices of I Y I ~ k 1 is connected. 

Graph, strongly connected: A digraph G with the property that for every two 
vertices x and y there is a D!:::::: (x • ... , y) and a path , ... , x) 
in G. 

Graph. Hamiltonian: A graph which contains a Hamiltonian or a directed 
graph which has a Hamiltonian circuit. 

Graph, multipartite: A G U) whose vertex set can be partitioned as 
X = A I U' .. U Ak , so that each edge has its in two distinct sets 
of the partition. A multipartite is if each of vertices 
located in different partition sets is adjacent. 

Graph, planar: A G whose vertices can be represented as in the 
plane; the become arcs of a Jordan curve which points corre-
sponding to vertices. Two such arcs have in common at most 
one endpoint. 

Graph, k-regular: A in which each vertex x has d(x)=k, or a 
digraph with the that =k for every vertex x. 

Graphs, isomorphic: The G (X, U) and H=(Y, V) are 
if there exists a bijection f:X - Y such that y] E U if and only if 
[f(x), f(y)] E V. 

cycle which contains all 

[ndependence number :x(G) of a graph G: The maximum number of vertices in 
an independent set of G. 

Independent (internally stable) set: A subset of vertices which induces a sub­
consisting only of isolated vertices. 

Inversion of apE : A {p(i) , the property that 
I~i<j~nand >pU). 

Konig's theorem: See Problem 9.23. 
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Li·Jen·Shu formula: See Problem l.5(h). 

Lucas numbers : Defined by Lo=2, L!=l, and 2=L .... ! +Ln for every 
n 

Matching of a G: A set of such thaI no two have a common end 
point. The maximum number of in a matching of G is denoted v(G). 

Matroid: For a defInition in terms of independent sets see Problem 6.30. 

Moebius function: See Problem 2.20. 

Moebius inversion formula: See Problem 2.22. 

Multigraph: I f in the definition of a G = (X, the set of is replaced 
by a then a multigraph is obtained. A multigraph can contain 
many having the same endpoints. 

Multinomial formula: See Problem 1.16. 
Multinomial number: A number of the form 

nl"'" np~O and nl + ... +np=n. For p= 
coefficien ts 

n .n)=n!!n1 !'" np! where 
reduces to the binomial 

If nl + ... + np::l: n, the multinomial number is by definition equal to zero. 
Multiset X, or collection, of type ., . nk,: A set X together with a partition 

of itself of 1 k, ... nkn, that is, containing k j classes with j elements 
for j:= 1, 2, ... , n; the elements belonging to a class with p elements are 
identified for 2 ~ n. 

Network: See Problem 9.18. 

Newton's generalized binomial formula: (x +a)' =a" +O!lr lX+ {0!(0!-1)!2!} x 
a"- 2X2+ ... + (:)a"-k X"+ "', where a>O. This series is convergent 
for every real number O! and every real number x with <a. If O! is a 
positive one obtains Newton's binomial formula. 

Norlund's formula: See Problem 3.2(b). 

Orbit of a permutation group: If GcS. is a group of permutations of the set 
X = {I, ... , n} and x, Y E X, then x is equivalent to y with respect to the 
group G if there exists a permutation J E G such that y= f(x). The equiv­
alence classes for this equivalence relation are called the orbits of the group 
G. 

Partition: (1) A partition of a set X is a representation of X in the form X = 
u u'" U Ak where the nonvoid sets AI, ... , Ak are dis-

joint; these sets are called the classes of the partition. The partition does 
not depend on the order of writing the classes nor on the order of the 
elements in each class. A partition has type 1 k, 2kl ... nk

• if it contains 
k. classes with j elements. (2) A partition of an n is a 

J h . representation of n in the form n::::::n 1 +n2+ ... +nk; t e mtegers 
nl, n2' ... ,nk are called the parts of the partition and the 
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inequalities n l ;3n2;3 ... ;3nk;3l. The number of partitions of n into k 
parts is denoted pen, k): the total number of partitions of n is pen). 

Path: Let G = (X, if) be a A path is a sequence of vertices D = 
(xo, XI' ... , x,) such that (xo, xd, ... , (X,-I, x,) E are 
arcs of the graph. The vertices Xo and x, are called endpoints of the path D. 
The length of a path is equal to the number of arcs it contains. The D 
is said to be elementary if its vertices x 0, Xl' ... , x, are pairwise distinct. 

Permanent of a matrix A: Let A == 1. . . n' The permanent of A is denoted 
per(A) and is defined by Qtp(I)Q2p(1)' •• Qnp(nJ' 

Permutation of a set X = {1, ... , n}: A p: X ...... X; it can be written either 
as P(2) ... p(n) or in the form 

( 
1 2 n ) 

p(1) p(2) pen) 

A permutation is of the type 1 k, if it contains kj cycles with j 
permutation has a 

as a product of 
elements, when k j + 2k2 + ... + nkn n. 
representation (if we ignore the order of the 
which do not have any common elements: the 
of functions. 

is 

Permutation, circular, or cycle with r elements: A in Sn with a 
of length r, the remainder of the n - r cycles being of length 

one. A cycle is thus a of 1 n-'r I. 
PelrmlltaltiOl'IIs, conjugate: Two 

exists g E such that s= gtg - I, or 
structure. 

Petersen graph: See Figure 8.3. 

theorem: See Problem 13.6. 

are conjugate if there 
if sand t have the same 

Polynomial, cycle index of a permutation group G c : A polynomial in n 
variables 

where is the number of cycles of i of g for 1 ~ i ~ n. 

Principle of inclusion and exclusion: See Problem 2.2. 

Projective plane, finite: A symmetric BIBD with v, k, k, \) where 
v:;;::4. Problem 4.50.) 

Prufer code associated with a tree: See Problem 6.\5. 

Radius of a connected : The smallest eccentricity of its vertices. 

Ramsey number R(p, q) with two parameters: The smallest integer ( with the 
property that each graph with ( vertices contains either a com pJcte sub­
graph with p vertices or an independent set with q vertices. 



..... ~ .... u ........ 1.11:' • ..)~K): 1 ne number r with the property that the set {1.. .. 
can be partitioned into k possibly empty subsets, with the properly that 
none of them contains numbers X,)" z such that x + y = z. 

Sperner's theorem: See Problem 4.2l. 
Star: A bipartite graph of the form K i .p' 

Steiner triple system: If X is a set with v ~ 3 elements where v == 1 or v == 3 (mod 6), 
a Steiner system of order v is a family of three-element sets of X, called 
triples, such that each two-element subset of X is contained in a unique 
triple. 

Stirling number of the first kind, s(n, k): The coefficient of Xk in the 

X(x - 1) ... (x - n + I) = s(n, k)X'. 

Stirling number of the second kind, S(n. k). The number of partitions of a set 
with n elements into k classes. 

Support or transversal set of the of a graph: A set S of vertices with the 
property that every has at least one endpoint in S. The smallest 
cardinal number of a support for a G is denoted r(G). 

Surjections. number of: The number of surjections f: X ...... Y where = m and 
I YI == n is denoted sm."' 

Symmetric difference: Let A and B be sets. Their symmetric difference is defined 
asA t:.B=(A"-B)v(B'A). 

System of distinct representatives (SDR) of a family of sets: A family of subsets 
M(S)={S!, S2,"" of a set S has an SDR if there is an injective 
function f: ...... S such that f(Sd E Si for every i, 1 ~i~m. 

Tournament: A complete, antisymmetric, directed graph. Thus between each 
two vertices there is one and only one arc (x, y) or (y, x). 

Transposition: A permutation g E Sn which has n - 2 fixed points and is therefore 
of type I" - 2 2 i • 

Tree: A connected 
Tree. spanning, of a connected G: A spanning of G which is a tree. 
Triangulation: A planar representation of a planar graph in which each face 

is a triangle (cycle with three u""nr"'c 

Triangulation of an elementary cycle with n vertices: The which consists 
of the and the n - 3 which do not intersect in the interior 
of the cycle. 

Turan's theorem and Turan's number M(n, k): See Problem 9.9. 
Vandermonde's formula: See Problem 3.2(a). 
Van der Waerden's number W(k, I): The smallest natural number n with the 

property that if the set {l, ... , n} is into k then there 
exists a class of the partition which contains an arithmetic progression 
with t+ 1 terms. 
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isolated: A vertex of zero in a 
Vertex, terminal: A vertex of one in a 
Vizing's theorem: The chromatic index of every graph G is to D or D + I, 

where D is the maximum of the vertices of G. (See Problem 10.19.) 
Walk: (I) [n a graph G=(X, a walk is a sequence of vertices W= 

[xo, Xl' ... , xr ] with the property that each two successive vertices are 
adjacent. that is , x il, [x! , x 2], ..• , 1 , X r] E U. The vertices x 0 and 
x, are called the endpoints of the and r is the length of the walk. If 
the vertices xo, Xl, ... ,X, are pairwise distinct, then W is said to be 
elementary. (2) If G is a directed a walk W=[u!. U2,' .• , up] is a 
sequence of arcs, with the property that for each i, each two successive 
arcs u, and Uj.;.! have one common endpoint, 1 ~ 1. The endpoint 
of U 1 which is not common to U2 and the endpoint of up which is not com-
mon to 1 are called the endpoints of the walk. 

Walk (path), Hamiltonian: An walk (path) which contains all the 
vertices of the 





Part I 
STATEMENTS OF 
PROBLEMS 





1 
Combinatorial Identities 

1.1 Show that the identities hold for every natural number n: 

[n/21 

(a) I 
k= 0 

-C:1)f = n:1 Cnn). 
where is the greatest integer ~ x; 

(b) n (n + k) 1 2". 
\ n / 

1.2 Prove the equalities listed below: 

for n=O 3), 
for n= 1 3), 
for n 2 (mod 3): 

(c) p: p(;y nC:-n. 
1.3 Let Sk(n) == 1 k + 2k + ... + n\ where k is a non-negative Show 

that 

1+ (n + 1)'. 

1.4 Prove that for natural numbers exists a natural number p 
such that the identity (J'm +.Jm -1t holds. 

1.5 Prove the following combinatorial identities: 

Jo (~)(m~ =(p:q); 
(b) n (~)G) (:) 2"-m; 

(c) kt ( It G) l)m (n: 
3 
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(d) 

(f) 

(h) -k) ("+ p)2 . == p (LI-Jen-Shu formula). 

1.6 Prove the identity 

I (-Ilk ( 21 )( 2m ) 
k l+k m+k 

211) (l+m+I1)!(2l)!(2m)!(211)! 
+k =(l+m)!(m+I1)!(I1+l)!I!mll1! 

for non-negative integers I, m, 11, where the summation is taken over all integer 
values of k. 

1.7 Show that 

1.8 Prove Dixon's formula: 

1.9 Given the 

(1 +x+ 
show that: 

(-I)kC;Y =(-1)' (311)!. 

11(11-1) 
(a) Gn=l +-----:::-c-::;----+ ... = 

(b) GOGI GIG2+G2G3 ... -G2n-IG2.=O; 
(e) Ga- + -'" +(- lr 

(d) Gp G)Gp -l+G)Gp -2-'" -WG)GO 

= I 0 if p is not a multiple of 3. 

'1(_l)kG) ifp=3k; 

(e) Clo+G2+a4+" +1) 
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and 
al+a3+aS+" -1); 

(f) aO+a3+ a6+ a9+'" a1+a4+ a7+ alO+'" 
=a2+ aS+ ag+ all +.,. =3n - 1. 

(g) With to the summations 

ao + a4 + as + ... , al + as + ag + ... , 
a2+a6+aIO+ ... ,a3+ a7+ a!l+ .. . 

show that three are equal and that the fourth differs from their value 
by one. 

Verify the inequalities 

l=aO<al<'" <an and an>a"+l>'" >U2n 

for every n ~ 2. 

1.10 Suppose that 

and set 

for every i, 

(l+x+x 2 +, .. +xm)"=ao+a1x+a2x2+ ... +amnxmn, 

i~m+ 1. Show that: 

+ 1)" +, - 1)" - 1 
. +(-1)" 

m+ 
for n+i50(modm+2} 

and in the opposite case, 

1.11 What is the coefficient of x' in the expansion of 

(1 + x + X 2 + ' . . + x" - 1) 2 ? 

1.12 Given positive integers n, and r show that there also exist r unique 

such that 

1.13 Show that 

n (2n k-l) (xk + /) (~)"-k 
n-l ,x+y 



6 Problem~ in Combinatorics and Graph Theory 

1.14 Prove the 

"-1 ( 1) n~ n" I-k(k+l)!=n". 

1.15 Show that the number of arrangements of a set of n 
such that the jth box contains n) objects, for 1, ... , pis 
nomial number 

Cl' n2~'''' nJ 
n! 

where 0 and n 1 + n2 + ' .. + np = n. 

1.16 Prove the multinomial formula 

where ai' ... , Gp are elements of a commutative 

1.17 the 

I ( It )=(m-1), 
(s, ..... 5.1 Sl.· .. 'Sk It-l 

in p boxes 
to the multi-

where the second summation is taken over all choices of the numbers 
SI,' • , , 0 which the relations 

51 +S2+ ... +Sk=lt; 

51 + + ... + =m. 
1.18 A function f : {l, ... , n} ...... {1, ... , r} is said to be 

for every i,j, 1 ~ i <j ~ n. Show that the number of 
on the set {1, ' ... n} with values in the set {1 •... , r} is equal to 

This number is also called the number of combinations with of r 
things taken k at a time. 

1.19 In how many ways can a natural number m be written as the sum of n 

where two sums are considered to be different even if they differ only in the order 
of their terms? What is the result if Uj > 0 for all i? 

1.20 Determine the number of monomials in the expansion of the poly­
nomial 
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1.21 Let p(x) be a n such that P(x) 2" for every 
x = 1, 2, ... , n -1-1. Determine 

1.22 Verify the identity 

1.23 Prove the 

." +r)J:=n 
o 

1.24 Show that 

n 

for every positive integer n. where the sum is taken over all partitions of n of 
the formj! + + ... +njn=n andji~O for 1 ~i~n. 

1.25 Show that for h ~ 2 the following relations hold: 

(a) max 
(n, ..... no) 

min 
{nt.·,·! "xl 

The maximum [minimum] is taken over all representations of n of the form 

and r is the remainder when n is divided by k. 

1.26 Evaluate: 

max max nln2'" nk; 

(b) :~k~: ::~;;~~~: (~Xi)-" (~). 
1.27 If n \ ~ n 2 ~ 

x. y such that 
h~ I, where n\. n2. hare 
x~ O~.r~h, the following 

G: =~)(~:- n~(::Y). 
1.28 F or every p ~ k justify the 



1.29 Prove Abel's identities: 

(a) M G) + 

(b) " G)rx+ 
(c) :t:(~) l(n_ 1 2(n-

1.30 Show that 

n" - 1 + "- 1 G) kk - 1 (n -

1.31 Given a recurrence relation of the form 

2 

k = /1". 

f(n + 2) =af(n + I} + bf(n), 

where a, b are real numbers with band n =0,1,2, ... , the quadratic equation 

r2 =ar+b 

is called the characteristic equation of the given recurrence relation. Show that: 

(a) If the characteristic equation has two distinct roots'l and r2, then the 
general solution of the recurrence relation has the form 

f(n)=C1r'i + 
where the constants are determined from the initial conditions by 

the of 

+ = flO), 

Cjrj+ =f(l). 

(b) If the characteristic equation has a double root equal to rl' the general 
solution of the recurrence relation has the form 

f(n)=r'i(C I +C2 n), 

where = frO) and C2 [f(l)- rd(O)J/rl' 

1.32 A pupil has $n. Every day he buys exactly one of the following prod­
ucts: a bun which costs $1, an ice cream which costs $2, or a pastry which costs 
$2, until he has no more money. In how many ways can he use up these $n? 

1.33 Let U(n) be the number of ways in which one can cover a 3-by-n 
"'-"'111~'<;; ABCD with dominoes with sides 1 and Show that 

jf n is odd and that for n even U is given the formula 

U(2m) 
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1.34 How many words of length n can be formed with letters of the alphabet 
A = {a, b, c, d} so that the letters a and b are not adjacent? 

1.35 Let 

Show that 

for z:f: and a.=(n+ 1)/2" for z= 

1.36 Consider the polynomial 

f(X) = 
Let 

, ... ,xnl=f(x!+"· +xnl-Lf(x l +'" +x.-tl 
f(x 1 + .. +X._2)-··· +(-l)"f(O), 

where the first summation is taken over the n I) sums of n 1 variables 
the second summation is taken over the ("~2) sums of n 2 variables xl' etc. 
Show that 5.(x l , ..• , x.)=aon !X 1X2'" X •• 

1.37 Let p(x l' ... ,x.) be a polynomial in n variables of m. Denote 
by tp the polynomial obtained by replacing k of the variables x!, ... ,x. in p 
with ° in all possible ways and then summing the ~) polynomials thus obtained. 
Show that 

2 {o if m <n; 
p- +z p-'" == . 

c·x! "·X. Ifm=n, 

where c is the coefficient of the monomial XI'" X. in the expansion 
of the polynomial p. taking p(x!, ... , x.) + .. + xJ and setting 
Xl = ... = x. 1, deduce Euler's 

n (_ 1)1 (~) ik = {O ., for k < n; 
'" I (-l)n. fork=n. 

1.38 Show that the following identity holds for all integers n, p with 
n~p: 

p!=np-(n(n-1)P+(~)(n-2)p-", +(- G) (n-pjP. 

1.39 Show that 

(~) -
+"'+(-1)" 

x+n 

n! 

x 



2 

The Principle of Inclusion 
and Exclusion; 
Inversion Formulas 

2.1 In a Romanian high-school class there are 40 students. Among them 
14 like mathematics, 16 like physics, and 11 like chemistry. It is also known that 
7 like mathematics and physics, 8 like and and 5 like mathe-
matics and All three are favored by 4 students. How many 
students like neither nor? 

2.2 Justify the following formula, known as the principle of inclusion and 
exclusion: 

2.3 If AI' , ... , c prove that the number of elements in X which 
to p of the sets A, equal to 

(the sieve formula of C. Jordan). 

2.4 Let n be a and cp(n) the value of Euler's function, 
less than or equal to and prime to n. 

of n into q distinct prime factors, show 

2.5 Let p be a permutation of a set X {I, ... , n}. A fixed point of p is a 
number i such that i (1';;;; i,;;;; n). Show that the number D(n) of permutations 
of X without fixed points is given by 

D(n)=n! (1. 
II 

10 



The Principle of Inclusion and Exclusion: Inversion Formulas II 

How many permutations of a set of n objects have p fixed points? 

2.6 Let X == {I, 2, ... , n}, and let D(nl be the number of permutations of the 
set X without fixed points. H E(n) represents the number of even permutations 
of X without fixed points, show that 

E(n) {D(n)+(-lr 1(n-1)}. 

2.7 Show that (f)(d) == n, where (f) is Euler's function. 

2.8 Show that the number of square matrices of order 3 with non-negative 
elements for which every row sum and every column sum is equal to r 

2.9 Verify that 

D(n+ l)==(n+ l)D(nl+( 1)" I 

D(n+ l)==n{D(n)+D(n-l)j. 

2.10 Show that the number Sn.m of surjective functions f: X ..... Y with 
IX 1== nand \ Y\ == m is given by the expression 

Sn.m =mn -(7) (m -l)" +(;) (m- +". +( -11m. 

Deduce from this that if E(n, m) denotes the side of this then 
E(n, n) nl and E(n, m)=O [or n <m (Euler's identities). 

2.11 Denote by Sn.m,. the number of functions f: X ...... Y which have the 
that f(X)=:J where =n, !YI=m, and Zc::. Y, =r. Verify the 

formula 

Sn.m.,·=mn G) (m-l)"+(;) (m-2)n_ ... +( l)"{m-r)n. 

2.12 Let A be an alphabet formed of n pairs of identical letters a l , a!: 
al, a2:"': an' Un' Different pairs contain different letters. Form all the words 
which use a1l2n letters of the alphabet A so that no adjoining letters are identical. 

Show that the number of words formed in this way is equal to 

~{(2n)!-(~) 2(2n-I)!+(;) 22(2n-2)!-'" +(-I)n2nn!}. 

2.13 Let an be the number of with n vertices which are labeled 



with numbers from the set {1, ... , n} and which do not contain a circuit. Show 
that the numbers an satisfy the recurrence relation 

an = " (_l)k-! (~) -k 

if, by definition. ao 1. 

2.14 A set X is said to be a collection of objects of type 1)" 2)'2 ... n)" jf 

there exists a partition of the set X which contains ;.j classes with j elements, 
for j 1, ... ,n. Objects which belong to the same class of the partition are 
identified. An arrangement of the objects in cells is a function f: where 
A is the set of cells. If f(x) = a;, we shall say that the object x E A is in 
cell al' definition, two arrangements are equivalent if one can be obtained 
from the other by a permutation of the in the same classes of the partition 
of X. Classes of this equivalence relation are called arrangement schemes of 
objects in cells. 

Denote by A 0 (1 A, ••• n).'; 1m) the number of arrangement schemes 
of a collection of of type I).' ... n).' in m distinct cells. and by 
A(1)" 2.1.2... 1m) the number of arrangement schemes which leave no cell 
empty. Show that 

... n)." Im)=(7)" (m; lY'i ... (m+:-1)'n. 
AW' ... nAn; Im)= m (_l)m-k (~)Gr e; ly2 ... e+:- 1Y". 

2.15 Find the number of possible ways of writing a natural number p as a 
of m factors different from one, for which two products are also 'con­

sidered to be different if the order of the factors is different; the decomposition 
of the number p in factors contains ;'l factors of exponent 1, ;'2 factors of 
exponent 2, ... ')'n factors of exponent n. 

2.16 Let 

M(p. q)=(2q -l)p - (i) (2Q
-

1 -l)P +(;) 
Show that M(p. q) = M(q, p). 

2 1)P ... +( 

2.17 Prove the inverse binomial formula: If the numbers Go, Gl"'" an and 
bo, ... , bn satisfy the relations ak ~ (~)b, for k 1, ... , n, then the 
numbers bo, b l , •.. ,bn are by the 

2.18 Count in two different ways the number of representations of m as a 
sum of n integers, m =U j + U2 + ... + Un' where 2 for 1 ~ i ~ n. Two sums are 



I he Principle 01 InclUsIon and ~_xcluslOn; InversIOn tormulas 

also considered to be distinct if differ only in the order of their terms. Use 
this to obtain the identity 

"-I (_l)l(~)(m-~-I)=(m-11 1) 
= I 11 /-1 11-1 

for any m;;': 11+ I;;.: 2. 

2.19 Let V = {x 1, ••• , be a finite set on which is defined a partial order 
~ which, definition, satisfies the following three properties: 

(aj Xi for every i 1, ... ,11 (reflexivity); 

(b) Xi~Xj and Xj~Xi imply XI Xj land thus i=j) for 1 ~i. 11 (anti· 
symmetry); 
(c) Xi and Xk xi~xkforl~i,j,k~l1(transitivity). 

A square matrix of order n whose elements are real numbers (aij)i,J=l, .... n will 
be said to be compatible with the partial order defined on V, or simply com­
patible, if 0 implies Xi for every i, j= l, ... , n. Show that the sum and 
the product of two compatible matrices is a compatible and show that 
if a compatible matrix is then its inverse is compatible. 

2.20 If V is the ordered set of the preceding problem, show that 
there exists a function )J. defined on V x V with the following properties: 

(a) j1(x, y) = 0 if x is not less than or equal to y; 

(b) j1(x, x) == 1 for every X E V; 

z j1(x, y)=O for every x < z if x, Z E V. 

The function j1 is called the Moebius function of the set V. 

2.21 Evaluate the function j1(x, y) introduced in the problem if 
V is: 

(a) the family of all subsets of a finite set S with respect to the 
order relation of non strict denoted Xc: Y; 
(b) the set of l, 2, ... , n where x~y is 
is a divisor of y); 

(cl an where the relation of 
vertices is defined x if the unique path which 
the arborescence with the vertex y passes through x, 

by x I J (i.e .. x 

order between 
the root of 

2.22 Let be a real-valued function on a set V, and yl the 
Moebius function on V. Let 

= L f(z). 
z<,x 

Show that 

f(x}= L x}g(z). 

is the Moebius inversion formula). 
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that the numbers an satisfy the recurrence relation 

an = " (_l)k-! (~) -k 

if, by definition. ao 1. 

2.14 A set X is said to be a collection of objects of type 1)" 2)'2 ... n)" jf 

there exists a partition of the set X which contains ;.j classes with j elements, 
for j I, ... ,n. Objects which belong to the same class of the partition are 
identified. An arrangement of the objects in cells is a function f: where 
A is the set of cells. If f(x) = a;, we shall say that the object x E A is in 
cell al' definition, two arrangements are equivalent if one can be obtained 
from the other by a permutation of the in the same classes of the partition 
of X. Classes of this equivalence relation are called arrangement schemes of 
objects in cells. 

Denote by A0 (1 A, ••• n).'; 1m) the number of arrangement schemes 
of a collection of of type 1).' ... n).' in m distinct cells. and by 
A(1)" 2.1.2... 1m) the number of arrangement schemes which leave no cell 
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of the number p in factors contains ;'l factors of exponent 1, ;'2 factors of 
exponent 2, ... ')'n factors of exponent n. 

2.16 Let 

M(p. q)=(2q -l)p - (i) (2Q
-

1 -l)P +(;) 
Show that M(p. q) = M(q, p). 

2 1)P ... +( 

2.17 Prove the inverse binomial formula: If the numbers Go, Gl"'" an and 
bo, ... , bn satisfy the relations ak ~ (~)b, for k 1, ... , n, then the 
numbers bo, b l , •.. ,bn are by the 

2.18 Count in two different ways the number of representations of m as a 
sum of n integers, m =U j + U2 + ... + Un' where 2 for 1 ~ i ~ n. Two sums are 



3 
Stirling, II, 
Fibonacci, and 
Catalan Numbers 

3.1 For every reat number x and every natural number n let 

-1)" (x-n+ 1), 

= x(x + 1)" (x + n 1), 

where. by definition. = 1. The 
s(n, k), is defined as the coefficient of 

number of the first kind. 
of [x] •• that is. 

n 

Show that 

3.2 Show that the following hold: 

(al [x+ Y]n= kt G) [X]k[Y]n-k and 

(b) + y]"= f (n) 
k=O k 

k 

where [x]o = [x]O = 1. 

3.3 Prove the following identities: 

x"= S(n, k)[XJk and 

= ktl ~: G=~) [x] •. 

where k) are Stirling numbers of the second kind. 

15 



16 Problems III Comblnatorics and Graph Theory 

3.4 Show that the 
function of the number of 

numbers of the second kind can be 
functions by the relation 

S(n. m) m s •. m· 

Show that the Stirling numbers also satisfy the recurrence relation 

S(n+l,m)=S(n,m l)+mS(n,m), 

where S(n, 1) = SCn, n) = 1. 

3.5 Justify the following recurrence relations for the 
the second kind, Sen, m), and for the Bell numbers 

(a) + 1, m)= ± (kn) S(k, m 
k=m-l 

(b) Bn+! = • G) Bb where = 1. 

asa 

numbers of 

3.6 Show that the number of partitions of an n-element set of type 
lk, ... nkn which contain k} classes with j elements, 1,2, .. " n) is 
equal to 

Part(1 k, 
n! 

... nkn; n)= (1 [t'k
l
! (2!t 2 k

2
! ... (n!)knk.! . 

the number of permutations p e of type 1 k, 2kl ... nk, which contain 
kj cycles withj elements for j= 1,2, ... , n is equal to 

Perm(1k, 

where kl + 2k2 + ... + nk. nand o for i = 1, ... , n. 

3.7 Establish the following recurrence relations for the Stirling numbers of 
the first and second kinds: 

C;j) 

j 
) Sen, i 

3.8 Show that 

+j)= 

= 

n (:)S(k,i)S(n-k, 

n G) S(k, i)S(n k. 

n 

sen, k)S(k, m) = L m) = 
k~ 0 

where 6.,m is the Kronecker 

3.9 Let M(n) max{kIS(n, k) is . 1 ~k~n}. Show that the 
sequence of numbers of the second kind is unimodal for every natural 
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number n. that is. they satisfy one of the following formulae: 

(1) 1 =S(n. 1) <S(n, 2) < ... < S(n, M(n)) > SIn. MIn) + 1) > ... > SIn. n)= 
1: 

(2) 1 = SIn, 1) <SIn, 2)< ... < S(n. M(n) - 1)=S(n, M(n))> ... > SIn. n)= 
1, 

and M(n + 1) = M(n) or M(n + 1) = M(n) + 1. 

3.10 Let a=(ao. at. a2' ... ) be an infinite sequence of real numbers. The 
generalized Stirling numbers are defined as follows: 

(1) Stirling numbers of the first kind sarno k) by the identity 
n 

(xla)n=(x-ao)(x-ad'''(x-an-t!= I sa(n,k)xk and (x 1ajo=1; 
k=O 

(2) Stirling numbers of the second kind by the identity 
n n 

x"= I Sa(n, k)(x-ao)(x-atl"· (X-ak-tl= I Sa(n, k)(xlaJk' 
k=O k=O 

Show that: 

(aj Sa(n, k)=sa(n-l, k-lj-an_lsa(n-l,k); 

(b) Sa(n, k) = Sa(n -1, k -1) + akS.(n - 1, k); 
n 

(c) sa(n, k)= I s.(n+l. r+l)a~-k; 
j"=k 

" 
(d) Sa(n, k)= I Sa(r-I, k-1)a~-I'; 

r=k 

n n - 1 

(e) sa(n,k)= I (-lr'sa(r-l,k-l) n aj: 
r=k j=r 

n n 

(f) I Sarno k)Sa(k, m) = I Sa(n, k)sa(k. m) = (>n.m 
k=O k=O 

(Kronecker symbol). 

3.11 Show that the generating function for the Stirling numbers of the 
second kind associated with the sequence (ao, ai' 02 • ... ) can be expressed as 

x ~ 
') Sa(n, k)t" = . 

n';:k (1-001)(1-a\t)··· (I-ak l ) 

3.12 Let S;(n. k) denote the number of partitions of a set X with n elements 
into k classes. each one of which contains at least i elements. Show that: 

(
n-l) (aJ Si(n,k)=kS;(n-l.k)+. S;(n-i,k-l); 
I-I 
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where the sum is taken over all integral solutions of the equation 
jl + ". =n which ifor s= 1,,,., k. 

3.13 Show that the Stirling numbers of the second kind satisfy the following 
relations: 

(a) S(n, 2) =2"-1 - 1; 

(b) S(n,n-l)=(;); 

(c) S(n, l)-l!S(n, 2)+2!S(n, 3)-3!S(n,4)+ " +(-1)"-I(n-l)~=O 
for n?;l: 2. 

3.14 A with k classes of a set X with n elements is a family of k 
nonempty subsets of X such that each element x E X is contained in 
two subsets of the family. If c(n, k) denotes the number of bicoverings with k 
classes of show that 

c(n,3)=t(3"-1 

3.15 A partial partition of a set X is a partition of a subset: 

YeX, Y 

Show that the number of partial partitions of a set X with n elements is equal 
to Bn+ 1 -1. 

3.16 Show that the 
is given by 

function for the Bell numbers 

00 

L I't"=exp(exp(tl-l). 
"=0 n. 

3.17 Show that the Bell numbers Bn 

1 k" 
B"=-e 

Also show that the difference between the number of partitions with an even 
number of classes and the number of with an odd number of classes 
of a set with n elements is equal to 

e 
l)kk" 

k! 

3.18 Let k) denote the number of subsets of the set X == {l ..... n} 
which contain k no two of which are consecutive Show that 

(
n-k+ 1) fin, k)= k . 
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If f(n, then F 0 = = 1. Show that 1+ 2 for 
Fn are called Fibonacci numbers. 

3.19 that f*(n, k) denotes the number of k-element subsets of 
X {1, ... , which contain neither two consecutive nor land n 
simultaneously. Show that 

j*(n,k) n: Cl~k). 
1fL.::::: of*(n,k)forn~l,thenLl 1, =3, and I for 
every n ~ The numbers L. are called Lucas numbers. 

3.20 Show that the Fibonacci numbers the identity 

1- =( 1)n+l. 

3.21 In how many ways Un can one mount a staircase with n if every 
movement involves one or two Show that the generating function is 

uo= 1. 

3.22 Show that every natural number n~ 1 can be written as a sum of 
wise distinct Fibonacci numbers which are not consecutive numbers and 

1 of the Fibonacci sequence. 

3.23 Show that the generating function of the Catalan numbers satisfies 
the equation 

1-+ ". +Cnx"+'" =--,..---

Use this fact to obtain an expression for the number Cn. 

3.24 Show that the number of sequences 
XI E { 1, I} for i= 1, 2,. " 2n 2 and which 

(1) X\+X2+'" +xk~Oforeveryl~k~2n-2,and 

Xl+X2+'" +X2.-2 0 

is equal to O/n)(:":12
). 

3.25 A triangulation of a convex polygon AIA2 ... A.+ I with n + 1 vertices 
is a set formed of n 2 diagonals which do not intersect in the interior of the 
polygon but only at vertices, and which divide the surface of the polygon into 
n 1 Show that the number of triangulations of a convex polygon with 
n + 1 vertices is to 

1 (2n-2). 
n n-l 
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3.26 Show that the number of functions 

f:{l, ... ,n} 1, . .. ,n} 

which satisfy the condition f(x) ~ x for every t ~ x ~ n is 
number 

1 
Cn+ 1 = 

n+ 

to the Catalan 

3.27 Let A1A2 '" An be a convex 
be triangulated with n - 3 

interior of the polygon, so that each 

In how many ways can this 
which do not intersect in the 

has one or two sides in common 
with the convex polygon? 

3.28 Show that the number of sequences (a 1, a2 • .. , , ak+ d formed of non­
"'TI',,,'rc with the 

is to k 

3.29 Let go(n+ 1) be the number of sequences (ai' a2,"" an+ d of non­
negative integers such that a 1 = 0 and 

-ai+ll~l for i=1,2, ... ,n. 

Show that 

go(n + 1) = c(n, n) + n+l}, 

where 

3.30 Show that the number of sequences (a l' az, . , . , d of 
integers with the property that al =a2n+ 1 == 0 and la; -al+ = 1 for i == 1, ... , 2n 
is equal to the Catalan number 

1 (2n). 
n+ ,n 

3.31 Show that the number of sequences 

(x l, ... , 

which contain at most i 1 terms smaller than or to i for i = 1, .. , , n is 
to(n- lforeveryl~r~n. 

3.32 Let Sn be the number of functions f: {l, ... , n} .,., n} with the 
property that if f takes on the value i, then f takes on the value j for 1 ~ i. 
Show that 
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and deduce that the exponential function of the numbers Sn is to 

~ Sn n 
1.... x == 

n= 0 n 
. where So == 1. 

3.33 Let be the number ofdimensionkofann-dimensional 
vector space V over a finite field F with q where q is a power of a 

This number is called the Gauss coefficient. Show that 

3.34 Demonstrate the following properties of the Gauss coefficients: 

(a) lim [knJ 
q-l q 

(b) [~1 = :kl 
[nJ =[n-1J +qk [n -lJ . 
kq k 1q k q 

3.35 Letq be a power ofa number. Show that Cauchy's identity holds: 

yn=l+"- [~1 (y-l)(y-q)' '(y- 1). 

3.36 For n~2 let f(n, k) denote the number of sequences of k integers 
1 :(al <az < ... <ak n which 

az al=a3- aZ="'=ak-l- ak-Z=1(mod2) 

and 

Show that: 

I,j II" kj- ([':~ 1 3J); 
(b) f(n. k)= 
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Problems in Combinatorial 
Set Theory 

4.1 Let X be a collection of n objects (n ~ 1) which are not 
distinct. H n ~ + 1, where a is a non-negative show that one 

or more of the following two statements is valid: 

(1) At least a + 1 objects are identical. 
(2) At least a + 1 are pairwise distinct. 

4.2 In how many ways can one arrange k rooks on a chessboard with rn 
rows and n columns so that no rook can attack another? 

4.3 Let A be a set formed from 19 distinct which 
to the arithmetic 1,4, 7, .. " toO. Show that there are two distinct 
","'m>ro in A whose sum is to 104. 

4.4 Let k~ 1 be a natural number. Determine the smallest natural number n 
with the following property: For every choice of n there exist at least 
two whose sum or dilTerence is divisible by 2k + 1. 

4.5 Let A =(Aih "'''"' B 
finite set M. If for each i. j. k the 

, C "i"n be three 
inequality is satisfied: 

lA, + r'lCkl+IBjr'l ~n, 

show that 1M, ~ with equality holding if n = 0 (mod 

of a 

4.6 A mapping f: X -+ X is said to be if f(f(x)) = fIx) for 
every x E X. If Ix 1= n prove that: 

(a) the number of idempotent f:X -X is to 

i(n):::: f (n) k"-k; 
K" 1 k 

(b) 
rIO xn 

1+ L i(n)-= 
n! n=l 

4.7 Let P be a partially ordered set. A subset S of P is called a chain if every 
two elements of S are with to the order relation. If S is an 

22 
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every two elements of S are noncomparable with respect to the 
For a natural number rn, show that if P does not contain a chain 

rn + \, then P can be represented as a union of rn antichains. 

4.8 A chain of length n in the family of partitions of an n-element set X is a 
sequence of pairwise distinct partitions which satisfy 

PI <P2 < '" <Pn' 

The PI has a single class formed of X, while P n has n classes which 
each contain a element of X. 

Show that the number of chains of length n in the family of of an 
n-element set X is to 

{n-l)!n! 
2n- 1 

4.9 Let F = {El' ... , E.} be a family of r-element subsets of a set X. If the 
intersection of each r + 1 subsets of F is show that the 
of all the subsets of F is also nonempty. 

4.10 Let S={X,h";;i";;, be a family of distinct subsets of X with the 
property that Xj r-. X d 0 for every i, j = 1,. ., r. If the set X has n elements. 
show that max r=2n

-
1

• 

4.11 Let X be a nonempty set and let F be a of rn distinct subsets of 
X where rn~ 2. Show that the collection of subsets of the form At; B r<:vmrr'lMr, 

difference of A and B) where A, B e F contains at least rn distinct sets. 

4.12 A covering of a set S is a family of 
of S whose union is equal to S. Show that the 
n-element set is given by the formula 

A(n)= n (-1)J C) 
of an 

4.13 A covering A of a set S by k nonempty subsets is said to be irreducible 
if the union of every k - 1 subsets of A is a proper subset of S. If [tn, k) denotes 
the number of irreducible by k subsets of an n-element set, show that 

k)= 

where SU, k) is the number of the second kind. In particular verify that 

I(n,n-l) n 1) 

and 

[(n.2) + 1, 

4.14 Let AI,''', be a collection of n distinct sets, and 
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AI" ...• AI, a subfamily of maximal cardinality with the property that it does 
not contain the union of the sets, that is. 

A,vAdA. 

for each three distinct indices k e {i 1 , •• • ,Let min r, where 
the minimum is taken over all families of n distinct sets. Show that 

1 ~f(n)~ 1. 

4.1 5 Let A 1, A 2 •.•. , An be finite sets such that 

IA11= 
and let U~= 1 Ai = S. Suppose that for fixed k (1 ~ k ~ n) the union of every k sets 
of this family is equal to S, and the union of at most k -1 sets of the family is a 
proper subset of S. Show that I Sl ~ (k~ 1)' When equality holds, it follows that 
IAd= i)foreveryi=l, ... ,n. 

4.16 Let (Xdl<;/a be a family of k-element subsets of a set X. Show that 
min i 1 X d is to the smallest m such that k ~ (~). 

4.17 Show that 

I IAl vA2v ... vAkl= 1 ) 

A, ..... A, 

where the sum is taken over all choices of subsets A 1, ...• Ak of an n-element 
set X. 

4.18 Show that 

IIA1v'" vAkl 
where the sum is taken over all choices of subsets A 1,' .. , of an n-element 
set X. 

4.19 A collection S of nonempty distinct subsets of an n-element set X is 
called a filter basis if for every A, B e S there is a set C e S such that C c A (l B. 

Show that the number of filter bases of X is equal to 

n-l G) 
4.20 Let (Adl<;/<;m and (Bdl i<;m be two families of sets with the property 

that lAd = ... ::::: IAml =p.IBd = ... =IB",I =q and A1(lBj jf and only if 
Show that 

4.21 Let X be an n-element set, and G = {A 1 •... 1 Ap} a family of subsets 
of X which are noncomparable with respect to inclusion; that is, A, ¢ A j for 
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every i, 1, ... , p with i Show that 

max p ([n~2J)' 
This result is called Sperner's theorem. 

4.22 Let X be an n-element set, and F = {A 1, ... , 

of X which the following conditions: 

(1) l==r~nI2foreveryi=1,. ,p; 

(")Aj:#:0 for every j= 1, ... , p. 

Show that maxp=C=i). 
This result is known as the theorem. 
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a of subsets 

4.23 Let X be a finite set, and , ... , Em a family of subsets of X with the 
property that the intersection of two distinct sets E; and never has cardinality 
exactly equal to one. Further assume that ;,: 2 for i = ... , m. 

Show that under these circumstances one can color the elements of X with 
two colors so that no subset E j has all its elements colored with the same color. 

4.24 Let F , ... , En} be a of r-element subsets of a set X, where 
n ~ 2,-1. Show that it is possible to color the elements of X with two colors so 
that no subset in the family F has its elements colored with the same color. 

4.25 Let M be a set with n;': 5 elements and F, a family of distinct 
three-element subsets of M. If F contains at least n+ 1 show that there 
are at least two distinct subsets which have one element in common. 

4.26 Consider two collections of integers , ... , an} i= 
, ... ,bn } such that an integer can appear several times in each collection. 

Assume that the collections 

+ajll ~i<j~n} and {bi+bjll ~i <j:r;:;;nj 

are equal. Show that n is a power of 2. 

4.27 Let X be an n-element set (n;': that F = {A 1, ... , Am 1 is a 
family of subsets of X with the property 

for every 1 :r;:;; m and i 

Show that m ~ n. 

4.28 One is n distinct points in the Show that there exist fewer 
than nJn pairs of these which have their distance equal 10 1. 

4.29 One is n points in space, no four of which are 
the set of C) planes determined by each of with the 'I"Ir'>'I"I"'rtu 

no two planes are Determine the number of lines of intersection of 
these planes. 
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4.30 How many triangles can be formed [rom the n vertices of a convex 
polygon if no side of a triangle can be a side of the polygon? 

4.31 Consider a convex polygon with n vertices. There are n(n-
of the polygon with the property that no two are and no 

three are concurrent other than at vertices of the Show that the number 
of points of intersection located outside of the polygon is equal to 

n(n - 3)(n - 4)(n - 5) 

12 

4.32 Suppose there are n points on a circle with the property that no three 
of the n(n -1)/2 chords determine are concurrent in the interior of the circle. 
Show that in this case these chords delimit 

regions in the interior of the circle. 

4.33 A set of closed curves is drawn in the plane. They do not inter-
sect but each two curves intersect in at least two points. Let np be 
the number of points in which exactly p of the curves intersect. 

Show that the number of closed of the plane which are bounded 
arcs of these curves and which do not contain such an arc in their interior is 
equal to 

1+nz+2n3+ ... +tp-l)np + .... 

4.34 Let S be a set, and denote by M(S) (S 1. S 2, •.. , an ordered 
family of its subset. A system of distinct representatives (SDR) for M(S) is an 
rn-tuple ,az, ... ,am) such that aleS, for l~i~rn and al'i-=aj if i for 
1 ~i. rn. 

Show that M(S) has an SDR if and only if u u'" uSi,l~k for all 
choices of distinct numbers 

{ ii' ... , ik } C { 1, ... , rn } , where 1 ~ rn. 

4.3.5 Let X be an n-element set. and F a family of h-element subsets of X. 
Denote by M(n, k. h) the minimal number of h-element sets in F which has the 

that each k-element subset of X contains at least one set of the family 
h~ 1). Show that: 

M(n. k, M(n-l,k,h); 

(b) M(n, k, h)~M(n -1, k-l, h -1)+ M(n -1, k, h); 

(c) (~)/(~)~M(n, k, 
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4.36 Show that 

(a) M(n, k, 2)=(;)- k _ ~ . n
2

_r2 _G) 
for every n~ k~2, where r:an (mod k-l) and O~r::;;k-2; 

(b) M(n,n-h,k)=h+l foreveryn;;?;k(h+l)andk~l. 

27 

4.37 A balanced incomplete block design (BIBO) is a set B formed of t' 

objects (also called varieties) together with a family F of b subsets of B (called 
blocks), such that: 

(1) each block contains exactly k objects; 

(2) each object belongs to r blocks; 

each pair of distinct is contained in ;. blocks. 

Show that the (b, v, r, k, A) of a BIBO the following relations: 

bk=vr and -1) -1). 

4.38 Let X be a set with t1 

subsets of X. This family is called a 
lowing conditions: 

and let Xl' X 2, .•. , be a family of v 
k, ).)-configuration if it satisfies the fol-

!XII =k for i= 1,2, ... , v; 
(2) !XiIiXj!=i.foreveryi 
(3) O<i.<k<v-l. 

The incidence matrix A == (aU)1 <> 1.)<> v of this configuration is a square matrix 
defined as follows: au = 1 if the element i of X belongs to the set X J. and 
otherwise. Show that 

AT A =(k-i.)/ +Al, 

if and only if A is the incidence matrix of a k, A}-configuration where AT is 
the of and J is a square matrix of order v all of whose elements 
are 1. The matrix / is the identity matrix of order v. 

4.39 Show that every k, ).)-configuration is a BIBO with parameters 
(v, t" k, k, ;.). 

4.40 Let X be a v-element set, [' ~ 3. A Steiner triple system of order t' is a 
family of 3-element subsets of X called triples, such that each two element 
subset of X is contained in a triple. 

Show that a necessary condition for the existence of a Steiner triple system 
of order v is that v;;;;: 1 or 3 (mod 6). 

4.41 A BIBO is said to be if v=b hence k=r). Show that 
if a symmetric BIBO has parameters (v, v, k, k, ).) where r is even, then k -,1. is a 
perfect square. 
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4.42 Let X be an n-element set, and Yak-element subset of X. Show that 
the maximal number of pairwise distinct subsets of X which are noncom parable 
with respect to inclusion, and which contain exactly r elements of Y is equal to 

4.43 Consider the functions f: X -> X such that fU(x») =a for every x E X, 
where a is a fixed element of X. If Ixj =n~ 2, prove that the set of all such 
functions has 

p= C~ 1) pn- p
-l. 

4.44 Consider the r-element subsets of the set {1, ... , n}. Select the mini­
mum element of each subset. Show that the arithmetical mean of the numbers 
obtained in this way is equal to (n+ 1)/(r+ 1). 

1,2 •... ,2048}. Show that for any subset XcM,jXI= 
there are two subsets BcXsuchthat 

i= 

Does this property hold for 12-element subsets of M? 

4.46 Let x , ... , xn) and y •... ,Yn) be two vectors. It is said that 
x covers Y if x Y or Xi= Yi for n -1 values of i. Let F denote the set of pn vectors 
(Yl' ...• Yn) where 1 ~YI~p for i= 1, ... , n. A setH of vectors hi, h2 •••• is called 
a covering set if every vector Y in F is covered by at least one vector hi in H. Let 
a(n, p) be the minimum number of vectors which such a covering set H can 
contain. 

Prove that p) = p and a(n, p) ~ p"/{ n(p- 1) + I}. 

4.47 Given a set of n + 1 positive none of which exceeds 2n, show 
that at least one member of the set must divide another member of the set. 

4.48 Let X be a finite set containing at least four elements, and let 
AI, ... , A 100 be subsets of X which are not necessarily distinct. and are such that 
lAd >ilxl for any i == 1, ... ,100. Show that there exists Y c X, I YI ~ 4, with 
Y for every i= 1, ... ,100. 

4.49 The digital plane D is the set of all points (digital points) in the 
Euclidean which have integral coordinates. For any two points ,Yd 
and P 2(X2, Y2) from D the city-block distance is defined by 

which yields a metric for D. For any FeD a subset Be F is said to be a metric 
basis for F if for any x, Y E F, x there exists b E B such that d4(x, b) + d4 ( Y, b). 
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Prove that: 

(a) D has no finite metric 
(b) for any natural number n ~ 3, there exists En C D such that the 

minimum number of elements in a metric basis for is equal to n. 

4.50 A finite is a BIBD !l with 
tv. v, k, k, A) where v;;;: 4 and }. == 1. It is traditional in this context to substitute 
the terms point for object and line for block. From Problem 437 one can 
deduce that 

V=k2_k+1. 

The number n:= k -1 is called the order of A Thus for a finite "r,,,,,,-tn,,,' 
of order n it can be seen that 

r=k n+L 

It is convenient to say that a set of points is collinear if it is contained in some line. 
Show that a set system !l:= (V, E) where E is a family of subsets of V is a finite 

projective if and only if the following three conditions hold: 

(1) Every pair of points is contained in exactly one line. 
(2) Every pair of lines intersects in exactly one point. 
(3) There exists a 4-subset of V no 3-subset of which is collinear. 
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Partitions of Integers 

5.1 In how many ways can three numbers be selected from the set 
(1, 2, ... , 3n} so that their sum is divisible by 3? 

5.2 Show that the number Pin, m) of partitions of an integer n into m parts 
satisfies the recurrence relation 

P(n+k, k)=P(n, l)+P(n, 2)+ ... +P(n, k), 

with P(n, l)=P(n, n)= 1. 

5.3 Show that the number of partitions of an integer n into 
parts is to the number of of n into odd parts. 

5.4 Verify that the number of partitions of a positive 
distinct parts is to 

distinct 

n into m 

5.5 For a positive 
between 1 and n can be 
For which numbers n is 

n consider partitions of n such that every integer 
fPnrp"f'nl,f'11 as a partial sum of the partition. 

n=1+1+'" +1 

the unique partition with this property? 

5.6 Prove Euler's 

=l-x- +X5 + 

1+ ljJ(n)x" 

+ 
where ljJ(n) 
the form n 

Ok if n = (3k 2 ± k)f2 and 1jJ( n) 0 if n cannot be represented in 
± (k is an 

5.7 Justify the following for functions: 
(a) the function for the number P(n) of all of an 

30 
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=1; 
function of the number Pin, m) of 

is 

31 

of an 

(c) the generating function for the number of partitions of n into odd 
parts is 

(d) the generating function for the number of partitions of n into 
wise distinct parts is (1 + x)(1 + x 2)(1 + , 

(e) the generating function for the number of partitions of n into pair­
wise distinct odd parts is (1 + x)(1 + xl)(1 + x s) .... 

5.8 Prove Euler's Theorem: 

P(n}= Pin -l}+ P(n - 2) - Pin Pin 7)+'" 

== (-
;. 

+p(n--F)}, 
for every n;;:: 3. 

5.9 Show that the number of partitions of n such that no appears 
more than twice as a is equal to the number of of n into parts 
which are not divisible by 3. For example, for n = 6, these two sets of partitions 
are, respectively {6, 5+1, 4+2, 4+1+1,3+3,3+2+1, 2+2+1+1} and 
{5 + L 4 + + 1 + 1,2 + 2 + 2, 2 + 2 + 1 + 1,2 + 1 + 1 + 1 + 1,l + 1 + 1 + 1 + 1 + I}. 

5.10 Let Pin) and Q(n) be the number of of n and the number of 
partitions of n into odd Show that the following recurrence 
relations hold: 

(a) Q(n) = (-1)iQ(i)Q(2n - i), where Q(O) = 1; 

(b) Pin) = L P(i)Q(n - where P(O) Q(O) = 1. 
1;:.0 

5.11 Show that Pin. = P(n m) for m ~ 

5.12 Consider the number of non congruent with distinct 
integral sides and perimeter equal to 2n. Show that this number is equal to the 
number Q(n, 3} of partitions of n into three distinct parts. 

Also show that Q(n, 3)=[(n2 -6n+ 12)/1 
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5.13 Justify the identity 

by counting Ferrers in two different ways. Use the same 
method to prove Euler's 

5.14 Denote by B(n) the number of the partitions of n into parts which are 
powers of two. For B(6) == 6, and the corresponding partitions are the 
following: 

Prove that: 

1+1+1+1+1+1=2+1+1+1+1=2+2+2 
=4+2==4+1+1. 

+ 1)=B(2n); 

(b) B(2n)=B(2n-l)+B(n); 
(c) B(n) is even for any n ~ 2. 

5.15 Show that P(n}~ for every n ~ 2. 



6 
Trees 

6.1 Let A U) be a tree and , Ud,.· , 
subtrees of A. If B= nf=1 =1=O, show that B is the set 
of A. 

=(Xp • Up) a set of 
vertices of a subtree 

6.2 Let G1 , ..• , be a collection of subtrees of a tree G with the property 
that each two subtrees have at least one vertex in common. Show that the entire 
collection has at least one vertex in common. 

6.3 Let d1 , ••• , do be such that 

o ~ ... ~dn' 
Show that there exists a tree with n vertices of if 

d 1 + .,. + dn = 2n - 2. 

6.4 Let • A2 be two trees of a connected graph G. Show that 
there exists a sequence of trees 

Al = B 1, ... , Br = 
such that B1 ... 1 is obtained from by an u and 
another edge v between two nonadjacent vertices of Bi , for i 1, ... , r-1. 

6.5 For a connected graph G let d(x, y) denote the distance between vertices 
x and y, that is. the number of edges contained in the shortest walk which joins 
x and y. Further define the eccentricity of a vertex x by e(x) = maxy d(x, y). The 
center of a graph G consists of those vertices Xo with the property that e(xo) 
minx e(x) = p{G). [p(G) is called the radius of The diameter of a connected 

G, denoted is defined d(G)=maxx e(x). 

(a) Show that the center of a tree consists of a vertex or two 
vertices. 

(b) If G is a tree show that is a convex function in the sense that if 
y. z are to x, then 

2e(x)~ + e(z). 

Show that for every connected graph G, 

2p{G). 

33 
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6.6 Show that every tree with n vertices and with diameter greater than or 
to 2k - 3 contains at least n - k walks oflength equal to k. 

6.7 that G is a tree with vertex set X. For x E X let 

s(x)= I d(x, y). 
Y'X 

(a) Show that the function s(x) is strictly convex in the sense that if 
y and z are two vertices adjacent to x, then 

<s(y)+ 

(b) Prove that the function s(x) attains its minimum for a single vertex 
or two adjacent vertices of the tree G. 

6.8 Determine the trees G on n vertices for which d(x. y) is minimal 
(maximal). 

6.9 Let x I •.•. , x, be terminal vertices of a tree A, and set 
Show that: 

for every three indices i, j, k the following relations hold: 

and 

diJ+djk - =0 tmod 2). 

(b) for every four indices i, j. k, I. two of the numbers 
+ are equal. and the third is less than or 

numbers. 

+dk1 , +dj /! 

to the two 

6.10 Let A and B be two trees whose terminal vertices are labeled with 
numbers from the set {1, 2, ... , If the distances between these terminal 
vertices are the same for A and B. that is, 

dAti, j) = d8 (i, j) 

for every 1 ~ i r, show that the trees A and B are isomorphic. 

6.11 Let G = V) be a tree and f: X - X a function with the property 
that if y] E V then = fly) or [f(x), E V. Show that f has a fixed 
point or a fixed 

6.12 Let A be a tree with vertex set X such that IXI =2n + 1. An auto­
morphism of A is a bijection f:X -X which preserves the adjacency of vertices. 
that is, [x, yJ is an edge of the tree A if and only if [f(x), fry)] is an of A. 

Show that f has at least one fixed point. 

6.13 Let A 1 =(X, VI) and A 2 =(X. V 2) be two trees which have the same 
vertex set A. that for every vertex x E X the subgraph obtained from 
A 1 by the vertex x and the incident with x is isomorphic to 
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the subgraph obtained from by the same operation. Show that the trees A 
and A2 have the same diameter. 

6.14 Let G be a tree with vertex set X = and set 

D=(dijki=1."n, 

where dij= Xj) is the distance between Xi and in G. Show that 

det D (-1)"- !(n-l)2n - 2. 

6.15 Let A be a tree with vertices Xl' ... ,Xn• Suppress the terminal vertex 
(of 1) which has the smallest index, with the edge incident with 
it, and let An - 1 be the tree thus obtained and al the index of the vertex 
to the vertex. Repeat this for the tree !, and determine 
the index a2 of the vertex to the terminal vertex of minimal index of 

1 and so until one comes to a tree of two adjacent vertices. 
One thus obtains a sequence (ai' a2,"" an -2) of n-2 numbers l':;;a/':;;n for 
1,:;; i':;; n 2, associated with the tree A. (It is called the Prlifer code of A.) 

Show that: 

(a) the correspondence thus defined is a bijection between the set of 
trees A with n vertices X!, • .. ,Xn and the set of nn- 2 sequences 

, ... , an - 2) which can be formed with numbers from the set 
{l, ... ,n}; 

(b) there are nn- 2 trees on n vertices Xl' ... , x. (this result is known 
as Cayley's formula); 

(c) the number of trees whose vertices Xl'" ., Xn have n"'(Jrpl'~ 
which di ?!; 1 and d1 + ... +dn 2n-2 is 

( 
n-2 ) 

d1 -1, ... ,dn-l . 

6.16 Let tn denote the number of trees with n labeled vertices. Show that 

k 

and obtain formula from this using Abel's 

6.17 Find the number of trees with n labeled vertices and 
vertices. 

6.18 Consider the ladder graph of 6.1 with 2n vertices. 

p terminal 

(a) In how many ways can n of its be chosen so that no two have 
endpoints in common? 

(b) Show that this has 

1 
{(2+ -{2 J3n 

spanning trees. 
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...... 

.. .. .. 
Yl Y2 Yn 

Fig. 6.1 

6.19 The distance matrix of a connected graph with p vertices is a square 
matrix D = (dijl with dij equal to the distance between vertices i and). Show that 
a square matrix D is a distance matrix if and only ifit has the following 

(1) dn';il: 0 for every 1 ~ i.j~p and dij is an 
(2) d1j=O if and only if i==}; 

D is symmetric; 

(4) d1j ~ dik + dkj for every i. j, k and 

(5) If dij > 1, there is an index ki= i. j such that dij = dkj • 

6.20 Prove that the following nrr\"prt"·~ are for a graph G: 

(1) G is a tree; 
(2) G is connected, and the deletion of any of G results in a 

G 1 which is not connected; 
G has no and if x and J' are any two vertices 
of then the graph G l obtained from G by inserting the 
[x, y] contains 

6.21 Prove that the number of arborescences having n labeled vertices is 
equal to no-I. 

6.22 Show that for n';il: 3 there are nn- 3 different trees with n unlabeled 
vertices and n 1 labeled 1, 2, ... , n 1. 

6.23 Let G denote a with n';il: 2 labeled vertices denoted 1,2, ...• nand 
m Label the of G with the numbers 1, 2, ...• m, and each 
an arbitrary direction. The incidence matrix of G is the n-by-m ma tfix A = (aij), 
where 1 ~ i ~ nand 1 m, in which au equals + 1 or -1 if the is directed 
away from or towards the vertex i, and zero otherwise. 

Prove that if the graph G has n vertices and is connected. then the rank of its 
incidence matrix A is to n 1. 

6.24 Show that if B is any nonsingular square submatrix of A, then the 
determinant of B is + 1 or - 1. 

6.25 The reduced incidence matrix of a connected graph G with n 
vertices is the matrix obtained from the incidence matrix A deleting some 
row, say the nth. Prove that a square submatrix B of order n-l of Ar is non-
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corresponding to the columns of B determine a 
spanning tree of G. 

6.26 Prove the Matrix Tree Theorem: If Ar is a reduced incidence matrix 
of the then the number of trees of G equals the determinant 
of denotes the transpose of A. 

6.27 Let G be a and let C = (cl)) for 1 ~ ~ n be a 
matrix defined as follows: Cli is to the number of vertices adjacent to i in 
clj == - 1 if i and vertices i and j are in G; Clj = 0 if and vertices 
i and j are not adjacent in G. 

Show that A,A; is the matrix obtained from the matrix C a row 
(say the nth) and the column with the same index. Use this property to obtain 
another proof of Cayley's formula, since the number tn of trees with n labeled 
vertices is equal to the number of spanning trees of the complete graph Kn. 

6.28 Let be the tree with 2n vertices as illustrated in Figure 6.2. Show 
that the number In of independent sets of vertices of this graph is equal to 

3+ . r:; 3- r:; 
I" = 6 (1 +" 3)" + 6 (1 - ,,3)". 

n 2 2n 

... lJ 
2 n 

Fig. 6.2 

6.29 Let T be a tree having vertex set {1, .... n} and set denoted by 
E(T). If X, prove that 

v ... vA"i~ 

where the last sum contains n - 1 terms. 

6.30 A matroid M is a pair 5), where E is a nonempty finite set, and .j' 
is a nonempty collection of subsets of E, called independent sets, the 

properties: 

(1) any subset of an 

(2) if I and J are 
then there is an element e contained in J but not in 

I, such that I v is ml'i,f'n,>111'i 

A base is defined to be any maximal set, and the rank function p 
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function defined on the set of subsets of E by 

p(S)=max II nSI· 
1,J 

For a connected graph G = with n vertices let E be the set of of G 
and take as independent sets the sets of edges I c: U which are such that the 

graph of G with set I does not contain a 
Show that M =(E,.f) is a matroid [called the circuit matroid of and 

denoted by M(G)] whose bases are spanning trees of G. Prove that if Sc: U, 
then its rank p(S) = n p, where p is the number of components in the spanning 

(X, S) of G. 



7 
Parity 

7.1 Let U be the set of of Kn. the complete graph on n vertices. Let 
I: U -+ { - 1, 1}. An I' with 1(14) = 1 will be said to be positive, and one with 
1(14)= 1 will be said to be negative. A (elementary cycle with three 

is positive if it contains an even number of ; otherwise 
it is 

If 11- 1
( -01 = p, that is, there exist p in show that the 

number of satisfies the relation 

n(f) == np (mod 2). 

7.2 Let G be a planar graph all of whose faces are triangular. and suppose 
that the vertices of G are colored with three colors. Show that the number of 
faces whose vertices are colored with all three colors is even. 

7.3 An Eulerian circuit of a digraph G is a circuit which contains every 
arc of G. Show that a graph G which does not contain isolated vertices has an 
Eulerian circuit jf and only if it is connected and for every vertex x the indegree 
is equal to the that is, 

d- (x) = d+ (x). 

7.4 If the digraph G has at least one vertex x whose d+ 3, 
then the number of Eulerian circuits of G is even. (Two Eulerian circuits are 
considered to be identical if induce the same circular permutation of the 
arcs of G.) 

7.5 If a G is such that the 
the ofGcanbedirectedsothatinthe 
satisfies 

of each of its vertices is even, then 
directed graph each vertex x 

7.6 Show that a graph G has an Eulerian if and only if it is connected 
and each vertex has even Prove that if G is connected and has 2k vertices 
of odd degree, then it is the union of k walks which are disjoint with respect to 

and which do not contain the same twice. 

7.7 If G=(X, U) is a directed graph, the graph G =(X, 

39 
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is defined as follows: The arc (x, y) EO if and only if (x, y) ¢: U for every x, y E X 
with X=f y. 

Let h(G) denote the number of Hamiltonian paths of the graph G. Show that 

h(G) (mod 

This property remains true in the case of a nondirected with n;;;: 4 vertices. 

7.8 Show that each tournament contains an odd number of Hamiltonian 
paths. 

7.9 Suppose that the graph G has all of its vertices or odd Show 
that each edge of G belongs to an even number of Hamiltonian 

7.10 Let G U) be a connected graph with m edges and n vertices. 
Show that the number of spanning graphs of G such that every vertex has even 

is equal to 2"'-"+ 1. 

7.11 The set X of vertices of any graph can be partitioned into two classes 
X 1 and X 2 (one of which may be empty) so that the subgraphs with vertex set 
X 1 (X 2) have all their vertices of even degree. Show that this property remains 
true if the of the vertices of the subgraph by are even and 
the of the vertices ofthe generated by X 2 are odd. 

7.12 Let C be a collection of pairwise distinct subsets of a nonempty finite 
set X with n;;;: 2 elements. Show that the only collections C with the property 
that every proper subset of X intersects an even number of sets from Care 
P(X) and P(X) '-{0}, where P(X} is the family of all subsets of X. 



8 
Connectedness 

8.1 Let d1 ~d2~'" ~dn be the 
suppose that dk ~ k for every k ~ n d. 

of the vertices of a G, and 
1. Show that G is connected. 

G contains a connected 
with n vertices and 1 ~ k ~ n. Show that 

with k vertices. 

8.3 Let G be a graph with n vertices, m 
Show that 

and p connected components. 

p+m~n. 

8.4 Prove that in a connected graph G every two elementary walks of 
maximal have at least one vertex in common. If G is a tree, show that all 
walks of maximal length of G have at least one vertex in common. 

8.5 A graph G is said to be if there exists a partition of its set of 

X=AuB, 

such that each edge of the graph has one endpoint in A and the other in B. 
Show that a is bipartite if and only if each elementary cycle in G has an 
even number of vertices. 

8.6 Does there exist a graph with 10 vertices whose vertices have the 
sequence 

1.1.1,13,3.4.6,7.9? 

8.7 Let d l' ... , d. be 

Show that these numbers are the 
vertices if and only if 

such that 

of the vertices of a multigraph with n 

(1) d1 + ... +d. is even and 

(2) d.~dl + ... + l' 

8.8 Which numbers can be the number of vertices of a regular graph of 
degree k? 

41 
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8.9 Consider a graph G with n vertices which does not contain a complete 
subgraph with three vertices. further that for every two 
vertices x and y there are exactly two vertices which are to both x and y. 

Show that there is an p ~ 0 such that n = 1 + 2 Also show that the 
G is of p. 

8.10 Given natural numbers r~ 2 and 3, show that there exists a graph 
G which is of r and with girth g(G)=g. 

8.11 Let G be a 
Show that 

graph of r with n vertices and g(G)=g. 

n~1+r+r(r-l)+'" +r(r 3)12 for g odd 

and 

n~2{1+tr 1)+'" +(r 1)YI2-1} for g even. 

8.12 Determine the regular graphs G of degree 3, with minimal number of 
sueh that the smallest length of an is: 

(a) g(G)=4; 

(b) g(G)=5. 

8.13 connected graph G contains at least one vertex x which has the 
property that the subgraph Gx obtained from G by suppressing the vertex x, 
and the edges incident with x, is connected. Does this remain true if instead 
of eonneetedness one considers connectedness? 

8.14 A directed graph G is strongly connected if and only if for every subset 
A of vertices, A there exists at least one arc of G of the form (x, y) where 
x E A and y ¢ A. Show that this statement remains true if instead of the arc 
(x, y) one takes (y, x) where y ¢ A and x EA. 

8.15 Show that if a tournament G contains a circuit, then G contains a 
circuit with three vertices. 

8.16 For a tournament with n vertices, Xl' ..•• Xn , let rj denote the number 
of arcs which enter Xi' and let SI denote the number of arcs which leave Xi' 

Show that: 

(a) rl=" S;=(;); 
(b) 

8.17 Show that every tournament G contains a vertex X such that every 
other vertex can be reached from x by a path with at most two arcs. 

8.18 G contains a set S of pairwise vertices such 
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that every vertex x ~ S can be reached by leaving from a vertex YES and travers­
ing a path of length at most equal to 2. 

8.19 A tournament T is said to be transitive if, whenever v) and w) 

are arcs of T, then (u, w) is also an arc of T. Show that an increasing sequence 
S :S\ ~ •• , ~ Sn of n ~ 1 integers is the sequence of 
of a transitive tournament with n vertices if and only if S is the sequence 
0,1, ... ,n-1. 

8.20 Show that the number C(n) of connected 
satisfies the recurrence relation 

C(n)= 
n 

n~2 and C(1)=l. 

with n labeled vertices 

C{k) 

8.21 Show that almost all graphs with n vertices have diameter equal to 
2 for n .... 00. This means that if d2(n) denotes the number of graphs with n vertices 
and with diameter equal to 2, then 

lim = 1. 

8.22 Define a relation - on the set U of of a graph in the 
following way: Let Uj - UJ if i or if the Uj and Uj are found on the same 

cycle. Show that - is an equivalence relation on U. 

8.23 An articulation point of a connected graph G is a vertex x such that 
the subgraph Gx obtained from G by suppressing the vertex x and the 
incident with x is not connected. A connected graph G which does not contain 
an articulation point is said to be 2-connected. 

Show that the properties are equivalent for a G with n ~ 3 
vertices: 

(1) Gis 2-connected: 

every two vertices of G belong to an elementary cycle; 

(3) G does not have isolated and each two edges of G lie 
on some elementary 

8.24 Let G be a 2-connected graph. If G contains two of 
maximal length, show that these cycles have at least two vertices in common. 

8.25 Consider a G and two of its vertices x and y. Let G x y 
denote the subgraph of G obtained suppressing the vertices x and y. Suppose 
that G1 and G2 are two graphs with the same vertex set X and that IXI~4. 

If the G\ x - y is to G2 - X - Y for all choices of vertices 
x, y E show that the graphs G1 and are identical, 

8.26 Consider a chessboard with n rows and n columns (n odd). Can a 
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make a tour of the board by passing once and only once 
of the n2 squares on the board and to the point of 

8.27 Consider a graph On consisting of a line of n (as illus-
trated in Figure 8.1 for n 5). This graph has p=4n+2 vertices and q=5n+l 

and represents the molecular of a cata-condensed benzenoid 
polycyclic hydrocarbon (a catafusene) with the molecular formula 
For n = 1, ... ,5 these catafusenes are called phenanthrene, 
chrysene and 

A matching of O. is a matching which contains p/2 = 2n + 1 
Denote by K(n) the number of matchings of On (in chemistry this repre-
sents the number of Kekule structures of the catafusene). 

Prove that for any n;;;:: 1 

K(n)= l' 

Fig. 8.1 

8.28 Let 0 and 0' be connected A set S of vertices of 0 is said to be 
isometrically embeddable in 0' if there is a set S' of vertices of 0 ' and a 
f : S -+S' which preserves distances, that is, 

ddx, ddf(x), fry)} 

for any x, y in S. 
Prove that: 

(aj if every subset of vertices S of a connected 0 with lSI ~4 is 
isometrically embeddable in a tree, then 0 itself is a tree; 

(b) if 0 is a connected bipartite graph, then any set S of its points, 
IS I ~ 3, is isometrically embeddable in a tree; 

(c) if every three points of a connected graph 0 are ,CA'..,..", .. ",o 

embeddable in a bipartite graph, then 0 is bipartite. 

8.29 The cities C 1, ... , are served by n international airlines AI'" ., An. 
There is a direct line (without stops) between any two of these localities, and all 
airlines provide service in both directions. If N;;;:: 2" + 1, prove that at least one 
of the airlines can offer a round trip with an odd number of Does this 

hold for N = 2"? 



9 
Extremal Problems 
for Graphs and Networks 

9.1 In a graph G it will be said that an Ii covers a vertex x if x is one 
of the endpoints of u. A set of edges forms a matching if no two have a common 
endpoint. We denote by v(G) the maximum number of in a matching, and 
by p(G) the minimum number of edges of G which cover all the vertices of G. 

Show that if G has n nonisolated vertices, then 

v(G) + p(G) = n. 

9.2 
of then the number of 

to 

G)- nk (n-k-l). 

(b) If a G has n vertices, then G and the complementary 
G together contain at least 

9.3 Show that a graph G with n vertices and m edges contains at least 
(4m/3n){m-n"/4) triangles. 

9.4 Show that a tournament with n vertices contains at most H"; I) circuits 
with three vertices. Prove that this limit is attainable for n odd. 

9.5 Show that a tournament with n vertices contains at least one 
Hamiltonian path and at most n !/2n/2 Hamiltonian paths. 

9.6 Show that every with n vertices and m > (n/4)(1 + 
contains at least one elementary cycle with four vertices. 

9.7 Show that if a graph with n vertices does not contain a complete sub­
graph with k vertices (k ~ 2) then it contains at least m = {n/(k - 1)} vertices of 

45 
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less than or equal to p = [(k l)J, where is the least 
~x. 

9.8 In a set M containing 1001 people, each subset of 11 people contains at 
least two individuals who know each other. Show that there exist at least 101 
people each of whom knows at least 100 persons in the set M. 

9.9 Let G be a graph with n vertices and without a complete subgraph with 
k vertices. Show that the maximum number of edges in G is to 

M( k)=k-2.n
2 

r2 (r) 
n, -1 + 2 

ifn=(k l)t+rand r~k 2. 
The graph G for which this maximum number of edges is attained is unique 

up to isomorphism. G is made up of k - 1 classes of vertices. There are r classes 
which contain t+ 1 the remaining classes each contain t vertices. 
Each vertex x is adjacent to all the vertices which do not to the class 
which contains x. This result is called Turan's theorem. 

9.]0 Suppose that a set M contains 3n points in the plane and that the 
maximal distance between the points is to I. Show that at most of 
the distances between the points are than 

9.11 Given 2n points in the plane with no three collinear, show that the 
maximum number of line segments which can be constructed with endpoints 
in this set of points and so that no are formed is to n2

. 

9.12 Find the maximum number of maximal complete (with 
to inclusion) in a with n vertices. 

9.13 One wants to construct a telephone network points in n 
cities. Let c(u) be the cost of constructing the line for an edge u = [x;. in the 
complete graph G thus defined. It is desired to minimize the total cost of con­

the network. One must therefore find a spanning tree A of G such that 
the sum of the costs associated with the of A is minimal. 

Show that the following algorithm produces a minimal tree of G: 

(1) select the of G of minimal cost: 

(2) among the unchosen select an which does not form a 
cycle with the chosen and which has minimal cost. 

Repeat step (2) of the algorithm until a set of edges of cardinality n -I has been 
chosen. 

9.14 Suppose that all the G) edges of the graph of the preceding problem 
have different costs. Show that in this case the spanning tree of minimal cost is 
unique. 
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9.15 Denote by E the set of vectors X=(X 1, X2, ••• , xN) E,jJ" such that 
Xi~ 0 for i= 1, ... ,11 and Xl + ... +xn= 1. Show that if G={X, U) is a 
with 11 vertices then the following equality holds: 

XiX}'::::: 2 - ~), 
where k is the maximum number of vertices of a ('(\T\"\T'ljptp subgraph of G 

9.16 Let G be a strongly connected graph. Associate with each arc u in G 
a number Cluj ~ O. If a, b are two distinct vertices of G an (a. b)-CUI 
is a set C of arcs with the property that every path from a to b contains at least 
one arc from C. 

Show that 

max min =min max 
D u~D e Ute 

where D runs through the set of all paths D = (a, . . , b) and C includes the set 
of all (a, b)-cuts of G. 

9.17 F or a digraph G =(X. U) let a. b be two distinct vertices of G, and c a 
function c: U ..... !Ii? such that 0 for every arc u E U. Suppose that 9 is a 
function g:X -+:?# which satisfies the following two conditions: 

g(a)=O; 

(2) - g(xJ ~ y) for every arc Y) E U. 

The value of the function c for a path D in Ihe graph G is 
of the values of c for all the arcs of G. that is, 

c(D) = I clu), 
.<A(D) 

where A(D) represents the set of arcs of the path D. 
Show that 

min c(D) max g(h), 
D g • 

10 be the sum 

where D ... , h) runs from a to b (we assume that 
there exists at least one 

9.18 A digraph G = (X, U) is said to be a network if it satisfies the following 
conditions: 

(1) There is a unique vertex a E X which no arc enters, i.e., (j) - (aj 
where OJ-(a) denotes the set of arcs which enter the vertex a. 

(2) There is a vertex b E X which no arc leaves. that is, 
w+(h) Here OJ+(b) denotes the set of arcs which leave the 
vertex h. 

(3) G is and there is a path from a to bin G. 

(4) There isa function c:U ..... :# such that OforeacharcuE U. 
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Vertex a is called the source, vertex b the sink, and the capacity of the arc u. 
A function f: V -+1Jt such that for each arc u is called a flow in the 

network G with capacity function c [denoted G=(X, V, if the following two 
conditions are satisfied: 

(Cl Condition of conservation . For every vertex x b the 
sum of the flows of the arcs which enter x is equal to the sum of 
the flows of the arcs which leave x, that is, 

f(u)::.: flu) forevery x EX"",-{a, 

(Bl Condition of boundedness of 
holds for every arc u E V. 

. The inequality f(u)::;;;c(u) 

For every set of vertices A c: X define a cut 

w-(A)={(x,y)lxe ),EA,(x,Y)EV}; 

a cut is thus the set of arcs which enter the set A of vertices. Further let 

w+(A) {(X,y)IXE y¢iA, Y)EV}. 

w + (a) is thus the set of arcs which leave the set A of vert ices. The of the 
cut w-(A) is defined by 

c(w L c(u). 
uew-(A) 

Show that: 

(a) f(u) = f(u). 
!,lEO) 

Henceforth the common value of these two sums will be denoted 
fb' 

(b) For each set of vertices A c: X such that a ~ A and b E A, the flow 
fb at the exit of the network satisfies 

It, = f(u)- L f(u):(c(w-(A». 
u<ro uew+(A) 

9.19 Prove the Ford-Fulkerson theorem: For every network G 
with source a and sink b, the maximal value of the exit flow is 
minimal of a cut, that is, 

max It, = min (A». 
I AlatA.beA 

V, c) 
to the 

9.20 Consider the following algorithm for obtaining a maximal flow at the 
exit b of a network G = (X, V, Assume that the capacity function c(u) *'" 0 takes 
on only integer values: 

(1) Define the initial flow as having zero component on each arc of 
the network, i.e., flu) =0 for each u E V. 
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Determine the unsaturated walks from a to b on which the flow 
can be augmented by the following labeling 

(a) mark the entry a with [+]; 
(b) after marking a vertex x, proceed to mark 

(i) with [+ x] each unmarked vertex y with the property 
that the arc u=(x, y) is unsaturated, that is, <c(u); 

Oil with [ - each unmarked vertex y with the property that 
the arc u x) has a nonzero that is, f(u»O. 

rr by this the exit b is then the flow fb obtained 
at the current step is not maximal. Now consider a walk l' formed of labeled 
vertices (with the sign + or - respectively) which joins a and b; it can easily 
be found by following the labels of its vertices from b to a. Denote by 1'''' the set 
of arcs y) where the marking of y has the sign +; the arcs are thus directed 
from a to b. Denote by v- the set of arcs y) where the marking of y has the 
sign -. these arcs are directed from b to a. 

Find the value of 

c=min (min {c(u)-
UEV+ 

From the method of it follows that £> O. 
Increase by e the flow on each arc u e v'" and decrease by the flow on each 

arc u e v-. At the exit one therefore obtains a flow equal to Jb+e. Now repeat 
(2) with the new flow. 

If by this the exit b cannot be marked, then prove 
that the obtained has a maximal value Jb at the exit; the set of arcs which 
join the marked and unmarked vertices constitutes a cut of minimum capacity. 
Show that this occurs after a finite number of steps. 

9.21 The of the problem does not have a finite number 
and does not lead to the maximum flow at the exit if the function 

for arcs c: U-.rJf has irrational values. To see let 

an=rn, 

where r is an irrational number less than 1 which satisfies the 
recurrence relation 

for every n;;J: O. Consider the network with 10 vertices illustrated in 9.1. 
It contains the arcs of , Y2) of aI' 
A3 = , Y3) of a2, together with the 
arcs (Yi' )'j), (Yi, Xj) for i, 1, ... ,4 and i and the arcs (a, and 

b) for i == 1, ... ,4. In order not to the two arcs in the 
senses (x, y) and (y, x) have been by a single non directed 
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b 
a 

Fig. 9.1 

All the arcs of the network other than At, 
equal to 

c= 2. 
.= 

Apply the algorithm of the preceding problem, using the order of the walks 
Xt.Yl.b], X2,Y2,X3,Y3. [a,x2.Y2,Yl.X\,Y3,X3,Y4' and soon-

that is, so that the flow fb always it will be equal to aO+al +a2+ 
a3 + ... , and strictly less than the maximum flow fb =4c. 

9.22 For a graph denote by v(G) the maximum number of in a 
matching (a set of which has no endpoints pairwise in common); let t(G) 
be the minimum number of vertices of a support S of G (a set of vertices such that 
every edge has at least one endpoint in S). If G is bipartite, show that v( G) T( G) 
by applying the Ford-Fulkerson theorem to a network constructed in a suitable 
way from the graph G. 

9.23 Let A = 1, .... m be a matrix with " rows and m 
number of elements to 1 which are 

found in different rows and columns of the matrix is to the minimum 
number of rows and columns which together contain all elements to 1 
in the matrix. This result is called theorem. 

9.24 For a graph G with" vertices define the rollowing two operations: 

delete an edge between two 

({3) insert an between two nonadjacent vertices. 

Let ()2(G) denote the minimum number of operations (IX) and/or (f3) needed to 
transform G into the union of two disjoint cliques K., u where "! +"2 " 
and "1. n2~O (by definition is the empty graph). 



Extremal Problems for Graphs and Networks 

Show that for any graph G with n vertices the following relation holds: 

c'i 2 ( G)::;; Wn -1)2J, 

51 

and this inequality becomes an equality if and only if G is isomorphic to the 
complete bipartite graph Kp,q where p, q-;:O and p+q=n, 
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Coloring Problems 

10.1 Show that if each vertex of a graph G has at most equal to k, 
then the chromatic number of the graph G the inequality 

X(G)~k+ 1. 

10.2 Let G be the complement of a graph G with n vertices. Prove that the 
following inequalities are satisfied by the chromatic number: 

X(GH x(G)~n+ 1, 

n~X(G)X(G)~[ (n; lYJ. 
10.3 Suppose that a planar G has a Hamiltonian cycle. Show that 

the faces of all representations of G in the plane can be colored with four colors 
so that each two faces which have a common edge are colored differently. 

10.4 Draw an arbitrary number of Hnes in the plane so that no three of them 
are concurrent. One can obtain a planar graph G by the points of 
intersection of the lines as vertices of a graph and the segments between neigh­
boring intersections as edges of the graph. Show that 

X(G)~ 3. 

10.5 Show that in a connected planar with n vertices and m 
there are m - n + 2 faces the infinite face) in every planar rpT1,rp<pnl 

tion formula}. 

10.6 Show that every planar graph with n vertices has at most 3n - 6 edges 
and every planar graph with n vertices which does not contain triangles has at 
most 2n - 4 edges. 
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10.7 Show that the K 5 and K 3. 3 are not planar. 

10.8 Prove that every planar graph contains a vertex x with 5. 
Construct a planar graph with the property that 5 for every vertex x. 

10.9 A planar graph G with n vertices and m edges has the smallest length 
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of its elementary cycles equal to g(G) = 3. Show that 

m~ g (n­
g-

10.10 Show that each planar G has chromatic number X(G)~ 5. 

10.11 Construct a graph 
G2 with chromatic number 

with chromatic number X(G 1) 3, and a 
=4. which do not contain 

10.12 Consider an infinite graph G defined as follows: The set of vertices 
of Gis {(a, b)la, b E !!l and a> 0, b> O}; every vertex (a, b) is to all vertices 

+ b, (a + b, ...• (a b, n), ... , and thus to all points positive 
coordinates on the line x =a + b. 

Show that G does not contain and that its chromatic number 
X(G}= 00. 

10.13 If G is a planar graph with n ~ 4 vertices of degrees d! . d 2, •.. , dn • 

show that 

Verify that for every 11 ~ 4 there is a planar graph with all faces triangular such 
that the becomes an 

10.14 Let G be a graph with vertex set X of cardinality 11 and set of U. 
A t.-coloring of G is a function 

f:X- t ..... A} 

where A ~ 1 is a natural numbcr such that ir y] E U. then f(x) '# 
Show that the number of A-colorings ofthc graph G can be expressed in the 

form of a polynomial of degree 11 in A [called the chromatic polynomial of the 
graph G and denoted Po().)] in the following manner: 

( -1 

where c(V) represents the number of connected 
(X. V) of G. 

nAt,pn!~ of the spanning 

y] one of its edges. Denote G e the 
the e and by G I e the obtained 

from G by suppressing the vertices x and y and the incident with these 
them with a new vertex z which will be adjacent to all vertices 

G which were to either x or y. Show that 

Po(A)== 

10.16 Denote by Kn the graph on n a tree with n 
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and by en an elementary cycle with n vertices and n Verify that: 

(a) Pd.Jc) -l)"'(A-n+ 
(b) ).(/. _1)"-1 ; 

(c) PcP) 1)"+( 1)V-
10.17 If G is a 

form 
with n then its chromatic polynomial has the 

_Q._ l+an _ 2_ ... +( 1)n-lajx, 

where Qj ~ 0 for every j. If G is connected, then (~= i) [or i = 1, .... n-1. 

10.18 Show that for every G it is the case that the chromatic poly-
nomial has no roots in the interval (0, 1) and that 

where " 

10.19 The chromatic index of a graph G, denoted q(G), is the smallest 
number of colors with which the of G can be colored so that each two 

with common have different colors. If D denotes the maximum 
of the vertices of the graph G, show that 

q(G)=D or q(G)=D+ l. 

This result is Vizing's theorem. 

10.20 Show that the chromatic index of the complete K" is by: 

q(K
n
)= In for n odd, 

1. n -1 for n even. 

10.21 There are n players in a chess tournament. Each player 
must play one match each of the other n - 1 and none plays 
more than one match per day. Determine the minimum number of neces­
sary to run the tournament. 

10.22 A k-coloring of the vertices of a graph G is a partition of the set of 
vertices into k classes, such that each class contains only nonadjacent 
vertices. Show that k"-k is the maximum number of of the n vertices 
of a G with chromatic number =k. The graph which has this maxi­
mum number of colorings is formed from the complete graph with k vertices 
together with n k isolated vertices. 

10.23 Show that the number of of the vertices of a tree with n 
and k~2. 

10.24 Let G be a graph with vertex set X and which does not contain a 
complete subgraph with k + 1 vertices. Prove that there exists a k-chromatic 
graph H with the same vertex set such that 

XEX. 
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Use this result to prove Turan's theorem. 

10.25 Let G be a graph with 11 vertices, m 
Z(G)=k (1 :;;;;k:;;;;n). Prove that 

m:;;;;M(n, k+ 1) 

and chromatic number 

and that equality holds if and only if G is isomorphic to the Turan graph with n 
k parts. and M(n, k+ 1} 

10.26 Let G be a graph and P GO.) its chromatic polynomial. G is said to be 
chromatically unique if P fl().) == P G().) implies that the graph H is isomorphic 
to G. Prove that Turan's graph T(n. k), on n vertices and with a maximum 
number M(n, k) of edges with respect to the property that it does not contain 
any complete subgraph with k vertices, is chromatically unique for every 
2~k~n+1. 

10.27 Prove that the number of of the vertices of a graph G 
is by 

1 k (-lyC)PG(k- il. 

where PGP.) is the chromatic polynomial of G. 

10.28 Let M(x\. yd and N(X2' Y2) be two points in the Euclidean plane £2. 
It is known that the following definitions yield metrics for the Euclidean 

d4(M, = -x2i+ (city-block 

ds{M, N)==max([x l [Yl - Y2i) 

Define the infinite graphs G4 and Gs as follows: The vertex set of these 
is the set of points of £2, two vertices being adjacent if and only if their city­
block or chessboard distance is equal to 1. Prove that the chromatic number of 
these graphs is equal to 4, that is, 

X(G4 )=X(Gs)=4. 

10.29 If a G contains no and X(G) 3, show that G 
has at least p +2 vertices. For any p~ 3 construct a G with p+ 2 vertices 
and without p-cliques such that x( G) == p. 



11 
Hamiltonian Problems 

11.1 Show that the contains 

t(n-l)!n! 

Hamiltonian 

11.2 Prove that the number of Hamiltonian cycles in the complete graph 
Kn which use h given edges (which pairwise have no common vertices) is equal to 

(n h-l)! 

for every 0 ~ h ~ n/2. 

11.3 Show that for n odd. n ~ 3, the of the 
covered (n - Hamiltonian without common 

11.4 Let G be a graph with n vertices Xl' ... ,Xn whose 
inequality 

d1 ~d2~ ... ~dn' 

the 

Show that G contains a Hamiltonian cycle if anyone of the following three 
conditions is satisfied: 

(a) d 1 ~ (Dirac); 

(b) dq~q that dp + n for every p"i=q (Bondy); 

(c) dk ~ k < implies that ~ n - k (Chvatal). 

11.5 Let G be a with n ~ 2 vertices for which each vertex has 
than n/2. Show that each two vertices of G can be joined by a Hamiltonian 

walk. 

11.6 If G is a regular graph of degree n with 2n + 1 show that G 
has a Hamiltonian cycle. 

11.7 Let G be a k·connected graph which does not contain a subset formed 
from k + 1 vertices (k ~ 2). Show that G has a Hamiltonian 

11.8 Let G be a graph with n ~ 3 vertices and m If the inequality 

m~(n;1)+2 

56 
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is satisfied, then G contains a cycle and there is a with 
m =("~ 1)+ 1 which does not contain a Hamiltonian cycle. 

t t.9 Let G be a with n vertices of greater than or equal to k. 
Show that: 

(a) G contains an cycle of length greater than or equal to 
k+ 1; 
If G is 2-connected, then it contains either a Hamiltonian 
or an cycle of greater than or to 2k. 

It.l0 Let G be a with n vertices and more than (n-
k ~ 2. Show that G contains an elementary of length at least 

11.11 Let G be a digraph with n vertices such that the indegree r (x) and 
the outdegree of every vertex x satisfy the 

n n 
d-(x)~2 and d+(x)~2' 

Show that G contains a Hamiltonian circuit. 

11.12 Show that a tournament is strongly connected if and only if it contains 
a Hamiltonian circuit. 

11.13 Let Pj(n, k) denote the number of ways of k edges from the 
set of the n - 1 edges of a walk P of length n. such that these k generate 

j connected on P. Prove that the following relation holds: 

Pin, (;-1 

11.14 Denote H(n, k) [DH(n, k)] the number of Hamiltonian walks 
paths] k edges in common with a Hamiltonian walk 
path] in the l'ntnn'P!pgraph K. [complete digraph Show that 

0-\ 

H(n, k)= 

DH(n, k) 
1 ' 

~ ) (n-

11.15 The cube G3 of a G is defined as follows: G3 has the same vertex 
set as two vertices are "".I~~'''' in G3 if and only if their distance in G is at 
most 3. Show that if G is then for any two distinct vertices x, y of G 

having x. y as its endpoints. 



12 
Permutations 

12.1 Let r be the smallest positive 
identity permutation. Show that r is 

such that p' = e, where e is the 
to the least common mUltiple of 

p. the lengths of the of the 

12.2 Verify that the number of permutations of 11 elements which have k 
cycles is jS(I1, k)j. 

12.3 For a permutation p E let e(p) denote the number of cycles (in-
cluding the cycles of length 1) in the representation of p as a product of disjoint 

Show that the following equalities hold for all m and n: 

1 L n«P) =(n +m 1), 
m PES", m 

~ L sgn(p)n«PJ=(n). 
m.~s. m 

where sgn(pJ is the 

12.4 Show that 

of the permutation p. 

where the sum is taken over all solutions of the equation 

Xj+'" =11 

such that XI~ 1 for i 1, ... , p. 

12.5 Let d(n, k) denote the number of permutations p E Sn without fixed 
points and which contain k cycles. Show that: 

58 

(a) d(l1+ 1, k)=n(d(n, k)+d(I1-1, k-l»), where d(O, 0)=1; 

(b) d(2k, k) = 1 x 3 x 5 x ... x-I); 

(c) d(n,k)= n (-lyG)C(n k-j), 

where cil1, k) js(n, =( 1)"+"S(I1, k) is the number of 
lions PESo which contain k 
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12.6 Let So denote the symmetric group of order n, the group of pee' 
mutations of the set {1, ... , n}. Two permutations s, t E So are said to be con· 

if there exists a permutation g E Sn such that s:.= 1. Show that: 

is an equivalence relation. 

sand t are conjugate if and only if they have the 
same number m of cycles and their cycles have, the 
same n1fori t, ... ,m. 

that the permutation t has in its representation as a 
of disjoint cycles: A) cycles of length 1, .... ;.k cycles of 

k f).j + 2,1.2 + ... + k),k = n). Show that the number of per­
mutations conjugate to t, or the number of permutations with the 
same structure as t, is equal to 

This is known as Cauchy's formula. 

(d) The number of equivalence classes with respect to conjugation 
of two permutations is equal to the number pen) of partitions of 
the 

12.7 Prove 

1. 

12.8 Choose at random a permutation of the set {1. ... , What is the 
probability that the cycle which contains the number 1 has length k? (Suppose 
that all permutations of these n numbers have probability. This assump-
tion also holds for the two rWf'.t'>II"mc 

12.9 What is the probability that a of the set {I, ... , n} chosen 
at random contains the numbers 1 and 2 in the same cycle? 

12.10 Select a of the set {I, ... , nJ at random. What is its 
average number of 

12.11 Denote the number of PESo with the property 
that p2 = e. Show that: 

(a) = 1 +(n 
(b) 

(c) L Po to exp(t+ 
o~o n 

2, where Po:::: PI:::::: 1 ; 
I. , 

12.12 Show that the minimum number of transpositions necessary for 
writing a permutation pESo, p=l=e, as a of is equal to 
n - c(p), where c(p) is the number of p (including the 
cycles of length 1). 
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12.13 A set T {ll, ... ,tn-d consists of n-1 transpositions of the set 
X={l, ... ,n}. Associate with it a graph (X, with vertices 1, ... ,n whose 
edges are transpositions in the set T. 

Show that the product 1 t 1 t2 •.. tn - 1 is a circular permutation of the set X 
if and only if the (X, T) is a tree. Deduce from this that the number of 
ways in which a circular permutation on n elements can be written as a 
of n 1 transpositions is equal to n"- 2. 

12.14 Denote by pen, k) the number of permutations p E of the set 
{1, ... ,n} which have = k inversions i <j for which > pun 
Show that: 

(b) p(n, k) = p 

pIn, k)=p(n, k-ll+ p(n-l, k) for k<n; 

(d) p(n+ 1, k) k)+p(n, k 1)+'" +p(n, k-n), where we define 
p(n, 0 for i> G) or i< 0 and pen, 0) = 1 : 

(e) k)x k + +X+X2) .. '(I+x+ + ... +X"-l). 

12.15 Show that the number of 
that there exist k elements 

i<j is to !s(n, k)!. 

p of the set {I, ...• n} which 
for which pU»p(i) for every 

12.16 Show that the expression g) = maxi~ 1. ..... !/(0 - gUll. where 1 
and g are two of the set {I, ... , n}, defines a distance on the set 
If one denotes by r) the number of permutations 1 with the that 
d(e,f)~r, where e is the permutation 1/(i)-il~r for l~i~n), 
show that 

F(n,l) the Fibonacci number. 

12.17 Denote by an the number of permutations p of the set {1, ... , 
which satisfy I p(i) II ~ 2 for every i = 1, ... , n. Show that a. is the element in 
first row and first column of the matrix An, where 

1 0 0 
100 0 

A= 0 1 0 1 0 
o 0 0 1 
000 0 

12.18 Find the number A(n, p) of permutations of the set \1,2, ..• n} which 
satisfy the inequality 

p(k)~k+p 1 

for k = 1, ... , n. 
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12.19 An up-down permutation of the set {1. 2, .... n 1 is a permutation . 

2 n 

with the property 

If A" denotes the number of up-down permutations of the set {1, 2, ... , n}. 
show that the exponential generating function of this number is 

sec x + tan x, 

where = 1. 

12.20 A permutation p(l)p(2)··· pIn) of the set 1. ... , n} is said to be 
2-ordered if p(i)<p(i+2) for every 1 ~ i~n 2, and if p(i) < p(i + 3) 
for every 1 ~ i~n- 3. Show that the number of permutations of the set {l, .. " n} 
which are both 2-ordered and 3-ordered is equal to the Fibonacci number F" 
foreveryn~l F1=land +Fn_!forn~l). 

12.21 Let f(n) denote the number of sequences U!, U2, , . , , Un formed 
from n numbers in the set {I, ' , . , n} and which satisfy the following 

Determine f(6). 

for every i = 1, ... , n 2, 

for every i= 1.,." n-3. 

12.22 A permutation pel) p(2) , .. pen) of the set {I, ' .. , n} is said to have a 
fall at p(i) if p(i) > p(i + 1), where 1 ~ i ~ n 1: by definition, every permutation 
has a fall at p(n). The Eulerian number A(n, k) is defined as the number of per-
mutations of the set {I, ... , exactly k falls. Show that: 

(a) A(n, k) = kA(n-l, k)+ (n - k + l}A(n- L k -1) for n ~ 2, and 
A(n,n}= l)=lforanyn~l; 

(b) A(n, k)=A(n, n-k+l); 

(c) x"= A(n, k) 
+k-

for 11 ??: 1 ; 
n 

(d) A(n, k)= (-l)j n+ 
k-! ( 

\ J 
(k- j)". 

12.23 Show that the number N(n) of permutations p E such that 

(
1 2 ... 

n n-1 ... 

N(4mJ=N(4m+l)=(2m)!/ml for m??:l, and N(4m+2) N(4m+3)=O 
for m??: O. 



13 
The Number of Classes 
of Configurations 
Relative to a Group 
of Permutations 

13.1 A ticket-punching machine of the Bucharest Transit System uses nine 
prongs in a array inside a ABeD. What 

is the number of ways in which a ticket can be punched using all possible 
patterns? The ticket can be put into the slot along AB with either of its 
faces showing. 

13.2 If G c S. is a perm utation group on the set X = {1, ... , n} and x, y E 

let x,... y( G) if there exists a permutation f E G such that y = f(x). The relation 
thus defined is an equivalence relation, whose equivalence classes are called 
orbits of the group G. 

If ;.j(g) is the number of of length one of the permutation g or the 
number of elements of X which are invariant under the permutation g, then the 
number of orbits of a group G c S. is equal to 

1 " . -I I L.. "'l(g)· G gEe 

This theorem is due to W. Burnside. 

13.3 How many convex polygons with k vertices can be formed from the 
vertices of a polygon with n vertices? Two polygons with k vertices are 
to be considered distinct if one cannot be obtained from the other by a rotation. 

13.4 In how many ways can one color with k colors the vertices of a 
with n vertices? Two are considered distinct jf one is not 

obtained from the other by a rotation. 

13.5 Burnside's lemma (Problem 

(a) The number of pairwise 
by the formula 
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show that: 

on n vertices is given 



gn=L 
(d) 

where the sum is taken over all solutions (d) of the equation 

d1 +2d2 +"'+ndn n, (1) 

and 

1 { n 
G&=2 k.tl dhd{(k,1) 

where (k, /) is the common divisor of k and I, and 

1. (2) 

(b) The number of nonisomorphic with n vertices is equal to 

dn=L 
2Dd 

(d) 

where the sum is taken over all non-negative of equation 
Thus Dd= 1 dkd/(k, 1)- 1 dk , where Nd is 

(c) A is if every two distinct vertices x and yare joined 
by an arc (x, y) or xl or both arcs. The number of complete 
digraphs with n vertices is by 

en N
d

' 

where Cd 
as above. 

1 d. - Lkeven dk }· The rest of the notation is 

(d) The number of nonisomorphic complete digraphs 
(tournaments) with n vertices is to 

where 1d=·HL~.r=l(k, I)dkdr 
negative integer solutions (d) 

1 dk }, and the sum is taken over all non-

d l + + + ... =n. (3) 

13.6 Let X be a set of denoted 1, ... , n. and A a set of which 
will be denoted ai' •..• am' function I: X ..... A is called a of the 

in X. the object i colored by IUl for i = 1, ... , n. Let G be a group 
of permutations of the set X. Set 11 .... 12 (where 11' h are two if there 
exists a permutation g E G such that 11 g = 12' 

Show that the binary relation thus defined is an relation and 
the number of classes relative to this is equal to 

;m,mj ... ,m), 
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that is, to the numerical value of the index polynomial of G for all variables 
to m. The index polynomial of the group G is defined the equation 

where represents the number of of length i of the 
g eG for 1 ~i~l1. (G. P6Iya.) 

13.7 The number of ways of coloring the six faces of a cube with m colors 
(two colorings being considered distinct if and only if they cannot be obtained 
from each other by a rotation of the cube) is equal to 

i4(m 6 + + 12m3 + 8m2
). 

13.8 Determine the index polynomial for the group of rotations of a 
regular polygon with 11 vertices. Use this result and theorem to obtain 
another proof of the result of Problem 13.4. 

In similar fashion, solve Problem 13.1 by Polya's theorem. 

13.9 Let f be a permutation of m 
{j, p, ... , denote the 

which has order r, and let G = 
by f. Show that the cycle 

index polynomial of G is 

1 r 

PIG; Xl' X2,·· .)=­
r 

13.10 Find the index polynomial for the 
the graph illustrated in Figure 13.1. 

Fig. 13.1 

group of 

13.11 Prove that the number of nonoriented, pairwise nonisomorphic 
multigraphs having three vertices and m is equal to [(m + W /12] jf 
m~O (mod 6) and to {tm+W + if m=O (mod 6). 

13.12 A Boolean function of 11 variables is a f:B"-+B where 
B={O, I}. A Boolean function is called symmetric if it is invariant under all 
permutations of its variables, that is, fIx l' " .• Xn) f(xpOl"'" xp(n)) for any 
bijection p of the set onto itself. Prove that the number of 
Boolean functions of 11 is to 2n+ 1. 



14 
Problems of 
Ramsey Type 

14.1 If the poin ts of the are colored with three show that there 
will always exist two points of the same color which are 1 unit apart. 

14.2 Show that if the of the plane are colored with two there 
will exist an equilateral with all its vertices of the same color. 
There is, however, a orthe of the plane with two colors for which 
no equilateral triangle of side 1 has all of its vertices of the same color. 

14.3 Show that whenever the points of the plane are colored with two 
colors, there will exist an triangle of side 1 or 13 which has 
an of its vertices of the same color. 

14.4 Let T be a 30-60° right triangle with sides 1,13. and 2. Show that for 
any 2o coloring of the points of the plane there is a triangle congruent to T 
which has all vertices of the same color. 

14.5 Let ABC be an equilateral triangle, and let E be the set of all 
contained in the three AB, and CA (including A, B and C). Deter-
mine whether, in every of E into two disjoint subsets, at least one of 
the two subsets contains the vertices of a 

14.6 If three distinct 
say a and b, such that 

is a of 10. 

are there will always be at least two, 

14.7 Let aj, a2, .. " ah2.,.1 be a sequence of numbers. Show that it contains a 
monotone subsequence with k + 1 terms. 

14.8 Let f be an function defined on the set {I, ... , 2" - 1 1 
with the property that for i == 1, .. , ,2n

-
1 one has 1 ~ ~ i. Show that there 

exists a sequence 
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for which f(al):;S; ... :;s; f(a n). However, this is no longer true if 2n
-

1 is 
by 2"-1_1. 

14.9 Show that jf nine in the are selected so that no three are 
collinear. then five of the points form the vertices of a convex polygon. 

14.10 The G is formed from two odd 
setsA I , ... , andB1, ... ,B"" The also 
of the form B j] for every 1 :;s; i:;S; nand 1 ~j:;S; m. Assume that the mn + m + n 

of G are colored red and blue so that no triangle is monochromatic. Show 
that the m + n of the and C" are either all colored red or all 
colored blue. 

14.11 Show that if the edges of a complete graph with no p q) vertices 
are colored either red or blue, then there is either a complete subgraph with 
p + 1 vertices all of whose edges are or a subgraph with q + 1 
vertices all of whose are blue. 

The smallest number n ~ no with this property is called the number 
with parameters p + 1 and q + 1 and is denoted R(p + 1, q + 1) for every p, 
(p,q 

14.12 Show that R(3, 3) = 6. 

14.13 Show that the number R(k, k) satisfies the inequalities 

~ R(k, k)~ 3 

for every k?;l: 2. 

14.14 Let aI' az, ... , ax?;l: 1 be integers and k?:': 2. Show that there exists a 
smallest natural number n = , ... ,ax) called the Ramsey number with 

at •... ,at with the following property: In any coloring with k 
colors C1 , ..• , Ck of the of the complete K", there exists an index 
i, 1:;S; i:;S; k, and a with aj vertices which has all of its 
of color Ct. 

14.15 If Rk(3) = Rk (3, ... , 3) show that 

where equality holds if k = 2 and k:::: 3. 

14.16 Show that Rt(3)?;l: 2K + l. 

!e] + 1, 

14.17 Consider an arbitrary partition of the natural numbers 1, 2, ... , n 
into k classes. Show that if n?;l:ek!, then one of the classes will contain three 

x, y, z (not necessarily such that 

x+y=z. 

14.18 Consider a coloring with k colors of all the 2" - 1 nonempty subsets 
of a set with n elements. Show that there exists a natural number such that 
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for every n):no(k) there exist two nonvoid disjoint subsets X, Y. such that 
X. Y, Xu Y have the same color. 

14.19 Denote by K OC) the complete with a countably infinite number 
\1"'.·11 .... ,""0· color its edges with r colors. Show that the K", contains a 

infinite monochromatic sub graph. 

14.20 Let (a.l.€N be an infinite sequence of real numbers. Show that it 
contains an infinite subsequence which is either 
decreasing, or constant. 

14.21 Consider an infinite set A of in space. Show that A contains: 
(1) an infinite subset A! of collinear points or 

an infinite subset of with the property that 
no three points are collinear or 

(3) an infinite subset of points with the property that no four 
points are coplanar. 

14.22 Show that for every partition of the set of integers {1, 2 •... , 9} into 
two classes, at least one of the classes contains an arithmetic progression with 
three terms. 

14.23 Show that in every partition into two classes of the set M = 
[1, 2 •... , 256} there is a class a geometric with three 
terms. 

14.24 Prove or From the interval (3" + 1)/2J one can select a 
set of 2" containing no arithmetic triple (three numbers in arithmetic 
progression). 

14.25 Show that the Ramsey numbers satisfy the inequality 

(2+3 
R(3, r):S; 

for every positive t): 2. 

14.26 Show that in any with two colors ofthe edges of the 
bipartite graph G = K 2p"'1.2p"'!' there exists a monochromatic connected 

subgraph of G having 2p + 2 vertices. 

14.27 Let J..(n) be the 
with r colors of the K" induces a mono-

chromatic connected spanning subgraph with at least m vertices. Prove that: 

(a) fz(n)=n; 

j [ n+1J . -2- If n =t= 2 (mod 4), 

(b) fJ(n)=l 
l~+l ifn::2(mod4). 
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14.28 The number R(F l' F 2) for two graphs F 1, is the minimum 
p such that every of the of Kp contains a green or a red 
Prove that the Ramsey numbers for stars are given by the formula 

14.29 
R(T"" 

14.30 

{
m+11 ifm or 11 is odd, 

R(K 1 "" KI nl= . . m +n 1 jf m and 11 are both even. 

Let be a tree with m vertices where m - 1 divides n - 1. Show that 
.n)=m +n-1. 

Show that the Ramsey number R(K"" K 1.") is the formula 

R(K""K1 .• l -1)n+1 

for any m, n~ l. 

14.31 If m ~ 3 is a fixed natural number. find the smallest natural 
number rim) with the property that every partition into two classes of the 
set {l, 2, ... , r(m)} contains a class with m numbers (not distinct) 
Xl, •••• x'" such that 



Part II 
S L TI S 

69 





Solutions 

CHAPTER 1 

1.1 tal One must show that 

Let 

expansion. In 

Thus in this case 

and the 
binomial 

Since 

[n/2] (n)( n ) 
and B.=2 k~O k k-l' 

+ It=(x+ 1)2. and taking note of standard 
it can be seen that for even n, An is the coef­

of (x + 1 )2., and B. is the coefficient of x· - 1 in this 
for even n one can write 

= I (n)2 = (2n). 
k=O k n 

B _ n ( n \( n )_( 2n ) 
.- n-k) k-l - n-l . 

An B·=C:)(l- n:l)= n!l c:). 
is established. For n odd, An and Bn are different from these 

and thus 

71 



it follows that the value of An - Bn is the same, that is, {l/(n+ 1 

(b) Let 

· (n+k) 1 !tn)::::: k . 

It follows that f(1) = 2 and 

n+l (n+ L +k) 1 .+1 (n+k) 1 f(n+l)=2:: k =2:: k 
k 0 k=O 

+ 1) 1 
f(n)+ n 1 2"+ 1 

nf (n+k) 1 
k=0 k-l 

1 n+2 (n+~~~ 1) L -C::12) 1 

+H(n+ 1). 

Thus f(n + 1) = for every n ~ 1. which implies that =2". [D. 
Fibonacci Quarrerly, 2 (1978), 

1.2 ta) Recall that the number of strictly increasing words c! Cz .. 
with Cl <C2 < ... <Ck and c, E {I, ... , n} for every 1 ~i~k, is equal to 
follows that Ck-2 E {k 2, k-1, ... , n-2}. Let be the number of 

words of this form with Ck _ 2 = q. One can then write 

I 
"-2 1.= "-2 

Aq[ 
q 2; Z 

Sincec 1 Cz" Ck-3andck-1Ckare 
sets {I, ... , q-l} and {q+ 1, ... , n}, 

it is seen that k - 3 

(b) The desired sum can be written 

Cn;p)=C;)­

words with letters from the 
one can conclude that 

n - 3, and ta) follows from this 

-I) (2n 
1 + 2 

(2n; 1)_(21n)+Cn~ l)+Cn; 1) -2) 1 + ... 

Ct)+Cn; 1)_ ... 
+ ~ 1)_Cn; +Cn2 3)_ ... 



=(2n+2) (2n+l) (2n\_(2n-
o 1 + 0 + 2) 1 

+ ... 

+C;)-Cn1 (2n- 2) + +. o 
1+ l' 

The numbers Sn are therefore seen to satisfy the recurrence relation 

Sn+I=-(Sn+ d· 
Since S 1 = 0, = - 1, = I, the proof of the proposition follows by induction 
on n, and use of the recurrence relation last referred to above. 

(C) Differentiate (with respect to x) both sides of the identity 

0+ =l+XG)+ (;)+ .... 
The result is: 

+ 1= 

Multiplying term by term, one obtains 

nO + 

The proof of (c) is completed equating the coefficients of X"-l on both sides 
of this equation and using standard properties of binomial coefficients. 

1.3 One can write 

1+'-1 G)Sk(n) 1+ 

=1+ ((p+l)'- + 1)'. 

1.4 the Newton's binomial 
formula. [f n is even, 

(.Jm + ..}m-1)n =An+Bn..}m(m-l). 

where Bn are natural numbers. In the same way, one sees that 

(.Jm- (2) 

and term-by-term multiplication then 

I =A~-m(m l)B~. (3) 

Thus be setting p and recalling (3), it can be deduced from (1 ) that 

(.Jm+ == 



__ .~ ...... ",,"vutvtUlUUJ I\:~ liriU vrapn 1 hcory 

For n odd one has 

(-Jm+ (4) 

and thus eM and Dn are related by 

-(m-1)D;. 

The desired equality is 0 btained by setting p:= 

1.5 (a) To justify the first identity consider two disjoint sets V and V 
such that; VI:= p, IVI = q, V (1 V The number of k-element subsets of V 
is equal to (D, and the number of (m-k)-element subsets of V is equal to (m~k)' 
Let A c W = V v V be a subset such that IAI = m. Set \A (1 vi = k: it follows that 
IA (1 vi == m - k, where 0 ~ k,,;;; m. All the m-element subsets A of Ware obtained 
without repetition by carrying out the following procedure for k =: O. 1, ... , m. 
Take the union of an arbitrary k-element subset of V and an arbitrary (m - k)­
element subset of V. One finally obtains (i)(m!.kl m-element subsets of W Thus 

o (i)(m!.k) represents the number of m-element subsets of tv, that is, (P;q), 
this establishes the validity of the first formula. 

Another solution starts by expanding the identity 

Expand by Newton's binomial formula. Observe that identity (a) follows 
from the identification of the coefficients of xm in both sides of this polynomial 
equation. 

(b) One can write 

(~)G) m k! 
nl n! 

Thus the desired sum can be written 

(c) The identity is established by induction on m. For m=O both sides are 
equal to 1. that (c) is true for m 1, ... , p - 1, with p~ 1, it follows 
that 

f (- l)k (n):= 1 (_ 1 t (") + ( _ 1)1' (") 
k=O k '" \k/ p/ 

_(-11- 1 +(-11 =(-11 (n - 1 \) (n) (n -
p- 1/ p P 

It has thus been shown that is true for m = p and hence it is valid for every 
m~O. 
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(d) It will be shown that both sides of the equation represent an enumeration 
of the same quantity. 
The left side can be interpreted in the following way: Choose k elements from a 
set M with IMI = m elements in (~) distinct ways. Consider another set N (with 
INI "" 11 elements) disjoint from M. Choose m elements from the union of the set 
N and the k elements previously chosen. One can do this in (":k) distinct ways. 
It follows that the number of ordered pairs or sets (X, Y) where X eM. YeN v X 
with IXi=k, !Yi=m is to (;)(":k). If the result is extended to k which 
varies from 0 to m, the number of all pairs (X, Y) will be equal to 

'" (m)(11 + k ). 
c k m / 

This can also be solved first choosing the sets Y n M and Y n N. 
If I Y n then 0 and it follows that I Y n MI = m Thus we can 
choose Y so that I Y n NI and I Y n MI = m in Cll", ':) different ways. It 
remains to choose the set X so as to satisfy 

YnMcXcM, 

since YcNvX and thus YnMc(NvX)nM=(NnM)v(XnM) X 
= X. But the set X can be chosen in 2' ways, because for each of the j elements 
of the set M ".( Y n M) there exist two possibilities: it belongs or does not 
belong to the set X. It follows that the number of pairs (X, Y) with the stated 
property is equal to 

and this observation cOlTIOieties the proof of (d). 

One can write identity (d) as an equality between two polynomials in n 
with rational coefficients. But (d) is valid for every natural number n. and hence 
for a number of values greater than the degree m of either of the polynomials. 
Thus the two polynomials in n are identical. It follows that equality results if one 
replaces n by - n -Ion both sides of (d). The left-hand side becomes 

The right-hand side is equal to 

and this the proof of (e). 
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The notation (:) = p( p -1).. . - q + 1)/q! will also be used for 
values of p. 

(0 using (a) it follows that 

(~)(k)(;:~) k~O (r)(k) k G)(p+~-j) 

A further use of (a) yields 
(p+~-J kt (~)(k)(~} 

kt (~)(k)(~)= (~)-----,,--
(i)(~)(: -k) =(~)(p+: -j). 

Thus the left-hand side of the desired identity becomes 

n )(q)(p+q-j)= I __ n! __ 
+q-j j q j:>O (n-p-q 

== (;)(~)C-p) 

=(;) e)(:=:) G)(:)' 
again by the use of (a). 

(g) Identity (f) is an equality between two polynomials in n, of p + q. 
This equality holds for every natural number n, and hence the two polynomials 
in n are identical. It follows that the two sides are equal if n is replaced by -1- n. 
Since 

and 

one can deduce (g) from (f). Finally, (h) follows from (g) by setting q=p. 
1.6 Let S(I, m, n) be the sum of the left-hand side. By replacing 

( 2n + 2) with (2n + 1 ) + (2n + 1), 
n+k+l n+k+l n+k 



one finds that 

S(l, m, n + 1) 2 L ( 
k 

( 
21 )( 2m )( 2n + 1 ) 

I+k m+k n+k+l 
(1j 

On the other hand, by (1) it follows that 

(I + n + 1 )(2m + 1 )S(I, m, n + 1) 

= 2)' ( 1 k ( 21)( 2m + I )( 2n + 1 ) 
'k ) I+k m+k+1 n+k+l 

x(m+k+ 1)(1 k+n+k+ 1) 

= 2 ~ (-ll C:lk~ 1)(m2::~ l)C ~:~ 1) (m+ k+ 1)(21) 

+ 2 ~ (_1)k C!lk)(:::~ 1 )C~:~ 1) (m+k+ 1)(n +k+ 1). 

For 1>0, one has 

L k ( 2/- 1 )( 2m + 1 )( 2n + 1 ) _ 0 
k (-1) l-k 1 m+k+l n+k+l - . 

by replacing k with - k - 1 and observing that the terms of the sum can be 
grouped in pairs with zero sum, and by using the standard formulas. In this 
case the last representation of (/+n+ 1)(2m+ I)S([. m. n+ 1) is symmetric with 
respect to m and n, which implies that 

(l + n + l)(2m + I)S(I. m, n + 1) (/ + m + 1)(2n + I)S(l, m + 1, n). (2) 

The proof is now completed by induction on n. For n =0 both sides have the 
value (~I)e:). Assume the formula is true for all triples (/, m, q) with q~n. 
It then follows that 

(/+m+ 
SU, m, n + 1) 

+n+ 

(I + m + n + 1) !(21) !(2m) !(2n + 2)! 
(i+m)!(m+n+ 1)!(n +1+ l)!l!m!(n+ 1)1 

[Po A. MacMahon, Quart. J. Pure and Appl. Math., 33 (1902), 274-288; J. 
Dougall, Proc. Edinburgh M a/h. Soc., 25 (1906), 114- 132J. The case 1= m = n 
is due to A. C. Dixon (Messenger of Math., 20 (1891), 

1.7 Consider the expansion 

+W(l +X)q=Ct (~) {axr 

The coefficient of x P in the right-hand side is equal to 
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But 
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+b)P(l = {x(a- b)+b(1 + x)}p(1 

= L . II (p) 
1=0 ! 

and hence the coefficient of XII is also to 

which yields the desired equality. 

1.8 First prove the identity 

:" en3 

Xi +xj2"+· C/)(~) j+i) (1 

and x = -l) obtain Dixon's 

2" (_1)i(2~)3 =( 1)" (2n)(3n)=(_1)"(3n)! 
t n n (n !)3 

the coefficients of x P in the identity which is to be proved, one finds 
that for 1~p~2n 

(1) 

But 

and hence identity (1) reduces to 

(2) 

for every p =. 1, ... , 2n. In order to prove use the of the 
problem with to the following values: 

(l) a b -l,andq= 

(II) a = x, b = 1 + x, and q = 2n - p. 

In case I it can be seen that 

(3) 

while in case II it follows that 

(~)Cn~p)xp-j(1+X)i= (-1)P-
i e)Cn 

t+i)O+xi. (4) 
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Multiplying both sides of 
obtains 

But 

and thus one can write 

(1 +x)2n and 

p 

(-1)P I(-
;=0 

.f (~)(2n ~ p)(2n :- i) = ( - 1)P 
I=O! !! P 

(-

79 

coefficients of x P, one 

-p+ + 
p 

(3) it is seen that the right-hand side is (2")2, which establishes and 
hence Dixon's formula. W. Ljunggren. Mal. 1!dskr., 29 (1947), 

Another proof is based on Problem 1.6. 1== m = n it can be seen that 

I (_1)k ( 2n 
k n+ 

But 

~ (-Ilk C~kY =( -1)-" ~n ( l}k c:r, 
from which Dixon's formula follows. 

1.9 First note that 

This 

(1 +x+ ={(x+ 1)+ 

+l)"+C)(x+ 
+G)(x+ + ... 

that the coefficient of x" is equal to 

an=l + 

n(n 
+ -'---'--....,.,--.-----.:. + .... 

The exact form of the last term on the parity of n. This coefficient can 



80 

also be written in the form 
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(2k)!(n) 
(k 2k' 

(b) First show that ak a2n-k' Then set x= 1.'y and multiply both sides of 
the .1'2". It follows that 

( y2 + .I' + 1)n = 

with the fi r5t 
substitute x for x and obtain 

By mUltiplying each side of this 
1-""'0'''''' in the statement of the 

4" 
(1 +X2 +X4)" L ( 

k= 0 

ak=a2n-k for k=O, . .. , 2n. Now 

by the corresponding side of the 
one sees that 

The of the side must contain even powers of x, 
because the left-hand side also has this property. Thus the coefficient of 
in the side is zero or: 

which is 

(c) In order to prove (c) one substitutes x 2 for x in the expansion of the 
statement of the problem and obtains 

The coefficient of in this is toano the 
obtained for (1 + + X4)", it can be seen that this coefficient is also 

+2a~- ... +(-

from which (c) follows. 

(d) Multiply both sides of the equation in the statement of the problem by 
(1 to obtain 

and hence 

I-G) +(;)X6 '''+(-l)"G)x 3n 

={ 1 (~) X+(;) It (:) xn} (ao+a1x+ ... +a2nx2"j. 
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If p is not a multiple of 3, the coefficient of xP on the left-hand side is zero, but 
if p = 3k, this coefficient is equal to (-l)kG). 
On the right-hand side this coefficient is equal to 

which establishes (d). 

(e) By taking x = 1 and x = - 1 in the expansion of(l + x + x 2
)" one finds that 

and 

Adding and subtracting term by term, (e) is obtained. 

(0 To prove (j), let:x = ( - I + i.J3 )/2, one of the cube roots of unity. It follows 
that y2=(-1-ij3)/2 and 1+:x+:x2 =0. By replacing x with:x one sees that 
(l +:x + :(2)" = 0, and hence 

aO+al:x+a2:x2+ ... +a2n:x 2"=O. 

After equating the real and imaginary part of the left-hand side to zero and 
using the notation 

SI=aO+a3+ a6+ ... , 

S2=al+ a4+ a7+ ... , 

S 3 = a2 + as + as + ... , 

it can be shown that 

SI- .)2'"!-S3=0 
2 ' 

.J3 2 (S2 -S3)=0, 

whence SI =S2 = S3' But SI + S2 +.)3 = 3", and hence (f) holds. 
(g'i Set x = i in the given expansion to obtain 

in =Sl-S3+ i(S2- S4), 

where 

SI =aO+a4+ a8+ ... , 

S3=a2+ a6+ al0+ ... , 

By equating real and imaginary parts one obtains, by virtue of (e), the follow­
ing cases: 
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(2) n l(mod4)whenSI=S2= + and 54 =(3" - 3)/4; 
(3) n=2 4)when5 1 = (3" 1)/4 and 

(4) n=3 4) when 51 = -3)/4. 

Thus three sums are equal and the fourth differs from them by one. 

(h) Use induction on n, that ak=a2n-k for 0..;;; k..;;; n. For n=2. 
it follows that ao = a4 = 1; a 1 aJ = 2; a2 =: 3 and the property is satisfied . 
.... l1nn,n~F· that the property is true for every 2";;;m";;;n (n~ and let 
0+X+X2)"+I= +n l x+b 2x 2+" + Since (1+x+X 2

)"+1 

1""aIX+'" + 1""X+X2), it follows that bp +ap-l+ap-2 for 
every 0";;;p";;;2n+2. Take a_j=a_2 a 2n ';'l=aln+2=0. p";;;n or p~n+2, 
one sees that > 1 or bp > by the 
previously established recurrence relation and hypothesis. It remains 
to show that 

I >bn and 

The first of these can also be written a" 1- I + an + an I > an + an _ I + 
an- 2 or an+ 1 > an 2' But an- 2 an'd, and the inequality becomes an+ I > an.;. 2, 
whose follows from the induction hypothesis. The second is 

2 =bn • 

1.10 Use induction on n. For n = 1 we note that So = SI = .. , 5", = 1 and 
=0 and the formula is verified, since 1 + i= 0 (mod m + 2) and 0..;;; i..;;; m 1"" 1 

that i =m ..... 1. Assume that the formula is true for every exponent 
p..;;; n -1. Consider the "h~'aH;"Vj 

(1 +X+ ... 1"" 

It follows that 

from which the recurrence relation 

+X1"" ... + x"'), 

(1 ) 

is obtained. Here bj=O for )<0 or for »m(n 1 
By the definition of the sum Si' one is led to the recurrence relation 

where 

and in the index of T is modulo m 1"" 2. Two cases must be analyzed: 

(a) n is even. It follows from the induction hypothesis that the 
for the sum 5; is valid if p = n -1, and hence if n - 1 1"" i= 0 m + 2), the sum 11 
is smaller by 1 than the other sums, which have the same common value. Since 
relation holds, it follows that the sum 5 j [where 1 (mod m1"" is one 



Solution. 83 

more than the other sums, which have a common value. Thus j == i 1 == -/1 

(mod m+ This means that j+n 0 (mod m+2) and Sj= +11"-1;,-+ 2) + 1. But the other sums are equal to 7 I)" 1 + since So + S 1 + 
... + S",-rl =(1 + 1 + ... 71)" +. It follows that the property is true 
for n. 

If n is odd. then from the induction one can conclude that 
the sum 7; is greater by one than the sums with a common value. As in (a), one 
can show that the sum Sj' n == 0 (mod m 7 2) is smaller by one than the 
sums with a common value. 

Thus 

1, 

but the other sums are to 

(m+lt71 

m+2 

In both cases the for the sum Si is val id for n and hence the property 
is true for every natural number n. If m = 1, then Newton's binomial formula 
yields 

SO=(~)7(;)+G)+ ... , 
=G)+(~)+ +.", 

+ +(;)+ " .. 
just established that for every n. two of these sums are 

and the third differs by one. For m 2 one obtains property (g) from the 
previous 

1.11 Recalling the rules for one sees that the desired 
coefficient is to the number of ways in which k can be written as the sum 
of two integers: 

k=al +a2 

where 0::;;; ai' Q2::;;; n-1. Two will also be considered to be 
distinct if they differ in the order of their terms. If 0::;;; k::;;; n - I. these k + 1 

are 07k, 1 +(k-l), ... , k+O. if n::;;;k::;;;2n-2, the 
0+ k. 1 + (k 1), . " ,(k n)+ n and those obtained by 

two terms do not the ai' a2::;;; n - L Thus in this case the number 
of to 

k71-2(k n+ 2n k-l. 
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Note that in both cases the coefficient of x' can be written in the form 

n-In k-ll· 

1.12 The values a 1> ••• , ar are obtained in the following manner: Let a l 

be the largest x which satisfies the inequality 

Denote by a2 the integer x such that 

n ~ ~l) 
Finally, Q y will represent the difference 

[(at) . ( a2 (ar-t)] n- T + ... T 
J r- 2 

It will be shown that at> a2; the remaining inequalities a2 > a3 > ... > ay 

can be established similarly. The fact that ar ~ 0 follows from the definition of 
a, _ I' First note that 

(atTl) d >n an 
\ r 

Thus we can make: 

.... r' 1) -(art) > Q2) 1 ' that is, 

This inequality implies that aj >a2 use of the definition of the binomial 
coefficients). 

that there exists a representation of n as a sum of binomial coef-
ficients different from that in the statement of the problem 

and with (at .... , ... ,br ). One can suppose for that at >bb 
since if at =b\> the !-'V,UUj,Hjlo\ terms can be reduced, and this 
can be for a2 and b2• 

> ... > b, ~ O. it follows that hi - i~ 1 for i = 1, ... , r 

+( b2 )+ ... +(b,)~(bl)+ -1)+ ... T(bl-(r-
r r-l 1 r r-l 1 

In view of this last inequality implies that 

. (hi -(r-
T'" + I 
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Since a! ~b!-:-l, we see that 

and thus inequality (2) implies that 

(3) 

By applying the recurrence relation ror binomial coefficients it rollows that 

(bJ +l)=(bl)-:-( bl )=(b 1)+ -1)+ -1) 
r r r 1 r r-l r-2 

) 
-:- (b! + . . . + (b 1 -(r 1)) + 

r r-l I 
-(r-l)) 

o . 

which contradicts inequality (3). 
Thus the values a l , ... , a, are determined and the result is 

1.13 The identity can also be written 

-k 1) 
n-l 

(xk
-:- + 

The coefficient of the term obtained by expanding lx + 
help of Newton's binomial rormula is equal to (:,:). On the 
recalling the expansion of (x -:- y)k and the standard binomial formulas, one 
fi nds that this coefficient is equal to 

Hn=m,then 

and the 

If for 

" (2n -k 1)[( k ) ( k \] 
o:(n, m)= n-I n-m + m-n) . 

of the coefficients is established. 

m~ n 1, then k 0 and it mllst be shown that 

I (2n-k-l)( k )=en)= 2n). 
k:! n-l \n-m \m -m 

(1) 
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But 2. ",l is the number of words C1 C2 . •• < C2 < ... 
<C2.-01) formed with letters of the alphabet {I, 2, ... , Denote by Ak the 
set of those words with the property that Cn _ m + 1 = k -t- I for k = 1, ... , n. Since 
m~n-l, we obtain n-m+ 1 ~2 and thus k-t-l ~2, from which it follows that 

1. 
2n -m - (n - m+ 1)= n -1, and thus the maximum value of k-t-l is 

2n-m-(n-l)=n-m+l~n, since the word is and m~l. 
But if m = 0, the coefficient of in both sides is to I and the equality is 
thus verified. It follows that the set of words Cl C2 .•. C2.-m 

formed with letters of the alphabet {I, ... , can be written UZ= 1 A k • Thus 

( 
2n ) Inn = U Ak = 

2n- m k=1 I (2) 

where the sets Ak are disjoint. 
If cn _ '" + 1 = k -t- 1, then the letters C l' ... , Cn _ m are chosen smaller than 

Cn-", 1, and thus Cl ... Cn-", is a strictly word formed from letters 
of the {I, ... , The word Cn-",+ 2 •• C2n-", is a strictly 
word of n - formed with the letters of the set {k + 2, ... , 2n} of cardi-
nality 2n-k-1. Thus the word C1 •.. be chosen in (n~m) ways, and the 
word cn- m+ 2' .. CZn- m can be chosen in n- 1 1) distinct ways, which 
that 

( 2n-k­
IAkl = \ n-l 

Identity (1 J now follows by the application of 
If m ~ n + 1, one obtains kin) = 0, and thus, making the change of variable 

p=2n-m~n-l, (1) can be written 

n (2n-k-I\( k =( 2n ), 
= 1 n - 1 ) n \ 2n - p 

or 

· (2n-k-l)( k )=(2n). 
n-l 1m n m 

One also sees that et(n, m) = e,;) in this case. 
Calabrese, 16(1965), 1-8.J 

1.14 One can write 

(
n-I) (k+ l)l= (n-l)! (k+ I) 

k (n-

.,---:---: {n (n - k 

for O~ k~ n 2. The desired sum then becomes 

Toscano, Boll. Soc. Mach. 
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\::.1 (n . 1) n" - 1 k k 1 \} L., "( +1).= L., 
k=O. k / k=O 

______ n" 1-1< 

=n". 

[J. Riordan, Ann. Math. 33(1962),178-1 

1.15 The n! in the first box can be chosen in (:,) ways. the n2 
in the second box can be chosen from the n nl remaining objects in 
ways, etc. The total number of arrangements is to 

1.16 Consider the product 

(a:+a~+ ... -!-a;)(ar+ -!- ••• +a~)"'(a!+a2+ ... +a~) 

where the upper indices do not indicate powers. and 

is an ordered of the set {I •... , n}. which may contain empty classes. 
note of the upper indices of each in the last slim indicated, 

one sees that it an arrangement of the set of objects {I, ... , n} in p 
boxes Yl, Y2, ... ,Yp • slIch that h contains nk for k = 1, ...• p. In fact, irone 
takes objects iI, ... , in, in box h, ... , objects k h •.. , knp in box YP' then slIch 
an arrangement is also obtained. the rules for removing parentheses, 
it turns Ollt that these are un'v",.,,, 

n! 

nl 

arrangements of n in p boxes which contain nl'" " np objects respectively. 
Take at = at = ... = at = aj for every 1 ~ i ~ p; the sum under consideration 

becomes 

where the upper indices now indicate powers. This follows from the fact that 
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for each ofnintheformn=nl+ '" -t"np , there are 

.~., nJ 
terms equal to a~2 ... 

1.17 to Problem Ll9 there are (~_ i) of m as the 
sum of h positive Let .'II denote the number of terms 
of this type. It follows that SI + ... +sk=h and =m. where 
k the term of the sum. 

If the n urn bers SI this property are fixed, then the n urn ber of ways in 
which m can be written as a sum of h positive terms such that 51 terms are 
to i for i;;: 1 is to the number of arrangements of a set of h objects into k 

such that the kth box contains ii. This last number is given by 

C!'.~., 
Thus the identity is true, since it has been shown that both sides are 
equal to the number of different representations of m as the sum of h 

1.18 Let N= ... , n}, R={l •... , r}, and C(N, R) the set of increasing 
functions f : N -> R. Identify the increasing function f with the increasing word 
b l bz ... bn, where bl = f(i) for i = 1, ... ,n. Since f is increasing, it follows that 
l~bl~b2~'" ~bn~rfor l~i~n. 

Consider a mapping 

F:C(N, R)-Pn(X), 

where P n(X) is the of n-element subsets of the set X = {I, 2 •... ,r + n l}. 
The function F is defined the equation 

Because b l ~ ~ ... ~ b", it follows that b l < b2 + 1 < b3 + 2 < ... < bn-t" 
(n -1), and hence the image of a function f under F is in fact an n-element subset 
of X. 

lf bl ... bn::fo CI C2 ... CM are both increasing words, then there is an index 
i such that, for b1 =c!, .. , I=Ci-1 and b/<Ci where l~i~n. 
This that bf+ l)<ci+(i-l) and bi+(i-l)fF(cl'" One can 
conclude that F(b l .•• bn)::foF(CI ... and thus the mapping F is 
If Y X satisfies! Y! n, take Y = {J'l' . , , , rn} and 1 ~YI <.1'2 < ... < 
r+ n 1. 

Let bi=Yt-(i-lj for every 1 ~j~n. Then b! ~ ~ ... ~bn and bi E R for 
every 1 ~ i ~ n. the definition of the function F, one finds that F(b! ... bn) 

= {Yl' ... , Yn}, rrom which it follows that F is 
Since F is it can be inferred that the number of increasing functions 

f:N ...... R 
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is equal to IPn(X)I=(n+:-l)=[r]n/n!. 

1.19 Define the sum 

for every 1" p" n - 1. Each representation of m as a slim of n integers corre· 
sponds to a word 5152'" Sn-!' since u! =s!, un=m Sn-l' and Uk=Sk Sk-! for 
2"k"-n-1. 

If Uj ~ ° for every i, it follows that 

hence the desired number is to the number of words of length 
n - 1 formed from letters of the set {O, 1, ... , m} of cardinality m + 1, that the 
number of combinations of m + 1 taken n - 1 at a time with replacement 

Problem 1.18), and hence to 

If Ui > 0 for every i, then the word 51 • , , 50 _ 1 is strictly m('rp!'l~l since 

1"51 <52<'" <Sn-l"m 1. 

It follows that the number of ways in which m can be as a sum of n 
positive integers is equal to the number of strictly words formed from 
n 1 letters of the alphabet {I, 2, ... ,m 1} and thus has the numerical value 
c- :). 

1.20 The multinomial formula implies that 

Hence the number of monomials in the of the 
(x! + ... +xpJ" is equal to the number of ,..P .... ",,,",>,., of n in the form 

n=nl+"'+np , 

where each n, is a are considered 
different if differ at least in the order of their terms. From the 
problem, one can conclude that this number is also to the number of 
combinations n + 1 take p - 1 with It follows that the number of 
terms is equal to 

-'-(n_+_l..:...)(:.....n_+-'---:-.,:-~-....:.. = (n + p - 1). 
p-l 

For p=2 there are (.""l)=n+l terms; this can also be shown by 
Newton's binomial 
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1.21 Let 

f(x)=2 {(X~l)_r(X~l)+ ... +(X:l)} 
If m < 11, it is the case that (:) = O. This together with the formula for the sum of 
binomial coefficients implies that fix) = 2'" for every 1 ~ x ~ 11 + 1, x an integer. 

The highest-degree term of the polynomial f(x) is contained in the expansion 
2(X: 1) -1) ... (x - n)J/I1!, and thus has degree n. Since the polynomials 
f(x) and P(x) are both of degree 11 and take the same values for 11 + 1 distinct 
values it follows that they are identical. Thus 

P(I1+2)=2 {(I1~ +(11:1)+ ... +(11: 1)}=2(2n
+! -1)=2"+2 2. 

Pi Mu Epsilon, 4 (1964), 77, Problem 158.] 

1.22 Let the left-hand side be denoted an' Then 

~ ant" = (I mtm)k = {t dd (~)}k 
"=0 m"O tIt 

2k 

Expanding (1- 1)- 2k by Newton's binomial formula, one sees that 
the coefficient of t" in the expression rk(l- t)- 2k is to 

(-2k) 
l1-k 

1.23 The coefficient of x' in the expansion of (1 + x + + .. 'j" will be 
equal to the number of ways in which r can be represented as a sum of 11 non­
negative integers: 

1t follows from Problem L19 thaI this number is 

1.24 The formula 

1 
--=X-r 
I-x 

implies that 1/11 is the coefficient of x" in this expansion. But log{ - xl) 
+ x + x2 

-:- •.. ). and hence the coefficient of x" in the expansion of this 
logarithm coincides with the coefficient of x" in the expansion 

(x+ '" 
+ + ... + x") - ---;::---

(x+ ... -l-x")" 
+( _1)"-1' , -:- .... 

n 
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Now consider powers smaller than or to n. It turns out that the coef-
ficient of x" in the (-l)P+ + ... T x")P/p is to 

I l- + .. + j.+ 1 (jl + ... ~ jn) 1 . 
h ... ·,). P 

where the sum is taken ~O withjl + . . . =p + 2h + ... + 
(This deduction the use of the multinomial formula. See Problem 

this coefficient is equal to 

+ ... r j. + 1 .::.-=.--=..:::...,.---:_--=..;:'-~ 

jl!h ... 

By su bstituting for p the values p = 1, ... , n, the sum on the left-hand side of the 
statement of the problem is obtained. [1. Sheehan, Amer. Math. Monthly, 77 
(1970), 168.J 

1.25 For natural numbers nj and nj such that nj~ nj+ 2, one can show that 

or 

The recurrence relation for binomial coefficients further that this is 
to (~''=-l!»(h::l)' The last inequality follows from the fact that 

nl - 1 > nj. It implies that the desired minimum is attained when the numbers 
nl> ... , nk satisfy the inequality 1 ~ n; - 1 for every i, j 1, ... , k, r 
numbers are equal to t + 1 and k- r numbers are equal to t = [n/kJ. Similarly, 
in order to obtain the maximum one must show that there do not exist two 
numbers nil nj which are both greater than 1. them nl T 1 
and nj-l one would obtain a sum. Thus the maximum is 
attained for a ofn in theform n=(n-k+ 1)+ 1 T '" + 1. 

1.26 Consider the parts ml> m2, ...• mk in the rpn,rp<pnt of n in the form 

which maximize (for fixed k) the 
that these are as equal as 

indicated in (a) and (b). We show 
that is, 

(1) 

for every i, I, ... , k. In fact, if the contrary is assumed. then there are two 
indices i and j such that ml ~ m j + 2. In this case, one can write 

which contradicts the maximality of the product mlm2 .•. mk' In the same way 
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it can be shown that 

and this is equivalent to (mj 2)(mj+ 1»mi(mj-1). By reducing terms in the 
same way one sees that mj> mr'!- 1 and the inequality is true by hypothesis. 
Thus the product 

cannot be a maximum, and this observation completes the of inequalities 
(l ). 

Now consider the case for an value k. One finds that max 
(mb' .. , mk) ~ 4, since in the contrary case one obtains 5 < 3 x 2, and this con­
tradicts the maximality of the product under consideration. In the same way 
one cannot have mi = mj =4 since 4 x 4= 16 < 3 x 3 x 2 = 18. There do not exist 
three numbers ml equal to 2, since 2 x 2 x 2= 8 < 3 x 3=9. Note that 2 x 2 
and thus almost all numbers ml>' .. ,m. are to 3. It may be that a 
number mi 2, two numbers are equal to 2, or a single number is equal to 4. 
Thus, by A(n) the maximum value in case one can deduce that 

{

3n!3 

A(n)= 4 x 
,2 x 

for n=O 3), 

for n=1 (mod 3), 

2)0 for n=2 (mod 3). 

]\;ow we proceed in a similar manner for case (b), by first showing that 
max (mi' ... ,mk)~ 7. In if there is an ml ~ 8, then 

-5) 
2 ' 

which is to m2 -m< 10(m- 5)(m- or 9m2 -109m+ 300>0. This 
trinomial has two real roots in the interval which establishes the 
inequality. Thus if there exists an ml~ 8, then the of the binomial coef-
ficients from (b) cannot be a since one can the part to 
mj two parts to 5 and mj - 5 respectivel?:, and the product of the bi­
nomial coefficients therefore increases. Since G) > (2)@' (~) > G)(~), and G) > (~)(~), 
it follows that for n ~ 7 the desired maximum is equal to G). 

If n~8, in the case of the maximum it follows that max(mj, ... , mk)~6, 
since in the opposite case there exists an m, = 7. But relation (1) implies that 
there must exist at least one number mj which is equal to 6 or to 7. For 

=360. 

Similarly one finds that 

=600, 
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and thus the maximum cannot be obtained for 
Further observe that at most two of the numbers nI, can be equal to 4 or to 6 

in view of the ... _.., _ ....... 

3375 (~)(~)(~)<G)G)(~)(~) 3600, 

216=(~)(~)(~)< =225. 
If n ~ 8. neither of the numbers rnl can be equal to 2 or to 3. For example, suppose 
that there exists an rnj 3. It follows from that there must also exist a number 
rnj E {2, 3. 4} and hence 

In conclusion, almost all num bers rnj are equal to 5, but at most two of them 
are equal to 4 or to 6, so that relation (1) is satisfied, 

Let B(n) denote the maximum in case (b). Then: 

B(n)=C) ror n~7, 

and for n ~ 8 the identities hold: 

Consider 

(1) B(n)=10"i5 forn 0(mod5) andrn l='" = rnk=5: 

(2) B(n) 15 x 6)i5 for n 1 (mod 5) and rnl = 6. rn2 

=rnk 5; 
(3) B(n) =225 x 10(n-12)15 for n=2 (mod 5) and rn 1 rn2=6, rn3= .. , 

= rnk=5: 
B(n)=36x lO(n-SUS for n 3 (mod 5) and rnl =rn2=4. nl3='" 

=rnk =5; 
(5) B(n) 6xlO(n-4),S forn=4(mod5)andrn 1 =4,/1l2= ,,' =rnk=5 

max max 
l~k",nnl+'··+nk=n 

It can be shown that for n the maximum is attained for a 
of n which satisfies (1). Also almost all the numbers rnl are equal 

to 2h +o(h), The function o(h) satisfies the relation 
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[I. Tomescu, Discreie Mathematics, 37 (1981),263-277.] 
F or example, for h = 3 almost all numbers mi are equal to 7 for n sufficiently 

large. 

1.27 Using the standard formulas for binomial 
becomes 

-Y) (2h) 
h Y ~x+y' 

Since n! ~ 3h and n2 ~ 3h, it is sufficient to show that 

c:~:)e:~y ~J. 
Let x + y= k (constant) where O~ k~ 2h. Then 

-X)(3h- Y) 
h x h y 

-X)(3h- Y) 
2h 2h 

the 

the factors two by two in the order in which they are written 
it can be observed that their sum is constant and to 6h - k, 
6h - k - 2, ... , 2h - k + 2. Thus the become minimal when the factors 
differ to the among themselves. 

One can two cases' 

(a) k~ h.ln this case the products of the two factors become minimal simul­
taneously for x =0, y == k or x == k, y= 0. Let x = 0, y k. In this case it is sufficient 
to show that 

(
3h)(3h k) >-
h h-k"" k 

But 

Chh» h ==m~x c:)~e:). 
and hence the inequality is established in this case, since e:--:) ~ 1. 

(b) k> h. Here the products of the two factors become minimal simul­
for x=k-h, y h (or x hand y=k-h), when one shows that 

2~k)~C:)· 
Recallihe standard formulas for binomial coefficients. It suffices to verify that 

G~=~)~Ch2~k). 
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But 4h-k';J so k~ and the follows from the monotonicity 
of the binomial coefficients. The proof also establishes that holds 
only when k == 2h, that is, for x == y == h. 

1.28 Let X be a set with nk elements, and 

a partition of X in which the sets AI" .. , each contain n elements. The 
number of subsets of X is to p 

We show that the left-hand side of the equality under consideration also 
the number of subsets of X. Consider a subset 

YeX and the sets YIlA l • YIlA b ••. , YIlA k • It follows that O~ IlAII~n 
for every i:: 1, ... , k. Let cti denote the cardinality of the set of numbers equal to i 
in the sequence IY IlA 11, iY IlA 21.··., IY II Akl. It follows that 

ct j -!- + ... -!- men == I YI = p. 

If the numbers lXI' ct2"'" ctn';JO are then it is possible to selectj elements 
in ctj sets among AI"'" Ak in C)a} ways 1,2, ... , n. The union of these 
elements is the set Y. On the other hand, one can select ctl sets from among 
AI> ... , Ab ct2 sets from the remainder, and so on, in 

distinct ways. 
Thus the number of 

numbers 

k! 

k! 
-(IXI + ... + 

subsets of X can be written as the slim of the 

over all representations P=ctl + + ... +nctn where the cti are 
If ctl =P and ct 2 = .. =ctn 0, then + ... +ct., or k';Jp. For 

p =k -lone obtains an identity due to I. M. Voloshin (J. Combinatorial 
A12 (1972), 

1.29 (a) We prove equality (a) by induction on n. For n = 1 both sides are 
equal to x-!- y+ 1. Differentiating with respect to y, one sees that 
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a 
,(x+y+n)" n(x+y+n)M-l 
oy 

+(y+ l)-t-(n-lj}"-1 

x 

-t-l)+(n-l)- Il-k 

By the induction hypothesis the two right-hand members of these equalities 
are equal. 

In order to prove the first Abel it is sufficient to show that (a) holds 
for a value of y, such that (y -t- n - is defined for k= n, and hence 
for y-f.k-n. Choose y= -x n. The side but the left-
hand side is to 

= x"-} "-1 (n-l) 
j 

-1) x" 
j 

!S(j, n)=O, 

since the Stirling number of the second kind S(J, n) = ° for j ... , n-1. 

(b) The left-hand side of identity tal can be written as follows: 

by 

"II n (n-l) 
k=O k 

=kt (:) 
+ Jo (~) 

(a), the second term of this sum is seen to be equal to 

+ l)-t-(n-l)-

-k). 

=n(x+(y-t-l)+(n-l))"-l =n(x -t-nrl. 
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Thus 

+n- -k 1 y+ -n(x+y+n)"-I 

=(x+y)(x+y-t-nln - 1
, 

both sides by x}'. 

97 

from which (b) follows by 
(c) If(1/x)(y+n)"-1+ 

(b), then 
+ nj"-l is subtracted from both sides of identity 

n-\ ( ) ~ (x+ 
1 

l(v+n-kl"-k-l=-f(x+y+n)" l-(r+nl" 1, 
'" X ' • J 

1 
+ {(x+y+n)"-1_(x+nr 1 }. 

y 

taking the limit on both sides as x-+O and y-+O, is obtained. 

1.30 Let y = ° in the first Abel identity, and equate the coefficient of x 
in both sides. 

1.3J If fl (n) and h(n) are solutions of the reCllfrence relation 

f(n-t-2)=af(n+ l)+bf(n), (1) 

it will follow that for every two real numbers and 
Ji(n)+ is also a solution of equation (1). In 

the function h(n) 
since fl(n) and 

f2(n) (1), one can conclude that 

Cdl(n+ 2)-;- C d2(n+ 2)= C I {af!(n+ 1)+ bfl(n)} + C 2 {af2(n + 1)+ bfz(n)} 

or h(n+2) ah(n-t-1)+bh(n). This is equivalent to that h( n) satisfi es 
relation (1). 

Now we show that if rl is a root of the q1.1adratic 

r2 = ar-l- b, 

then the sequence 1, rl' ri, ... , ... is a solution of equation (1). Let 
then f(n + 1) = 1 and f(n+ 2) 2 these values in 
sees that 

2 == arj + 1 + br7, 

(2) 

r1 ; 
one 

since a simplification of r7 d = arl + b. The assumption b implies 
that r1 If the characteristic equation has two distinct roots r1 i:-r2, then 

r~ and f2(n) ri are solutions of equation (1). 
Recall that for all real numbers C 1 and the function f(n) = C 1 r'l + 

is a solution of the recurrence relation (1). N ow we show that every solution of 
(1) has this form. First observe that every solution of(1) is uniquely determined 
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by its initial values flO) and f(1). It is thus sufficient to show that the system 
of equations 

C l + = frO), 

c 1'1 -t" == f(1), 

has a solution for every choice of f(O) = bo and f(1) = bl' The solution of the 
system, when rl #-r2. is by 

C 1 = =---"""'::""--­
r1 -72 

and thus the proof of case {a} is established. 
However if r 1 = r 2' then from the system of one finds that 
+ and -+ f(l}jrl' This latter system is, in general, incom-

Now we show that in this case (1) also has the solution 
/2(n)=nr1 in addition to f!(n)=r'l.ln if the equation 

r2=ar-t"b 

has a double root, it follows from Vi!~te's relations that a = 
thus equation (2) can also be written 

b== - rt. and 

r2 =2r l r 

The recurrence relation thus has the form 

f(n -+ 2) = 2r t!(n -+ 1) rUin). 

Verify that f 2(n) nr1 is a solution of (4). Observe that 

f2(n+2)= 

and thus (4) becomes 

which is an identity. 

(4) 

Thus lAn) == nr'i is a solution of recurrence relation (4). One can conclude by 
similar reasoning that f(n}= fl(n)+Cd2(n)=r!(C 1 -t"C 2n) is a solution of 
(4). The constants C! and C 2 can be chosen so that fin) satisfies arbitrary initial 
conditions for n = 0 and n = 1. In fact one obtains the system 

C 1 = f(O), 

rl(Cl -+C2l= /0), 

which has the solution Cl = and == U(1) rt!(O)}/rl' Thus the 
solution in case (b) has the desired form. In for a linear recurrence 
relation with constant coefficients of the form 

f(n+k)=at!(n-+k-l)+'" +ad(n) 
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the characteristic equation can be written 

I == all + .. , T ak' 

If the roots of this equation are r1 , •• " rs and their multiplicities are rpcnPI'!i\IP 

m l , . , . , m", where m1 + '" +ms==k, one can show similarly that the 
solution of(5) has the form 

!(n) = - 1 )rl'. 

The constants CI•1 , •• " C i .m , for 1 ~ i~s are uniquely determined 
that the solution fIn) the initial conditions !(O)= 
!(k-l)=bk - l • 

1.32 Let an equal the number of ways of making the described 
in the statement of the problem. In the first instance there are three possibilities: 
the student buys a bun and thus there still exist Qn-l possible purchases with the 
n - 1 remaining dollars. He an ice cream, and thus he can spend the rest 
of the money in a. _ 2 ways. Similarly there are an _ 2 ways of spending the rest 
of the money ifhe has bought a pastry. It follows that 

for initial values a 1 = 1, Q2 = 3 (two buns on two consecutive days, an ice cream 
or a on the first 

In order to solve this recurrence relation one must use the characteristic 
equation (see Problem 1.31) 

r2 r-2=0, 

which has solutions r1 = 2, r2 = 1. The solution has the form 

an C12n + 1)", 

where and C 2 are determined by the system 

= 1, 

=t, and 

an 1 +( _l)n}. 

1.33 Cover the with dominoes by 
length 3, One obtains one of the cases of 

A 

Fig. 1.1 

from the side AD of 
1. L In the last two cases, a 

A r---"V7r',.,,.,.,.~ 

D<---'----' 
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r-~--------------~B 

Fig. 1.2 

square with side 1 remains uncovered in the 3 x 3 square with side AD. It can 
be covered in a unique way by the striped domino. Thus 

U(2n+ 2) = 3U(2n)+ 2V(2n- (1) 

where V(2n) denotes the number of ways in which one can cover the 
of a ABeD of sides 3 and 2n to which one has added a 

rectangle with sides 2 and 1, by its long side to the side AD of the 

From 1.2 it follows that the additional domino can be covered in two 
ways, and hence 

U(2n) + V(2n-

Now in (1) use the expression for V(2n-2) given by (2) to obtain 
=3U(2n)+ 2)+2V(2n -4). From (1) it follows that 2V(2n 
3U(2n- and thus the relation becomes U(2n+ 3U(2n)+2U(2n-2)+ 
U(2n) - 3 U(2n - 2). This establishes the linear recurrence relation 

U(2n+2) 4U(2n)- (3) 

By a simple argument one can deduce that 3 and U( 4) == 11. The charac­
teristic equation of the recurrence (3) is r2 4r + 1 = 0, with roots r 1.2 = J3, 
and thus the solution of the recurrence (3) is 

The constants C! and 
U(4): 

where 

U(2n)== + 

are determined the values U(2) and 

[1. E 2417, American Mathematical Monthly, 80(5) 11973), 'I'Ill-"f,£ 

1.34 Consider a word of length n - 1 formed from the letters of the 
A, such that a and b are not adjacent letters. One can then form a word 
n which satisfies this condition placing in front of the word: 

(1) the letter c or d or b jf the first letter is a; 

(2) the letter c or d or a if the first letter is b; 
(3) any of the four letters a, b, c. d if the word with c or with d. 
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Each word of length n which satisfies the conditions of the problem can be 
obtained from a word of length n 1 these Let x. 
denote the number of words of n which start with a or with b, and let J'n 
denote the number of words with first letter c or d which satisfy the given 
conditions. The following recurrence relations hold: 

Yo 1 + l' 

the equations term by term one sees that 

l+Yn 1)+2(xn -2+J'n-2)' 

Now calculate Zn = Xn + Yn' which satisfies the recurrence relation 

1+ 

One obtains ZI =4 and Z2 = 14, since the words of 
conditions are precisely the 42 16 words of 

of the words ab and ba. 

2 which satisfy the 
2 with the exception 

We use the method given in Problem 1.31 to solve this recurrence. 
The characteristic equation r2-3r-2=O has roots r l .2 ±JfiJ;'2, and 
hence there is a solution of the form 

Zn= r'i + 
where the constants and Cz are determined by the initial conditions: 

zl=4 and z2=14. 

the system 

C 3+Jfi C 3 4 
1 2 + 2 2 =, 

14, 

yields 

Thus the solution of the can be written in the form 

_=-5 (3 + Jfi)n + Jfi - 5 
2 2Jfi 

the recurrence relation for binomial coefficients and 
=0 for k> [nI2] one can deduce that 

(
(n-2)-(k 

k-l 



This yields the recurrence relation 

(1) 

with initial values ao=a 1 == 1. The characteristic equation of this recurrence is 

withsolutionsrl 1+ andr2=(1- Ifz=F the general 
solution of recurrence relation (1) is 

an =C1ri +C2r1 (2) 

where and are determined the system 

C1 + = I, 

---::---=1. 

Therefore 

and 

and thus from (2) it follows that 

If z = - t one has rl = r2 and hence, according to Problem 1.31, the 
solution of recurrence relation (I) is 

(3 ) 

where =ao=land =(al-rlaoJ/rl==1.After these substitutions 
together with r 1 in (3), one finds that 

n+1 
an=T for z -;\:. 

1.36 Let S(n, k; Xl' " , X.)=(XI + ... + - L (Xl + ... +Xk- + 
L(Xl+'" +Xk-2)"- ... ; then the desired sum is Sn(Xl,"" =aoS(n, n; 
XI"'" xn)+aIS(n-l, n: Xl>"" xn)+a2S(n 2, n; XI."', xn}+, .. + 
anS(O, n; Xl"'" Xn). Since eX=l+ 1+x2/2!+ ... , it can be seen that the 
expression for the exponential generating function is 

-1)· .. (e>=kz_l) 

= + 



IUj 

By equating the coefficients of z" on the two sides of this equation for n == I, ... , k, 
one can conclude that S(n, k; Xl' ... , for n<k and S(n, n: Xl"'" Xn) 

==n!Xl ···X •. Thus Sn(Xl,"" aoS(n,n: Xl •... 'xn)=aOn!xl "'X", [L. 
Carlitz, Fibonacci Quarterly, 18(1) (1980), 85.J 

1.37 Let 

., .• Xj-I> O. Xi+b"" 

be the polynomial obtained from by replacing the variable Xi with O. It follows 
that the value of the polynomial for Xi =0 is to 

(1) 

for k ~ 1, where = Pi by definition. 
In fact. the G) combinations of the n variables taken k at a time can be 

written as the union of the (~=~) combinations of the n variables taken k at a 
time which contain Xi' and those k 1) combinations of n variables taken k at a 
time which do not contain Xj. Thus one can write 

= +z1p, 

where ~p is the sum of all the polynomials which can be obtained from P by 
replacing k of the variables (including Xi) x I, ... , Xn with zero, and tzp is the 
sum of all those polynomials which can be obtained from p replacing k of the 
variables X I •..•• XI I, Xi"" ..• X. with zero, in all possible ways. 

From (2) it follows that 

which is equivalent to (1). Thus +z2p_" 'llx,=O=Pi-(P;+Zlpi)+ 
+ _(Z2 pi + .,,+( l)"-Iz"- sincez· I pl = =",=0. 

Therefore the monomial Xl X2 ••• Xn divides the polynomial P - + ... , 
since the latter vanishes for XI = 0 when 1 ~ i~ n. Since p - + ., . has degree 
at most equal to m, it follows that 

{
o form<n 

.. ,= CX! •. ,X. [orm=n 

However, the polynomial ip with k ~ 1 does not contain any term of the form 
XI'" X n , from which it can be inferred that c is the coefficient of Xl'" Xn in 
the of the polynomial p. 

If p(x 1 •. , • , + . , . + xn )\ then the coefficient of Xl' •. x. for n = k is 
equal to c=nl/(l W=n! by the multinomial formula (Problem 1.16), On the 
other hand, the numerical value of the polynomial p - +. , . for Xl = . , , 
=Xn= 1 is to 

o 

Using the results previously 

(- ·k 
I. 

v,u"'~v. one can show that this IS 
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equal to 0 for O,,;;k<n and is equal to c=n! for k=n, from which Euler's 
identity follows. 

1.38 Consider the left-hand side of the identity as a polynomial in n. The 
constant term is then equal to 

-(i) (p-IJP+ G) (p 
(Use Euler's formula, Problem 

it can be shown that the coefficient of nP is equal to 

+ - ... + ( -1)P (p) == 0, 
PI 

the coefficient of nk for 1 ~ k ~ P - 1 is to: 

If p - k = m, then 1 ~ m ~ p - 1 and thus the coefficient of nk is eq ual to 

(_1)k (:){pm (n (p 1)m+(i)(p-2Jm_ ... +(_l)P-l C~I)} 

=(-

since m<p. 

1.39 The identity will be established mathematical induction on n. 
For n = 1 it reduces to the identity 1/x l/tx + l/x(x + Suppose that the 
proposed identity is true. Replacing x by x + 1 yields 

(~) -
x+l n+ 1)' 

Subtract this relation from the original equation to obtain 

by virtue of the recurrence relation for binomial 
in the statement of the problem for n + 1. 

=-------
that is, the identity 



Solutions 105 

CHAPTER 2 

2.1 Subtract from the total of 40 students the number who mathe-
and 

40 - 14 - 16 11. 

The students who mathematics and physics are subtracted and 
thus they must also be added once. 

A similar for the two other pairs of yields the number 

40 14-16 11+7+8+5 

The students who prefer all three subjects were subtracted three times and after 
were added three times. In order to obtain the number of students who did not 

any of the three subjects it is necessary to subtract once the four students 
who had a preference for all three subjects. The final result is 

40 14-16-11+7+8+5-4=15. 

2.2 The proof uses induction on q~2. For q=2 the formula becomes 

U IA11+IA21 lAin 

which can be verified. 
.... "'''''""\01"' the formula is true for each union of at most q 1 sets. It follows that 

IA1u'" uAql=IA1U'" UAq_ll+!Aq:- U'" uAq tln 

Applying the distributive property for intersections of sets, one has 

(AI U ... U 

and from the inductive hypothesis it follows that 

!A!I1A) + ... (-l)q \:Cl 

+ !A,11 +"'+(-1)q+ll!QA1i, L l.;l<q 

by the idempotent property of intersection in the form 

q-l 

n 
i~ I 

regrouping terms, one obtains the formula of inclusion and exclusion for 
unions of q sets. The formula is called the Principle of Inclusion and Exclusion 
because of the alternating of the right-hand side. 

2.3 Let Pc Q = {I, 2,. ., q} be a fixed set with !pl = p. The number of 
elements which to all the sets Ai with i E P and do not to any of 
the sets Aj with j E Q coincides with the set of elements which belong to the 
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set AI and do not belong to any set 

for j E Q'P. 

By the of Inclusion and Exclusion one finds that the number 
of elements which belong to all with i E P and do not belong to any with 
j E Q,P is equal to 

A i\+ I 
K:JP 

IKI=p-!.J IK' = p+ 2 

( -I -IPI 

Sum these numbers with respect to all the subsets PcQ with 

L 
IPI=p 

I( 
PCI.: 

IPI=p 

I 
IjIKI-IPI I 

== P elements: 

by changing the order of the summation. 
The index set Pc K with IPI == P and IKI = k can be chosen in r;) ways for each 

choice of K. and since In itK All does not depend on P, it follows that the desired 
number is equal to 

2.4 Let At denote the set of natural numbers less than or 
are multiples of PI' It follows that 

since the numbers PI and Pj prime are also relatively prime. 

to n which 

The natural numbers which are less than or equal to n and which are prime 
to n are numbers in the set X ; 1, ' . , , n] which do not belong to any of the 
sets AI for l~i~q. Thus 

==n-IA! u .. uAq' 

n-

q n n 
n- I -+ I 

i= J Pi I <;i<j.$fq PiP} 

n 
-l)q---

P1PZ ... l'q 
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2.5 Let Ai denote the set of the (n-I)! permutations which have i as a fixed 
point, and apply the of Inclusion and Exclusion to find the number of 
permutations which have at least one fixed point This number is to 

lAd 2:: n + ... +( 1)"-1 
1 i < j~ n 

ButlAI, nAil n ... n = (n - k)!, since a permutation of the set AI, n' . n 
has fixed points in the positions ... , ik , and the other positions contain a 
permutation of the n - k remaining elements. The latter set of permutations 
has cardinality (n - k)!. BUI k positions ii' ... , ik can be chosen from the set 
of n positions in ways. and thus 

=C)(n-I)!-(;)tn-2)1+ .. ~(_l)n-I (~} 

D(n'i=n!- " Ail=n!-G)(n l)!+"'+( 1)" 

from which the expression for D(n) follows. 
Thus lim n_"" !:: lie, and hence for n the probability that a per-

mutation of n elements chosen at random has no fixed points is approximately 
equal 10 1/2.7. 

Since the p fixed (0 ~ p ~ n) can he chosen in (;) ways and the other 
n p points are no longer it follows that the number of permutations in 
SM with p fixed is to (:) D(n - pl. One uses the fact that for every 
choice fixed thereareD(n-p) of the 
without fixed if, definition, one takes D(O) = I. 

2.6 Problem D(n) can be as 

D(n)=n! _ ~+ '" +(-1)") 
l! n!' 

In order to obtain the expression for E(n), let be the set of even permutations 
p E 8M such that i. Since there are ~ n! even in 8M , it follows 
that 

E(n)=in!-I;QI Ail 

nt IAil+ 
I 

Using =~n k)~. one can show analogously that 

E(n)=~ n~ (~) ¥n 1)1 +(;) ~(n-2)1 ... +( 1 

=t{D(n)+( I)M-I(n II}. 
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2.7 Let n P~ ... P~q, where Pb ... , Pq are pairwise distinct primes. The 
result can be proved by induction on i l + iz + .. + iq • If i l = 1 and i z = .. , 
= iq then n is a and the sum of the len hand side of the 
becomes (J)(l) + (J)(n) = 1 + n - t = n, and the is satisfied if, by definition, 
rp(1)= 1. Suppose that the property is true for all numbers for which i l + ... 
+ r I, and let n be a natural number such that i l + ... + iq=r. Let 

={ Ph ... plq I 0 ~). ~ l' 
2 q '" 2 "" 2' ... , 

It follows that Dl v D z represents a partition of the set D of divisors of n. Thus, 
using the inductive hypothesis, one can write 

I rp(d}= I rp(d}+ rp(d)=~+p~' n 
din dED, PI 

- plJ=n, 
since, if a and b are relatively prime, then rp(ab) = (J)(a)(J)(b). (Gauss), 

2.8 Suppose that a square matrix of order 3 satisfies the given conditions. 
By I to all its elements one obtains the matrix 

(:: :: ~:), 
G3 b) C3 

where al+b l +cl=r+3, G2+bZ+cZ=r+3, and so on. Using the result of 
Problem 1.19, r + 3 can be written as a sum of three positive numbers in (' ~ 2) 
ways. Thus by completing the first two rows of the matrix in all possible ways 
one obtains (~2)2 matrices. The elements of the third row are now determined 
from the condition that the sum of the elements of each column must be equal 
to r+ 3. However, one must eliminate the case when there are or zero 
elements on the third line. Observe that the following relation holds: 

(1) 

If a3~O, the minimum value for Q3 is r+ 3 2(r+ 1)= l-r, and thus by using 
OJ, it follows that the sum of any two of the numbers Cl, b2, C2 is smaller 
than r + 3. It follows that the matrix will be completed in row 3 (except 
for the element G3), with elements that are greater than zero. Suppose that a3 ~ O. 
In this case one can generate all matrices of the indicated form with row and 
column sum equal to r+3, for which the unique nonpositive element is Q3' by 
writing the number r + 3 + G3 as a sum of four positive numbers. Again by using 
Problem 1.19, it can be seen that for G3 - L ... , r + 1, the number of 
solutions of equation (1) is equal to 
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Thus if one of a), C3 is this case two of them cannot 
be the number of matrices which do not the given condition is equal 
to (': 3), Thus the desired num ber of matrices is equal to (' ~ 2)2 - 3(: ), 

These matrices are also called magic squares, Sometimes one also requires 
that the sum of the diagonal elements be equal to r. [Po A, MacMahon, Com-
binatory II, Cambridge Press, 1916.J 

2.9 Since 

n 

1 1 (-1)" 
._+ -'" + 
1 ! n 

D(n) 

it can be seen that this is the coefficient of f" in the expansion 

t (2 \ 
1 + 2! - ' , . ) (1 + 1 +t2 + ' , , ), -t ( _e_= 1 

1- t 

These two recurrence relations can be obtained by a straightforward calculation, 

2.1 0 Let Y = { Y l' , , , , Jim}, and for every I ~ i ~ m let be the set of functions 
from X to Y for which Yi is not the image of any element in X: 

Ai= :X -> Y!Yi It fIX)}, 

It follows that Sn,,,, = mil -IA I u Az U .. , U Ami, since the total number of func­
tions from X to Y is to m". By using the Principle of Inclusion and Exclu­
sion one can verify that 

m 

s",m=m" I 
i= 1 

But AI is the set of functions defined on X with values in Y J'i}, and thus 
iA11 (m -It, and AI (1 AJ is the set of functions defined on X with values in 
Y"-{Yi,Yj}.Thus (1A J I=(m- . In general, 

IAII (1" (1 (m-k)", where 1~il<i2<"'< m. 

Since there are (~) subsets of indices K c( 1. , . , , m: with = k, it follows that 
each sum 

contains terms, each of which is equal to (m - ,This implies that 

sn.m=mn (7) (m l)n+(~) (m 2)"-'" +( _l)m-l (m: 1)-
For m = n. sM,m represents the number of bijections f : X ..... Y with IXI I Yi = n. 
Hence Sn./! = n!, or 

-'" +( 
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If n < m, there does not exist a surjection from X to Y and thus Sn ... = O. 

2.11 Let Z={Yl"" Then, in the notation of the problem, 

s ..... , = m" -IA I v ... v 

=mn_(~) (m-1t+(;) (m-2)"- ... +( - -r)". 

For r=m one can conclude that Sn.m.m =Sn ... , since Z = Y. 

2.12 The number of words which use all 2n letters of the alphabet A is 
to 

letters can be among themselves in (2 !)" = 2" distinct ways, 
to yield the same word formed with the 2n letters of A.] Let Ai denote the set of 
words formed with the 2n letters of A for which the two letters denoted a/ are 
adjacent. It follows that the desired number is equal to 

(2n)1 

2n 

In order to evaluate [AI v ... v Ani, apply the 
Exclusion: 

v ... vAnl= 

(1) 

of I nelusion and 

rlAi,rl ... Il +, .. 

(2) 

One to calculate in the general case the number of elements in 
Ai! rl Ai, rl ' , , rl and show that this number does not on the choice 
of indices 1 ~ i 1 < i 2 < . , , < n. If a word to this set, it means that it 
belongs to each of the sets AI,. Ai" , , . , AI" and thus the letters ail' ai,; ai" 
ai,; , .. ; ai" ai, are adjacent. The words for which these k pairs of letters are 
adjacent are obtained in the following manner: Form all words having 2n k 
letters taken from an alphabet obtained from A by suppressing one copy of each 
letter from ai,. ai" ' ..• ai,' Then in each word thus formed. repeat the letters 
ai,.,." ai, by adding the letter ail immediately after itself for j= 1, ...• k. [t 
follows that 

-kJ! 
2" 

(3) 

Since the indices i I' ... , ik 
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they can be chosen in (~) ways, and hence the number of words which do not 
contain two identical letters can be written 0). and (3) as 

(2n)! -(nl) -I)! (n)2
2
(2n-2)! (-- --'---+ - ... + ---::::---

2" 2 2" 

2.13 digraph which does not contain a circuit has at least one vertex 
x at which no arc d+(x)=O] and at least one vertex y in which no 
arc terminates [Le .. d-( y) 0]. Denote A; the set of with n 
which have labels from the set p ..... n} which do not contain a circuit, and 
which have the property d O. It follows that 

Qn=iA 1 VA 2 v'" vAni 

.AI-. , 1 I" I n Ai' 
i: 1 I n 

But 

n ... nA- I =(n) 2k(n-k)a " k n-b 

since the number with n - k vertices labeled from the set {I, ... , n: " 
[i 1.··., ik } and without circuits is equal to an-k. and since the vertices i l •...• ik 

have the property rOd rUk ) that is. they can be joined by arcs 
having a uniquely determined orientation to the other n - k vertices in 
= ways. 

Thus each term of the sum is equal to 2k
(n-k)an_b and the sum contains 

(~) such terms. This observation yields the recurrence relation for the numbers an' 

the given formula one finds that at L Q2 3, a3 = 25. These values 
can also be obtained by direct computation. W. Robinson, New Directions 
in the of Academic New York-London. 1973, 

2.14 Let (n; 1 m) denote the number of arrangement schemes orn identical 
objects in m distinct cells; it follows that . 1m) = "1). In if 
the empty cell is included. this number represents the number in which n 
can be written as a sum of m non-negative integers. Problem 1.19 one 
can show that this number is also to r"':- l

). 

In order to obtain the in the statement of the one 
should first arrange the )'1 groups of one then the )'2 groups of two 
identical objects, and so on. The result is 

; Imj=A0 (l; Imi"A0 l2; ImJ i ' 2 ••• A 0 (n; 

(m;ly2 ... +~ lr'. 
In order to obtain the expression for the number of arrangement schemes 

which do not leave any cell empty, apply the of Inclusion and Exclu-
sion. Denoting by Si the set of schemes which leave the cell i 



empty. it follows that 

A( 1 ;,' ' . , 

+ 

This is equivalent to the expression sought, since n;: 1 S, 
A. MacMahon, Combinatory Analysis 1, Cambridge 

191 

2.15 The number under investigation is of the form A(l)" 2)"··· nAn; 1m). 
For example, for the number 150=2 x 3 x 52 one has 

2 1. 3 _ (3)(1)2(2) (3)(2)2(3) A(1 2 • 1 ) - 1 1 2 2 1 2 + =21 

factorizations as a product of three natural numbers. If some factors to 1 
are allowed, then q admits A 0 (1,l" ... nAn; I m) factorizations as a product of 
m factors. 

2.16 We show that the number M(p, q) represents the number of edge 
coverings of the set of vertices of the complete bipartite graph Kp •q ' Suppose 
that the union of two sets which generate the graph K p.q is X v Y where 
X = [XI'" "xp} and Y {)'p.,., Yq;" Denote by Ap the family of sets of 
of the graph which cover the vertices of and A~ the of sets of 
which cover the vertices of X and do not cover the vertex y; for i = 1, ... , q. 

Each vertex in X can be covered by edges in 2q - 1 ways, since the endpoints 
of these edges in the set Y form a nonempty subset of y, [t follows that 

lAp. = !)p. 

Thus M(p, q)=IAp-IU~ 1 

Exclusion it can be shown that 

1;01 A~I=ifl IA~n 

the 

+ .. , 

(n l2q
- I -uP - (~) (2q

- 2 

and thus M(p, q) has the Since the 

of Inclusion and 

K p,q and Kq,p are 



isomorphic, it follows that M(p, q) M(q, [1. Tomescu, J. Cambll/morial 
B28(2} (1980), 127 - 141.J 

2.17 From Newton's binomial formula one obtains 

and 

It follows that for k",;;; n one has 

" C) (x = n G)" 1-1)1 

" G)C) (-I); xj. 

Since the polynomials x" for k . _ . , n are of different 
they are linearly independent and therefore the above rpnrp~f'n is unique. 
Thus 

" e)(;) (_1)1- J = D •• j , 0) 

where the Kronecker symbol is defined and =0 for k 
Hence the numbers aki and bki === ( defined for 0",;;; i, k",;;; n, form 
two square matrices A B of order n + 1. a denote the column vector 
with n ...... l components ao, ... ,an, and b the column vector with n + 1 components 
bo, .... bn . The problem states that a Ab b Ba. But 0) shows that the 
matrices A and B are inverse to each other, that is, AB In -!. Thus by left­
multiplying the equation a Ab by B, one finds that Ba (BA)b In+ Ib b. 

2.18 Hrn=ul+'" +unand 2forl"';;;;"';;;n,itfollowsthatm-n -I) 
. , , + (un -1) and Uj -1 ~ 1 for 1 ",;;; i ~ n, Thus by the Problem 1.19 the number 

of such is equal to ("';n~ 1). Let Ai denote the sel of representa­
tions m=u1 + ... +Un where UI~ 1" .. , Ui-l~ 1, u,=l, Ui+l~l., ... un~ 1. 
Because the number of representations for which 1 for I"';;; s"';;; n is equal to 
C=:). it follows that 

by the Principle of Inclusion and Exclusion. Since Aj is the set 

----_._._- -. 
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of representations of m as a sum of II 
k E K, it follows that 

I 
I (m-i-l\ n A·= I 

IcK ,I n - i - 1 / 

and the set K may be chosen in ways such that IKI i. One thus finds that 
I niCK =0 if K :: { 1, ... , because m ~ n + 1, and hence one can assume that 
i:r;; n - 1. The last equality becomes 

(m-n 1\="-1 (_ 
n-I ) (n)(m- i 

i l1-i 1 

2.19 Let A 1 ..... n and B=(bij)I.}=l .... n be two compatible n-by-n 
matrices and suppose aij + bl) In this case at least one of the terms is 
nonzero, say (Jij, and thus Xi:r;; Xj for l:r;; I, j:r;; n. It follows that A + B is a com­
patible matrix. 

Let AB = C = 1, .... ' and suppose that clj =1= O. Since 

there exists an index k such that aik =1= ° and bkJ'r 0. Thus by definition Xk 

and and by . It follows that the matrix C is compatible. 
Let A a matrix of order n. By the 

elements of V one can assume that Xj implies i Thus A is upper tri-
angular, which implies that del A= 1 ali 1=0. It follows that ail"f0 for 
1=1, ... , n. 

Let B 1. .... n = A I, and suppose that B is not compatible, that is, 
there is an element Xi which is not less than or equal to x) and such that bij 1=0. 
Choose an index i which is maximal relative to this property for a fixed index j. 

Since XI is not less than or to Xi' we have I> j and thus 
n 

L aikbkj=O. 
k=l 

0, which implies the existence of an index k #' i such that aikbkj +0 
or Qik and bkj 1= O. Since A is compatible, it follows that Xi:r;; Xk and thus 
i < k. From the convention for choosing the index i. it follows that bkj implies 
xk:r;; By transitivity one finds that Xi:r;;Xj, which contradicts the hypothesis. 
Thus =A - 1 is 

2.20 Let Z= 1. .... bean matrix such that 

z .. =51 if Xi:r;;Xj. 

I) to otherwise. 

The conditions imposed on the function /J can be written in matrix form as 
MZ=J, where M L .... n and mij /J(XI, and J is the identity 
matrix of order n. 1n fact, one can write 
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n 

Sli = mikzki = miizii + 0 I, 

since mu=zu 1 and mik:fO implies Xj~Xk' and hence tki 0 for k i. Further­
more, sij= I;= m"Zkj=O for Xi which is not less than or equal to Xj' since 
mik:fO and imply that Xi~Xk and Xk~Xj; thus Xj~Xj, which is contrary 
to the 

For Xj<xJ one has su=Ixl<,,,,.;x;mlk=O by use of the third condition 
,rn,,.,,..,,,,,ri upon the Moebius function. 

Zij= J for i= 1, .... n. it follows from the solution of the 
problem that the matrix Z is nonsingular and similarly that M =Z 1 is a 
compatible matrix. Thus the desired function p(x, y) is defined the matrix 
Z-1 

Since M is compatible with the partial order relation defined in ~: it follows 
that y) =0 if x is not less than or equal to y. from the fact that '~ii 1 
and 5ij = 0 for every i:f j, one can conclude that the function p defined by the 
matrix Z-1 satisfies the last two conditions on the Moebius function. 

2.21 Observe that the function j.J. can be obtained inductively as follows: 
fila, a) = 1, and if y) is defined for every y such that a ~ y < b, then from the 
equation 

one obtains the value 

{.l(a, y) =0 
b 

pta, b)= - I j.J.(a, 
a.;y<b 

Thus p(a, x) can be calculated for every x which satisfies a~:>:~b, the 
previously calculated values for elements which lie between a and x. 

(a) Now we show that p(X. y)=( - -IXI for every Xc Y S. defini-
tion set Y) =0 if X 1. y, In fact, the function thus defined satisfies 

I 
A C),CB 

(b) We show that 

IAI (IBI: IAI) ( ijk 

\1 forA=B, 
=< to for B::JA and B:i:: A. 

{.l(X, Y)=j.J. 

where p(x) is the number-theoretic Moebius function as follows: If 
the decomposition of k into prime factors has the form k = P~\ 1'2' . . . . where 
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Pl' ... , Pr are pairwise distinct primes. then 

{
(-It if:X!=0!2='" = 

/ilk) = 0 otherwise. 
=1, 

We see that p,(a, a) = ( 1)° = 1. If a '*' h and a i h it follows that 

p,(a, Y) L /i p,(dj. 
a }' b a I}' I b 

Let b/a=k= '" P:'. Then 

L p,(d)= /l(PI,Pi, ... Pi,); 
dlk ~it ·'<ft,1Il.r 

the rest of the terms are zero by definition of the function /irk). Thus 

p,fd) = (-1)$ = O. 

it follows from the definition of the function Il(k) that /lta, b)=O if a does 
not divide b. 

(c) In this case every interval of the form 

[a, = {z i a~z~b} 
is a chain (totally ordered Now calculate Il(a!, an) for the chain 

a! <a2< ... <an' 

definition ad 1. the interval [al' a 2J, one sees that 
/l(al, atl+j.i(a l , az)=O and thus /l(a l , a21= -1. For the interval [ai' a3J the 

equation is obtained: 

fJ,(at> ad + /l(a j , a2l + Il(a j • a3) = O. 

from which it follows that = O. For every i;3 3 one can write 

/l(a l , a!l+ fJ,(aj, ... +/l(aj, a;) 0, 

and hence 

an) =0. 

Thus the values of the Moebius function are given by 

j 1 if x= y . 

. \ - 1 if (x. y) is an are, 
o 0 otherwise. 

2.22 If r < x, then t-/(Z, x) == o. It follows that 

x)y(z)= I I x)fCr)= I fly) I xl= 
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In fact. in terms of the matrices M and Z introduced in the solution of Problem 
2.20, it remains to show that 

ZM J, 

but this equation is satisfied because M =Z- J. 

Another solution is the Let I=l/(xtl,···, I(xnJl and g= ). 
The definition of 9 can also be written 

9 

this implies that I =gZ-! =gM, which is the desired relation. 

2.23 For every function I :B .... C where ICi x and x is a natural number. 
let the kernel of the function j be the partition p of B defined as follows: The 
elements bj and bj of B to the same class of p if and only if I(b j ) 

The number of functions I :B->C which have the same kernel Jl is equal to 

= 1) ... (x - k + 1) == 

where k = is the number of classes in the partition p. In from the defini­
tion of the kernel it follows that the desired number is equal to the number of 
",pf"l""p functions on a set with k elements and its values in a 

set with x [XJk' 
Let 

F(p) = I(q)· 
p 

It follows that F(p) represents the number of functions I : B .... C which have as 
their kernel a partition q of B such that q,;;; p. Thus q can be obtained by taking 
the union of some classes of p, which that 

since the desired number is equal to the number of functions on a k-element set 
and with values in an x-element set. It is thus the case that 

L [x]C(q)= 
q<;p 

the Moebius inversion formula one finds that 

Let p 1 in this formula, for which the number of classes c( p) = n. This 
equation can also be written 

For k == 1 the coefficient of x in the left-hand side is equal to 1-1(0, I), since the only 



118 Problems in Combinatorlcs and Graph Theory 

partition q with c(q) = I is the partition 0, while the coetftcient of x in the poly­
nomial 

[x]"= -l)"'(x-n+l) 

is equal to ( Ir -lj!. Since this identity holds for all positive integral 
values of x, it follows that the two polynomials in x are equal and hence f'(0, I) 
=( l(n-l)!. W. Frucht, Gian-Carlo Rota, Scienria, 122 (1963), 
111-1 

2.24 Let U=Z J=(Uij)l.j=l ..... n' where 

ifxi<Xj, 
otherwise, 

The element in row i and column j of the matrix un is of the form 

I Uik, Uk,k~'" Ukn.,j=O 
(k,., ... k.·d 

for every 1 ~ i, j ~ n, since a nonzero element in the 
to a walk of elements of V of the form 

summation would 

But V has only n 
obtains the matrix 

and hence such a walk does not exist. One thus 

(1+ -u+u 2 - + ... + 

and therefore 

J-U+ 

that M is the matrix which defines the Moebius function of the set V. It follows 
that 

n 

1)= L (-lYu~:1> 
s= 1 

where u~~ 1 is the element of the matrix Us located in the row which corresponds 
to 0 and in the column which to 1 of V. Finally one finds that 

u~!t = L . ,. Ui,.,! = 1 == Ps . 
(i,.,."i,J) O<X'l<'" I'" I 

since the remaining terms are zero according to the definition of the matrix U. 

2.25 Apply induction on n~2. Un 2 then S!-S2~ UA21~Sl' or 

IAI +IA21-IAlnA21~IAIUA21~A11+ 

The side of this relation is obvious. and the left-hand side is a con-
sequence of the Principle ofInclusion and Exclusion. 
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Suppose that Bonferroni inequalities are valid for each /1- I subsets of X. 
One can see that 

By the induction hypothesis, if h is even one can write 

1 Ai!,,;;,h-l(_lt- 1 L Ai! 
KL{l. .... n-l: 

IKI=k 

and 

Anl!,,;;,h-2 (-Ilk .. L ,!n. A/nAn!, 
Kelt. ",n-l i IE/( 

IKI =k 

One can thus conclude 

n ! h t Ai";;' (-1 

If h is odd one can deduce in a similar manner that 

which completes the proof. 

CHAPTER 3 

3.1 In order to obtain the terms which contain in the of [x]. 
one must multiply the factor x from k -1 among (x 1), (x 

(x n + 1) by n - k constant terms in these parentheses. 
Let K be a set of numbers, and use the notation 

, 
P(K) n ij' 

j= 1 

It fonows that the numbers sin, k) can be written in the form 

s(n, k)=( -k P(K). ( 1 
P "n- i; 

=n-k 

and this sum contains (:=;) terms, 
In order to obtain the coefficient of in the expansion of [x]" one must 

multiply n k constant terms from the Ix + 1), (x + 2) .... , (x + /1 1) and 
add the numbers obtained from all C=k) choices of the constant terms. By 
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(1) one finds that the coefficient of Xk in the expansion of [x]" is equal to 

L ), 

that is, it is !s(n, k)l. 

K .... n-Ij 
="-k 

3.2 Part is called Vandermonde's formula. 1t can be proved by induction 
on n. It is clear that the assertion is true for n = l. If (a) holds for n ~ m - I. where 
m;;;:.2, then 

+ Y]m= + I(X+ Y m+ 1) 
m- 1 

I _\{x k+y-m+k+l) 
k=O 

m-l( 1) 
= m~ [X]k+ \[Y]m .-1 + m 1 (mk 1) 
f [(m - I) + (m -1 

<=0 k 1 k 
-k 

Part (b) is called Norlund's formula and can be analogously. 

3.3 In order to prove let X and Y be two sets nand m elements 
Every function I : X - Y can be considered to be surjective if one 

the codomain, that is, if I: X - f(X) {/(x)lx EX} c Y. Thus the 
total number m" of functions from X to Y is equal to the number of functions in 
the union of the sets 

={/:X-YI =k} 

for k= 1, . ,., m, these sets are It can be seen that IAkl = 
k) (problem since the set with k elements can be selected 

from Y in ways. Hence 

" m 

m" I k!S(n,k)= m(m l)"'(m-k+ k) 
.=1 

[m].S(I1, k) for n;;;:'m, 

since [111],,=0 for m+ 1 ~k~n. It must be shown that the polynomial x" 
S(I1. is zero. 

But this polynomial has at most to n -1, since n) 
l) ... (x - n + 1) contains the term x", but the other terms in the sum 

do not contain x". The equality, which is valid for m = 1. 2 .... , n. shows 
that this of at most n-l has at least n distinct roots, and 
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The same argument can also be used to prove (b) by considering monotone 
functions I :X->R where IXI=n, IRI=r, and the set R is totally ordered. 
monotone function I X -> R is in one-to-one correspondence with an increasing 
word of ... I(xn), where X = {Xl' ... , xn) and I(xtl:;;;; 

and the number of these increasing words-called com­
of r take n-is given by the formula 

+n-l) 
(Problem U8). 

If the number of distinct letters in the word I(x 1) ... j(xn) is k (1:;;;; k ~ n), then 
these k letters can be chosen from the set R in (~) ways. The number of increasing 
words of length n with exactly k letters is equal to (:= :l. In fact, if these k letters 
are a! <£12 < ... <Uk' then the increasing words have the form Cl C2'" Cn 

whereci C2 - =a tt ci1 =ci 1 +1= ... =cI1 - 1 =a2, .. ·, ci k_ 

ak. and 2:;;;;11 <i2 < ... <ik - l :;;;;n. Thus the number of 
words of a length n with k letters is equal to the number of sequences 
2~il<i2<'" <ik t:;;;;n,thatis,itis to _:l. It follows that 

[:r =Jl =D' 
or 

[rJn=JI ~: (:=~) 
This equality is valid for every r ~ 1. which implies 

3.4 To every surjection I of the set X = onto the set 
y = {Yl, .... .I'm} there corresponds a partition of the set X into m 

r I(YI)U I l(yZ)U'" U 

The order of writing the classes is not taken into and hence there 
are m! surjective functions from X to Y which the same of 
the set X. In other words, if the elements of Yare permuted in m! different ways, 
then one obtains ml different surjections by with the 
f. However, all of them will generate the same of X into m classes. 
Two surjections which differ by a permutation of the elements of Y cannot 
generate different part itions, and furthermore every of X into m classes 
can be obtained in this manner. It follows that 

Sen, m) Sn m m ' 
k)". 

Consider the set of the m into m -1 classes of a 
set with n elements Xl, ..• , X •. One can obtain m 1) partitions into m 
classes ofa set with n+ 1 elements Xl""! X n + 1 to each partition a new 
class consisting of the element X.+ • The element X n ... 1 can be added to 
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each of the already in m distinct 
ways. These two yield, without all the partitions of the 
set into m classes. It follows that S(n .... 1, m) = Sin, m - 1) + mS(n. m). 
This recurrence relation allows one to compute the numbers Sin, m) line line, 
by the values S(n, I) "" S(n. n):= 1 for every nand S(n, m) = 0 for m > n. The 
values for n:;;; 5 are in the following table: 

Sin, m) m=1 2 3 4 5 

n==1 0 0 0 0 
2 I 0 0 0 
3 3 1 0 0 
4 7 6 1 0 
5 15 25 10 1 

3.5 Consider the set of the Sin + 1, m) partitions of a set X with n + 1 
elements into m classes. For every such partition suppress the class which 
contains the (n + 1)51 element. One obtains a partition of a k-element 
set K into m-l classes where m-l :;;;k:;;;n. In fact k;;tm-l, since the m-l 

"''''''''5 classes each contain at least one elemen t. 
The partitions into m -1 classes thereby obtained are pairwise distinct, 

since otherwise the partitions of the (n+ 1)-element set X into m classes would 
not be pairwise distinct. In this way one obtains all the partitions of all subsets 
K c X (IKI~ m-l) into m 1 classes. In fact the partition (Kj)u:t<;m-l of K was 
obtained from the K 1 U K 2 U ... U 1 u "'-.K) of X by suppres-

the class X"'-.K which contains the (n+ 1)st element. 
The n - k elements which form a together with the (n + element, can 

be chosen in n k) = (Z) different ways. It follows that the number of 
into m classes of an (n + i)-element set is equal to 

SIn + 1, m) == f (n
k
) S(k, m -1). 

k-m-l 

The recurrence relation for the numbers can be obtained analogously by 
the class which contains the (n + element in a partition of an 

(n + set. One can find in the same manner a partition of a k-element 
set (0:;;; k:;;; n). The n - k elements which are contained in the same class, 
with the (n + 1)st element, can be chosen from the set X "'-.{xn+ d in (~) distinct 
ways. 

The term 1, corresponding to the case k 0, occurs when the partition of X 
consists of a class. 

3.6 Starting from a partition of a set X of type 1 hI •. , nho, one can obtain 
a permutation of X the elements of X in the order in which 
appear in Ihe classes of the One first writes the classes with one 
element, then the classes with two elements. etc. Since the order of the elements 
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in a class and the order of the classes in a partition are not it follows 
that the same partition generates t1 (21)k, . .. (n different permutations of 
the set X by the elements in each class. For each of these permutations 
one also obtains k I! k2! ... kit! by the classes with the 
same number of elements among themselves. It is easy to see that in this way 
one generates without all the n! permutations of the set X. from which 
it follows that 

Let p be a of the set X = ~1, ..• n} of type [k, 

order of the length of its cycles. the which 
enclose the of p one obtains a word of n formed from all the letters 
of the alphabet {1, ... , The number of such words is n t. 

But the same permutation generates kll k2 !'" kit! different 
words, since the kj cycles of length i (l"i"n) can be permuted in kl !··· kn! 
different ways. On the other hand, a of length i can be written in i ditTerent 
ways as the first element of the each of its i elements. In this way 
one obtains the 1 k, . • . other of distinct words of 
length n. One thus finds (without repetition) all n! words of 11 formed 
from the numbers 1. .... n. It follows that 

Perm( ! ..• 

3.7 Use the identities of Problems 3.2 and 3.3 to express the polynomial 
[x + rJ" in two different ways: 

It k G)xll " = L $(n, +.l'l s(/1, k) 
""'-0 

=ktG) It 

(~) 
n-k 

+ s(k, i)x i s(n - k, 

Equating the coefficients of xiyl in these two yields the first identity. 
In order to obtain the second recurrence relation one must (X + 

(x+ " It k G) [XJi[ = L Sin, k)[x + L k) i' 
<=0 <;0 

It 

(~)x"yn k== 11 (:) 
k n-k 

S(k. i) [x ]; SIn - k. j )[J'Jj. (x + y)" 

[n this case the coefficients of [xJLvJ j the desired result. 

3.8 

[xln = ,,( 11. k) S(k. 
m; 
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and 

x"= 
n 

S(n, k)[X]k L 
k=O 

Problems in Combinatorlcs and Graph Theory 

k 

k) L s(k, 

Equating the coefficients of [x]" and x" in these gives 
the identities in the statement of the problem. One can equate these coefficients 
since the families of polynomials (xn)n~O and ([x]n)n~O each form a basis for the 
vector space of polynomials with real coefficients, and thus every polynomial 
can be uniquely as a linear combination of these polynomials. 

3.9 The proof uses induction on n. For n = 1 the property is immediate. 
From the table of Stirling numbers (Problem 3.4) it can be seen that the property 
holds for small values of n, by referring to each line of the table. 

Suppose that the property holds for every i ~ n. Thus M(i)~ M(j) for every 
l~i ~n. Let k be an index such that 2~k~M(n}. It follows from the recur­
rence relation 

S(n+l, k)=S(n, k-l)+kS(n. k) 

that 

S(n+ 1, k) S(n+ 1, k-l)={S(n, k 1)-S(n. k 

+k{S(n,k)- k-l)}+S(n,k-l). 

The right-hand side of this equation is positive by the induction hypothesis. 
Suppose that M(n)+2~k~n+ 1. By the recurrence relation 

+ 1, k)= k-l), 

one can conclude that 

S(n+ 1, k)- Sen + 1, k-l) k-l)-S(j, k-2)}. 

The induction now k l)<S(j, k-2), since M(j)~M(n) 
for n, It follows that S(n+ I, k)< S(n+ 1, k 1) for every M(n)+2~k~n 
+ 1. Thus the sequence (S(n, 1. . • n is unimodal, and M(n+ 1) M(n) or 
M(n + 1) =M(nl+ L No are known of sequences (S(n, which have 
two equal maxima for n ~ 3. 

3.10 The proof of (a) follows from equating the coefficients of Xk in the 

In the case of one can equate the coefficients of (x I a)k in the expansions 
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n-1 

Sin, k)(x I a)k xn = xn
- 1 • X == Safn -1, k)(x I a)k(x - ak + Uk), 

in view of the fact that (x 
For (c) equate the 

ak)=(x I a)k+l' 
of x' in the expansion 

(xl =--.(xla)n+l (!+a~+a;+ ···\)txlaJn+l' 
x-an x x / 

The proof of (d) is obtained by iterating recurrence relation (b) for different 
values of n. 

Recurrence relation (e) follows from repeated application of (a) for decreasing 
values ofn. 

In order to establish (f) one can write 

.=0 m= 

n (n 
= m= k~O S,(n, 

[L. Com let, C. R. Acad. Sci. A275 (1972),747-750.] 

3.11 Let fk= Sa(n, k)tn and observe that 

1+ 

Thus 
·x 

and fo::: L a~tn 
""'0 

3.12 Let X = The set of partitions of X into k classes which 
contain at least i elements can be written in the form P! v where PI repre­
sents the set of partitions of X into k classes which contain at least i elements 
for which the element Xn belongs to a class with more than i and 
represents the set of partitions with the same property for which Xn belongs to a 
class with exactly i elements. 

It follows that S;(n, k) = IP II + since 
the partitions in P I are without by from the 

of the set {x 1, ... , Xn - d into k classes of cardinality greater than or 
equal to i. One then adds, in turn, Xn in k ways to each class. The partitions in 

can be obtained by considering all the :) subsets of X of cardinality i 
which contain Xn as a class of the partition. To this one adds, in turn, the 
Si(n i. k-l) partitions of the 11 i remaining elements in k-l classes of cardi­
nality greater than or equal to 1. 

In order to justify (b), consider the set of all functions f : -> 

{1, .. ,k} such that IF l(sJI for every 1 ~ s ~ k. It is clear that the number of 
such functions is to the number of arrangements of a set of n in 



126 Problems in Combinatoric. and Graph Theor) 

k boxes such that the sth box contains), objects for s == 1, ... , k, which by Problem 
1.15 is equal to n !;jl ! ... A!. By summing these numbers for all solutions of the 

)1 + ... + A n with js~ i for s == 1, ... , k, one obtains the number of 
f which If-l(S)I~ i for every s= 1, ... , k. This number must 

be divided by since the order of classes in a partition of X is immaterial. 

3.13 Every into two classes X AvB is determined 
the set A, which is taken to be different from X and 0. Thus the number of 

choices for A is equal to the number of subsets of the n-element set X minus two. 
It follows that S(n. 2) (2" 2)/2 = 2"- I - J. since the order of the classes in a 
partition is not taken into consideration. 

every partition of an n-element set X into n - 1 classes contains 
a class with two elements and n - 2 classes with one element. The two elements 
can be chosen in (~) ways. 

In order to prove (C), first show that the function of 
the Stirling numbers of the second kind is 

oc S(n, k) " I)k. 
--I- x 

n. 

In fact one has 

I! + ... and = k! J 0 (- l)k P e) ePx
, 

and thus the coefficient of x" in this to 

] k 

k! P~o (-1 

in view of the known expression for the Stirling numbers of the second kind 
(Problem 

Thus k k) is the coefficient of x" in the expansion of (~ 1 )k, multiplied 
by n!. It follows from this that 1-1 2) + 2!S(n, 3) 3 !S(n, 4) + ... } 
is the coefficient of x" in the of the sum of the series 

(1) 

Since x - + - tx4 + ... = InO + one can conclude that the sum (1) 
is equal to In( 1 + eX - I) = x, which establishes the identity for n ~ 2. 

3.14 In urder to obtain an for ern, 3) one must determine the 
number of ways in which one can express X = A u Bv C where A, B, Care 
nonempty and each element of X to two of the sets A, B, C. In fact each 
element .\ e X can belong to the sets A, B, or C in = 3 ways. In this way one 
obtains 3" for X in the form A v Bu C, three of which do not satisfy 
the given conditions, since they to situations in which either A, B 
or C is Thus the number ofbicoverings of X with three classes is equal to 
(3n -! 1 -1), since the order of the sets A, B, and C is not taken into 
consideration. Comtet, Studia Sci. Math. Hung., 3 137-152.J 



3.15 Consider a new element z q: and in each of the set .Y v 
suppress the class which contains the element :::. One obtains in this way all the' 
partial partitions of X without for the case in which the 
partition of X v consists of a 
Bn+ I -1. 

3.16 Let 
of the series 
Now define 

be a sequence of real numbers, and denote the sum 
o un[xJn for those values of.\ for which the series is convergent. 
operator L by the relation L(j(x)) = I:~o an, if this series is 

We show that if 
function g, then L(g(x)) = 
3.3 one obtains the 

o and if the operator L is defined for the 
o a.Bn, where Bo 1. In fact, in view of Problem 

where = 1. Thus 

'" m 

lim I anS(n, 
m- <=0 

S(n, k)) 

In 

lim I a"Bn aMBn • 
m- 11=0 n= 

In order to obtain the desired formula consider the Taylor series expansion 

exp 
r"x" 

+ 
n 

Substituting e' = u+ 1 and using Newton's binomial formula 
yields 

It follows that 

oc 

e"=(u+l)"= I un. 
"=0 n 

e"=exp let -I) 

and it can be seen from the that 

for one obtains the expression for the 
function of the numbers 8n , 

3.17 The Bell number Bn represents, the total number of 
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partitions of an n-element set and thus can be written in the form 
n 

Sin, k) 

since SIn, k) = 0 for k> n. In view of the 
second kind (Problem 3.4) it follows that 

Bn ~ k (-It-j(~\r= 
k! \)) 

S(n, k), 

ct. l 
j! 

for the Stirling number of the 

The difference between the number of partitions of an n-element set into an 
even and an odd number of classes is to 

l),S(n, kl (-ll G)r n 

3.18 A subset S c: X can be put into correspondence with a binary word 
a 1 a2 ... an with aj = 1 if i € Sand aj = 0 otherwise. If S does not contain two 
consecutive then the binary word associated with the set S will not 
contain two neighboring l's. In this way a bijection has been defined between 
the k-element subsets of X which do not contain two consecutive and 
the set of binary words oflength n, k of whose letters are 1 and n - k of which are 
0, and which do not contain two neighboring 1'5.]n order to count the number 
of elements in the latter set one can consider n - k to 0 and indexed 
from 1 to n - k. To these one must add k digits 10 1 so that no two 1 's are 

Each I can be characterized by the index of the 0 which 
it. Thus one must choosek distinct from the set 1, ... , n-k}. 
It is to do this in j(n, k)=(n-~+ 1) distinct ways. To the set {I, ... , n-k} 
of indices of digits equal to zero the number 0 has been added, which cor­
responds to the case in which the digit 1 occurs in the first position of the word 
al a2"·a". 

It follows that .. 1 represents the number of subsets of X which do not 
contain two consecutive This includes the empty set, which cor-

to a word with n positions equal to O. The summation which defines 
1 contains nonzero terms for n - k + 1;;;: k or k ~ [In + 1)/2]. 

In order to prove the recurrence relation satisfied the Fibonacci numbers, 
observe that every binary word of length n which does not contain two consecu­
tive ones has 0 in its last position or 01 in the last two positions. The words 
which remain after eliminating 0 or 01 have length n 1 or n - 2 
and do not contain two consecutive 1's. Th us there exists a bijection from the 
set of binary words of n which do not contain two consecutive l's onto 
the union of the disjoint sets formed from words of length n -lor n 2, 
respectively, which do not contain two consecutive 1 's. Thus F n = 1 + 
foreveryn;;;:2,andF o =1. 
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3.19 In order to find the expression for the number k), observe that 
the subsets which contain the number n cannot contain either 11 -1 or l. The 
number of such subsets is equal to - 3, k 1), and there are -1, k) which 
do not contain n. In both cases it is assumed that the sets do not contain two 
consecutive integers modulo n + 1. 

For example, the subsets which contain the number n are obtained from the 
f(n - 3, k -1) subsets of X"-{l. n -1, n} which have k -1 elements and do not 
contain two consecutive [n this case the number n is added. In view 
of the fact that every k-element subset of X which does not contain two consecu­
tive modulo n+ 1 to the union of these two disjoint sets of 
k-element subsets which do not contain two consecutive it follows that 

(n - k - 1) + (n - k \ 
1)+f(n-1, \ k 1 k ) 

\ / 

I*(n, k)=f(n-3, k 

k = + n (n /). 
The Lucas numbers can be expressed as a function of the Fibonacci numbers 

as follows: 

L = n I*(n, k)= 1,k) f(n 3.k-l)} 

f(n-l, k)+ f(n-3.k-l) + 2' 

Thus one can write 

1+ 

for n ~ 2. One finds that L 1 = 1 and 
rence relation for the Lucas numbers 

definition, the recur­
the fact that L2 = 3. 

3.20 First we show induction on n that 

c 1)"+ 1 (F _ n+l 

o - FM (1) 

for n ~ 1. For n = lone finds that F 0 = F 1 = 1 and = 2 and thus is satisfied. 
Supposing that (1) holds, one can show that 

and thus is true for every n. By equating the determinants of the matrices in 
both sides of (1) one obtains the desired recurrence relation. 

3.21 It is clear that the number Un is also equal to the number of representa­
tions of n as a sum of the numbers 1 or 2. Two representations are considered 
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to be distinct even if they difrer only in the order of their terms. For example: 

2 1 + 1, 

3=2+1=1+2=1+1+1, 

4=2+2=2+1+1=1+2+1=1+1+2=1+1+1+1. 

The first term is 1 or 2. In the first case the number is 
to u. _ 1, since the remainder of the terms are equal to 1 or 2, and their sum is 
equal to n -1. In the second case the number of is equal to 
Un - 2' It follows that 

(1 ) 

with initial values Ul == 1, Uz == 2. If one takes Uo == 1, the result is the sequence of 
Fibonacci numbers, and hence Un 

In order to solve equation one can use the characteristic equation 

,2=r+ 1. 

which has solutions '1 =(1 +.j5)/2 and '2 
solution has the form 

.j5)/2, and thus the 

where the constants eland are determined from the initial conditions 
Uo 1 and UI 1. One thus obtains the system 

C\+ 1. 

It follows that 

, then it follows in turn that 

'" 
xj(x) L = 

n=1 

and in view of one has 

j(x)-xj(x)-x 2j(x) = + -\ 
n= 

from which it follows that 

'( 1 f x)=-l_-x--::' 
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3.22 Since the sequence of Fibonacci numbers contains arbitrarily 
terms, it follows that there exists an index m such that F m ~ n ~ F m + l' 

in this way one finds that 

O~n- < 

131 

lfn - > 0, then in view ofthe fact that 1 is a term of the Fibonacci sequence, 
one can find an index s ~ m 2 such that 

Asbefore,itfollowsthatO~n < l' 

If n F m F" = 0, the proof is finished, Otherwise repeat the same argument. 
and after a finite number of the desired representation is obtained 

n= + + +"'+Fq , 

where the indices of two consecutive terms of the sum differ by at least 2. 

3.23 The Catalan number is defined as the number of ways in which one 
can insert into a nonassociative product of n factors written in the 
order Xl> X2 • .• , • -'<'n' If there exists a pair of which is not 
contained in other then this contains in its interior the 
of the factors X2 • •. , • X. which remain outside of the factor X I' or it contains 
in its interior the of the factors XI • • , • , x.- 1, which remain outside of 
the factor x •. If there are two of parentheses which are not contained in 
other parentheses. then these contain the product of the factors Xl>' .•• Xk 

and Xk+l •...• X n , respectively where k~n-2. 

In a product of k or n k factors respectively one can insert in 
Ck or Cn - k ways This yields the following recurrence relation for 
the Catalan numbers: 

.-1 

whereC 1 =1. 
As in the statement of the problem, let 

+ + 
It follows that 

+ + (

,-1 
+.,,+ L 

k= 1 

in view of the recurrence relation and the fact that C 1 :::::: 1. 
The solution of the quadratic equation 

yields j'(x)=(l ± 
take the minus 

.[2(x)-j(x)+x=O 

In the sequel let x <1. Since /(0)=0. one must 
in front of the radical. Thus 
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Now the function in a power series in x, using the 
Newton binomial formula for real exponents, which has the form 

(x "t 
,;(rx-l) 

= art + ,;d' - I x + I a' - 2 x2 + .. , 

where a>O, 
This series converges for every x which satisfies < a. If rx E 1M is a 

integer, then only a finite number of terms of the series are different from zero 
and the expansion is the binomial formula named for 
Newton. (This formula was not actually discovered by Newton, Mathematicians 
from Central Asia such as Omar Khayyam knew it much earlier. In western 
Europe, Blaise Pascal also used the result before Newton. Newton 
proposed the to 

In order to (1-4x)1/2 in a series of powers of x, let y= -4x, rx 
and the binomial (y + , It turns out that the coefficient of x" is 
equal to 

1_(_--"-----'-_--=-_-_11_+_0 (-4)" (-lr 1 21n • 1 x 3 x .. , x 
n! 

(211 -2)1 
-::-C--;-:--'----:-"-: 2" 

However, is the coefficient of xn in 
obtains the coefficient of x" from the 

Thus en "_1
2

). 

2 (211-2). 
11 n-l 

of j(x), and hence one 
of(1-4x)1/2 by multiplying 

3.24 Determine the number of sequences of letters which contain the letter 
a k times and the letter b m times. and which have property (P): For every i, 
1 ~ i~m + k the number of letters a among the first i letters of the sequence is 
greater than or to the number of letters b. It is clear that the number of 
these sequences is nonzero if and only if the condition k;?; m >0 is The 
number of sequences of letters which contain the letter a k times and the letter 
b m times is equal to Plm, k)=(m+k)!/m!k! If one determines the 
number of sequences which do not satisfy (P), the desired number is 
obtained by subtracting this number from (,";k). It will be shown that the 
number of sequences formed from m letters band k letters a which do not satisfy 
(P) is equal to P(m-l, k+ 1) 1)' It is equal to the number of sequences 
formed from m 1 letters band k + 1 letters a. The proof of this property follows, 

Consider a sequence formed from m letters band k letters a and which does 
not (P). There exists a position numbered 2s + L where s;?; O. such that 
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the sequence under consideration contains the letter b in position 2s + 1. In 
front of this position there are an equal number s of the letters a and b. 

Now consider the smallest index s with this property, and add the letter a 
in front of the corresponding sequence to obtain a sequence of m letters b 
and k + 1 letters a. The first letter of the sequence thus obtained is a, and among 
the first 28 + 2 letters there are an equal number of a's and b's. Interchange the 
letters a and b in the first 25 + 2 positions of the sequence. The total number of 
letters of each kind does not change, and one obtains a sequence with m h's and 
k+ 1 a's whose first letter is now equal to h. 

In this manner one has associated with each sequence of m b's and k a's 
which does not satisfy (P) a sequence of m b's and k + 1 a's which begins with 
the letter b. This mapping is injective, as follows immediately by considering 
two different sequences which do not satisfy (P) and which differ in the pth 
position, where p:::; 28 + 1 or p > 2s + 1. 

It will be shown that in this manner it is possible to obtain every sequence 
formed from m b's and k+ 1 a's and which begins with b. Thus the mapping is 
also surjective. 

Now consider a sequence which begins with b. Since m:::; k and hence 
m < k + 1, it follows that there exists a position numbered 2s such that the first 
2s positions of the sequence contain an equal number s of the letters a and b. 
! n front of the first position with this property interchange a and b and suppress 
the first letter a. One obtains a sequence of k a's and m b's which does not satisfy 
(P). 

Now apply the indicated mapping to this sequence. The result is the 
original sequence. Thus in virtue of this bijection the number of sequences 
with m letters band k letters a which do not satisfy (P) is equal to the number 
of sequences with m letters band k+ 1 letters a which begin with b. If the first 
letter b is suppressed, one obtains all sequences consisting of m -1 letters band 
k+ 1 letters a. The number of such sequences is equal to 

P(m -1, k+ ll=(m + k). 
m-1 

It follows that the number of sequences which satisfy (P) is equal to 

(m + k) _ (m + k) = k -m + 1 (m + k \). 
\ m m-l k+1 m 

For k=m=n-l one has 

Cn=~ (2n-2). 
n n-I 

It is clear that this number represents the solution to the problem, since if 1 
is replaced by a and -I by h. then condition (1) expresses the fact that the 
number of a's is at least equal to the number of b's in the first k positions for 
1:::; k:::; 2n - 2. Condition (2) expresses the fact that the number of a's is equal to 
the number of h's and both numbers are equal to n-1. 
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3.25 It will be shown that there exists a bijection from the triangulations of 
a convex polygon with n+ 1 vertices to the set of of n 
factors in the order Xl' X2,"" x.' 

Let Al A2 ' , . J be a polygon with n + 1 vertices, and traverse the sides 
of the polygon from AI to and so on. until 1 is reached, One obtains a 
parenthesized of n factors by using the following rules: 

(1) When aside, write a new factor xiin the order Xl'" .,x., 
When one arrives at a vertex which is incident to some 
of the triangulation, write a number of 
to the number of diagonals which have an 
vertex and whose other endpoint has been traversed. Write a 
number of opening parentheses equal to the number of diagonals 
which are incident to this vertex and whose other endpoint has 
not been visited. 

In this manner it turns out that for the triangulation of the convex polygon 
with vertices illustrated in 3.1. one obtains the following product 
of seven factors: 

(x 

It is clear that this is injective, In order to show that it is 
surjective, consider a product of n factors in the order Xl' ' , , , X n • 

This product contains n 2 opening parentheses and n 2 closing 
Each corresponds to a unique 
each of opening and parentheses consider the first letter Xi which 
occurs to the of the opening parenthesis and the first letter Xj which occurs 
to the left of the closing parenthesis, Draw the diagonal AjAj + \' 

Since each pair of parentheses contains two factors in its interior. and since 
the are correctly it follows that the n - 2 of the 
polygon constitute a triangulation for it. Now apply the indicated corre­
spondence to this triangulation. The result is the product 
of n factors. which establishes that the transformation is a bijection. 

Thus the number of triangulations is to the Catalan number (Euler), 

As 
Fig. :1.1 
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3.26 Consider the lines x = k, y = I in a coordinate system 
where O:s;; k, n are integers. One now studies the of intersection of these 
hnes in the first which occur on or beneath the line y=x. 

For each function J :{1"", n} .... {l" "n} construct a tn 
this network as follows: that one is at the point MU. Go to the 

M 1 (i + L. segment: then follow vertical segments until 
one arrives at the M2(i+ 1. Jii+ 1)). If J1i+ 1) fri)o it follows that 

M l' Otherwise the displacement involves an upward movement, since 
1» 

this for i = 1. . , .. n -lone obtains a rising path in 
the network with endpoints (1, 0) and (n, f(n)). Also join the origin with the 

(1,0) a horizontal segment, and if f{n)<n, join the point (n, j(n)) to 
A(n, n) a sequence of vertical segments, This yields a path with 
0(0,0) and A(n, n). 

For the illustrated in Figure 3.2, the increasing function J is defined 
as follows: J(Z}::::::1, J(3)=2. /(4)=J(5)=4, The corresponding is 
indicated a line. 

It is clear that in this path consists of n horizontal and n vertical 
There are no descents from 0 to the point A(n, n), and the 

beneath the line}' = x. One has therefore defined a f'flT'rp<:nnn{\I'n 

between the set of increasing functions J : {I, ... , n} .... {I, . , . , n} which 
the condition J(x):S;;x for every x= 1."., n and the set of paths with 
o and A with the given property. This mapping is a bijection, In fact, it is 
live because distinct functions correspond to distinct paths. 

In order to show that it is surjective, let d be a path with the given property 
and 0 and A. Define an function as follows. 

= max {j I (I, j) Ed} 

for every i =" 1, ' ... II. In this case the of the function Jd under the cor­
respondence is the d. which shows that the correspondence is a 
surjection. 

y 

1 2 4 

Fig, 3.2 

5 

A(5,5) 
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To count the paths of 2n with endpoints 0 and A(n, n) which are 
situated beneath the line y x, observe that there is a bijection from the set of 
these paths to the set of sequences Xl • ... , X 2n) with Xi = 1 or Xi = 1 for 
l~i~2n which the conditions 

(1) x 1 +". +xk:;:;.Oforeveryk=l, .. ,2nand 

Xl + ... +X2n=O. 

In order to define this correspondence one traverses a rising path d from 0 
to A. The path d can be written as a sequence of segments oflength 1, d = (81' $2' 

where the order of the indices indicates the order of displacement of the 
from 0 to A. The sequence associated with the path is obtained from 

the sequence (81' .. _ , I in of each horizontal segment and 
-1 in of each vertical segment. In this way one obtains the following 
sequence for the illustrated in 3.2: 

-1, 1, 1, -1, 1, -1, -1, 1, -1). 

Condition (1) expresses the fact that the path d cannot pass through 
points which are located above the diagonal. and condition (2) implies that 
there are n horizontal and n vertical segments. The path must therefore ter· 
minate in the point A. 

It follows from Problem 3.24 that the number of sequences of 1 's and - 1's 
with the is to 

1 (2n) 
n+l ,n . 

This observation ends the proof. 

3.27 For n=4 the number of solutions is equal to 2. Now let n:;:;. 5. A vertex 
1-'1 of the polygon can be chosen in n ways. Join the two vertices which are 
adjacent to l'\ by a diagonal d\, Consider the which has side dl and a 
vertex in common with the which is difrerent from VI' It must have a 
side in common with the convex Thus the third side must be one of the 
two which join a vertex located on d l with one of the of 
another vertex on Thus a second diagonal d2 can be chosen in two ways. 

Similarly, if d 1"", d;(i<n-3)have been chosen, then there are two possible 
choices for 1- There are thus n 2"-4 ways of selecting a vertex Xl and a se-
quence d\} 3 of diagonals with the desired property, 

Each triangulation obtained in this manner has two which contain 
two adjacent sides of the polygon, and hence each is counted twice. rt follows 
that the desired number is n 2"- 5 for every /1:;:;' 4. 

3.28 Let ,fj(n + 1) denote the number of sequences with n + 1 terms and 
a l It follows that f/n+ 1)= +fj~ I and 10(n+ 1)= 

It will be shown by induction on k:;:;. 1 that for every k < n the following rela­
tion holds: 
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fo(n) = I -k), (1 ) 
j<;k,'2 

where Ak .} = (~) - k I) for 0 ~ 2) ~ k. In fact, for k = 1 relation (1) be­
comes lo(n) = 11(n-l), which has been seen to be true. Now under the assump­
tion that k<n-I and holds, Ik- -k) by Ik 2j- k 1) 
+ 2j+ k 1) in (l). It follows that 

1. + 1 2j (n-Ik+ 1)), 

where 

and hence (1) is true for every 1 ~ k ~ n - 1. 
If n k+ I in (1), then 

[L. Math. Nachr., 49 

3.29 Let a1 and -0;+ 11~ 1, and denote the corresponding number of 
sequences g)(n+ 1). 

It is easy to show that +(/I(n) and + I)=y j _ + t 
gj+ l(n) for 1. 

(1 +x+ 1 =[ I elm, k)xk
] (I +x 

k;;.O 

yields 

c(m+ 1, k)=c(m, k-2J+c(m. k ll+e(m, k), 

where dm. k) 0 ror k<O. One thus finds that 

2)+ 2} 

=4go(n 3l+5YI(n 3)+3Yz(n-3)+Y3(/J-3j 

=9go(n -4) + 12g!(n - 4)+9g2(n -4) +4Y3(n - 4) + g4(11- 4) 
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(1) 

for every O~k~n-l. 
Relation (1) can be induction on k. It has been seen that (1) is true 

for k=O.1. 2.3,4. Supposing that (1) is true for all values k~ n 2, it will be 
shown that 

(2) 

In ifonereplaceskbypin and (Jp_j(n-p) gp-l-J(n-p-
gp_j(n-p-l)+gp_j+l(n-p-l)forj .. ,p,thenoneobtainsan 
of form (2) where the coefficients Bp "" j.j are given by the recurrence relation 

(3) 

It will now be shown that = elk, j) - j - 2) for every ° ~ k. In fact, 
for k == 1 the is satisfied, since B 1 ,0 = e(1. 0) = 1 and = e( 1, 1) = L 

that the equation holds for every k and every 0 ~ k. It follows that 

1,j=Bp.J- 2 +Bp,j-l + Bp,J 

= e(p, j - 2)- c(p,j -4)+ e(p,j -1)- c(p,j - 3)+ e(p, e(p, j 

= +l,j)- +I,j-

in view of the induction and the recurrence relation satisfied the 
number elm, kJ. One can thus write 

k 

{e(k,j) -e(k, j-

for every O~ k" n 1. By taking n == k + 1. one finds that 

for every 

j)-e(k,j-

=e(k, k)+e(k, k+ 1) 

0, since gk -ll) = 1. [L. 

{dk,j)- j-

Math. Naehr., 49 (1971),125-147.] 

3.30 It was shown in Problem 3.24 that the number of sequences (Xl' X2, 
... , Xln) with terms equal to ± 1 which satisfy the conditions Xl + '" +Xk~O 
for every 1 ~k~ 2n and Xj + ... .;..x 2n =O is equal to {1/(n + 1}}e:). Observe 
that there exists a bijection from the set of sequences X = X 2' ..• , X 2") to the 
set of sequences a al' , . , , (l2n+ d which satisfy the conditions. The 
mapping is defined f(x)=a if 

a j a2=xj=1, a3==xj+x2"'" ak+l=x1+XZ+' . +Xk 

for L~k~ andhencea2n+I=0. 
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3.31 Consider a sequence which satisfies the condition of the problem, and 
suppress all terms to n. One obtains a sequence of k terms, where 0 ~ k ~ r, 
which satisfies the condition. For i n the condition implies that the 
number of such sequences is zero for r = n. Start with a sequence of 
the numbers 1. .... n - L of length k, with the property that at most i -1 terms 
are less than or equal to i for i = 1, ...• n -1. One can insert r k new terms 
equal to n so as to obtain a sequence , ...• x r ) with 1 ~ XI ~ n which satisfies 
the same property. However. the r - k terms which are equal to n can be inserted 
in (;) ways, which to the (r~h)=(~) possible ways of the 
positions occupied by r- terms equal to n in a sequence of r terms. 

Now start with all the sequences of length k=O, ... , r composed of the 
numbers 1, ... , n -1, which satisfy the property. By inserting r - k terms 
equal to n in all possible ways, one obtains, without repetitions, all the sequences 
(Xl' ... , with I ~xi~n which satisfy the same property. This implies the 
recurrence relation 

fin, r)= kt (:) fin - 1, k) for l~r~n-l, (1) 

where fin, r) represents the desired number of sequences. 
It will be shown induction on n that 

f(n,r) (n-

If n r it has been seen thatf(n, r) = 0, and this coincides with the value by 
Let n>r, and suppose that f(n-l, (n-l _1)k-1 for every 

k ... , n -1. In view of (1) it follows that 

fin, r) r G) fin 1, k)= r G) (n-1- 1)k I 

= r G) (n- kt G) 1)'-1 
=nr -r " (r-l)(n_ 

k-J 

= n' - rn'- =(n r)n,'-l for every r = 1, ... , n - I. 

However, for r n it has been seen that formula (2) is also true. Thus is true 
for every n~ r. [H. E. Daniels, Proc. Roy. Soc., A183 (1945), 405-435.] 

3.32 If If )1 = I, then these k elements can be chosen in GJ ways 
and for the rest of the elements the function f can be defined in Sn-k ways. 
One thus obtains the recurrence relation 

Sn= 
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or 

" =}: 
n k 0 

for n';:;:1. 

Thus the exponential generating function is 

and hence 

= 1 + s(x)eX, 

= 1/(2-

1 
s(x) 

s(x) in a power series: 

x" 

from which the 
in the two sides. 

for So follows by identifying the coefficients of x" 

3.33 First determine the number Un .• of ordered systems 
linearly vectors from V. As the first component of such a 
one can choose any of the q" - 1 vectors other than 0 in the space V. Each vector 
v * 0 generates a of dimension one which contains q vectors. There 
thus exist q" -q vectors, each of which with v forms a system of two 
linearly independent vectors and thus can be chosen as the second component 
of the system. Let w be one of them. The pair {v, a two-dimensional 
subspace which contains vectors. Thus there exist q" _q2 vectors which are 
linearly independent of v and w, and any of them can be chosen as the third 
vector of the system. Continuing in this way, one has 

Un.k 
_l)(qn_q}'" _qk-l). 

Each system of k linearly independent vectors generates a k-
dimensional subspace of V. Conversely every k-dimensional has Uk .• 
ordered bases. Thus 

and the formula follows simplification. 

3.34 The properties can be obtained by a direct calculation. By passing 
to the limit as q-> 1 in (b) and (cl the results are well-known properties of 
binomial coefficients. 

3.35 The given equality can be proved by in two distinct ways the 
number of linear transformations of an n-dimensional vector space Vo over a 
finite field GF(q) to a vector space Y over GF(q) with y vectors. 
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Let be a basis for v". The image of an arbitrary Xi can be any 
of the vectors in Y, and these n images uniquely determine a linear transforma­
tion. There are thus .I'M such transformations. 

It will be shown that the right-hand side of Cauchy's counts the 
number of linear transformations f; vn-+ Y taking into consideration the 
dimension of the subspace KerU) consisting of the vectors in Vn whose is 
the zero vector in Y. By Problem 3.33 there exist subspaces Vk of Vn of 
dimension equal to k. 

Let 2 1."" Zn- .. Zn k+l •• ··• 2n be a basis for Vn such that Zn-k.o.l"··' =n 

generate the subspace Vk • A linear transformation f: Y has Ker(f) V. 
if and only if it maps the vectors Zn-k+ 1 •... , Zn into the zero vector in Yand 
the n - k vectors Z 1> ••• , Zn-k into a linearly set of 
vectors in Y. The vector ZI can have as its in Y any of these J' vectors, 
other than the zero vector, the vector =2 can have as its image any of the y 
vectors which do not belong to the linear subspace with dimension 1 generated 
by the image and so on. One therefore obtains (y _ 1)( y _ q) ... (y _ q" - k" 1) 
linear f: Y which have Ker(f) Vk and dim(Vk) = k. Thus 
O~k~n.Whenk==Otherearefy 1)(y q) .. ·fy qn-l)such 
and when k = n there is a unique transformation which maps all vectors in 11;, 
onto the zero vector in Y. 

For fixed y this establishes that the holds. Since y can take on an 
infinite number of it follows that the equation is a polynomial identity 
in the variable y. [J. Goldman, G.-c. Rota. Studies in Applied Mathematics. 
X LIX(3) (1970), 

3,36 For k=! one has f(n, I; for k 2, a2=n and a2-al is an even 
numoer, and hence 2) = [(n 1)/2J. One can prove (a) by induction on n. 
This formula is valid for n 2 and n = 3 for all 1, if by definition (g) = 1. 
Suppose (al is true for n ~ m L It is clear that k) = IV tfm, kl+ IV 2fm, 
where IV1(m, k) is the number of sequences, the same conditions. for 
which al 1 and IV 21m, k) is the n umber of such sequences with a1 ~ 2, It follows 
that k)=f(m-l. since the sequence 

where oj=aJ 
is one-to-one. 
m-kE! 2) it can 
consider two cases: 

(al) m-kEO 

the induction 
hence 

l~a; <02<'" <a,,=m 1, 

k, satisfies the same conditions and this mapping 
o (mod 2) it turns out that IV tlm, k) =0, and for 

be shown that IV! (m, k) = f(m I, k - I Now 

2). I t follows that 

f(m, k)=f(m-l. k)= +k-4l/2J) 
k-l 

If m k 0 (mod 2) then m+k 0 (mod and 
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=[ m+ ~- 3J and k) =([m: ~ ~ 'J). 
m-k 1 (mod 2). whence m+k 1 (mod 2). In this case 

j(m, k)=j'(m 1, k)+ j(m- L k-1) 

== + k -4)/2])+ ([(m+ k - 5)12]') 
k-l k-2 

( [(m+k- -1) ([Im+k-
\ k 1 + k-2 

([1m + k- 3)/2J) 
, k-l ; 

and hence I a) is also true for n = m. It is easy to see that the numbers J(n, k) for 
k ~ I generate a line in the Pascal triangle of binomial coefficients. We 
denote their sum for 1 and prove that 

G.+ 2 = 
for any 11 ~ 2. Suppose first that n 

1 + Gn 

It follows that 

But 

=(P~l 

+(~)+(P:l)+(P;l)+ ... +1, 

Gn + 1 = ~1)+ +(;) 
+(P;l)+(P:l)+ .. +1, 

2 (~)+ G)+(p; 1) 
+(P;1)+(P:2)+ ... +1. 

(1) 
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(p~ 1)= + 
(:) c-:} 

143 

where (:) 1 is the last term of 
n = 2p + lone has 

2, and so (l) is established in this case. For 

Gn (p 0 +(n+(i)+ 1) (p+ 
3 + 4 

+ ... + 1. 

I=(~)+(n+ 21)+(P~1)+ ... +1, 

+2 = + :l)+(P; + 2)+ .. + 1 
3 ' 

and (1) may be 

Since G2 =! and =2= it follows that Gn=Fn-, for any n;;.:2. 
Recurrence relation (I) may also be proved directly from Pascal's triangle in 
both of the cases when n is even or odd. 

CHAPTER 4 

4.1 that neither (1) nor holds. Then X contains at most a 
pairwise distinct objects and there are at most a copies of each of these. Thus 
X has at most a2

:( n -1, which is a contradiction. 

4.2 The k rows and k columns on which the rooks are found can be chosen 
in (7)(~) distinct ways. The intersection of the k rows and k columns forms a 
table with k2 squares, on which the k rooks can be situated in k! ways in positions 
so that no rook can attack another. 

In fact. the k rooks are found in k different columns. but the rook in the first 
column can be arranged in k different ways on the k rows; the rook on the second 
column can be arranged in k-I different ways in k-l rows other than the row 
on which the rook in the first column is stationed, and so on. The result is that 
there are k! arrangements. 

Thus the total number of arrangements is k !G)G). 

4.3 Each of the 19 numbers in A 
disjoint sets: 

{ 1}. 

to one of the following lR 

{10, 94} .... , {49. 55}. 

Thus there exist two distinct in A which belong to one of the pairs 
{4, 1 , ... , 55} and which therefore have their sum equal to 104. [W. L. 
Putnam Competition of American Math. M on/hly 86(9) 752.] 
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4.4 Consider the set {k+ 1, k+2, .... 2k+ I}. which contains k+ 1 numbers. 
The sum of each of distinct numbers selected from this set lies between 
2k + 3 and 4k + 1, and is therefore not divisible by 2k + 1. The difference of each 
two different numbers lies between 1 and k and is therefore not a multiple of 
2k + 1. Let the number be denoted It follows that n(k):;t k + 2. 

Let A be a set which consists of k + 2 integers. If there are two numbers in A 
which have the same residue modulo 2k + 1, then their difference is divisible 
2k+ 1, and A satisfies the given condition. 

In the opposite case, all the k + 2 remainders of the num bers in A modulo 
2k + I, are pairwise distinct. Thus the set of remainders is a 2)-element 
subset of the set {O. 1, ... , 2k i·. One can also consider the remainders as forming a 
(k+ subsetofthesetM {-k,-lk-l), ... ,-l,O,l" .. , since 
every p = (2k + l)q m, where q is an and m EM. However. for 
every choice of k+2 numbers from M, there will exist two among them whose 
sum is zero, since otherwise one would have IMI:;t 2(k + 1) + 1 =2k + 3. Thus A 
contains two numbers whose sum is divisible by 2k+ 1. But IAI k+2, from 
which we deduce that n(k)~k+2. From the two opposite inequalities one can 
conclude that n(k) = k + 2. 

4.5 Sum the inequality for j = 1, ... , n to obtain 

+ 
If one further sums over i = L .... n. then 

IMI + 2nlCkl:;t n3
• 

by summing on k it is seen that nIMI+2nIMI:;tn4 and thus IMI:;tn3 

The lower bound is attained if n 0 (mod 3). 
Suppose now that ;MI = n3/3. and define a partition of M, 

M A;u u"'uA~u U"'U u"'uA'iu u"'uA~, 

such that IA/I for every 1 ~ i, j ~ n. Let Ai = U~ = 1 

Ci == A{ .t"j_ 1 (mod nl . The partitions (BI1. and (Ci), 1 ~ i ~ n, 
identity n Bj i + IAi n ckl + IBjn = n, since for every i, j, k the 
relation holds: 

Thus in this case min JMI = Tomescu, E American M athemalical 
83(3) (1976), 197.J 

4.6 First we show that f is idempotent if and if the function g: Y ...... Y 
is the identity function, where Y =f(X) and =f(x) for every x E Y. In 
if f is idempotent, it follows that g(x) = for x E Y, and thus there exists 
Z E X such that x = and one can write 

= =x~ 
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and thus?J is the identity function. But jf g is the function. then 

j(f(x») = =g(y) y 

for every x E X, and hence j is idempotent. 
Let !Y!=k. Then l~k~n. 
The set Y X can be chosen in ways; the restriction of the function f 

to Y is the function, and the number of functions h: X ,Y -+ Y is 
to k"-k. Since j is the on Y, it follows that j is uniquely determined by 
its restriction h to X, Y. This latter observation completes the of the 
formula for 

One can also show that the exponential generating function for the numbers 
is exp(xe''). 

Observe that 

=exp(x+ 1 
xn + ! 

... + 
n! 

1 + ( x + 1T + 2T + ... ) + 1 (x + ~~ + 

1 
+ + ... + .... 

"'Y+ ... 

Thus the coefficient of xn in the expansion 

is 

This implies that the coefficient of x" in the expansion of is I 

4.7 The proof is carried out induction on m. For m = 1 the statement is 
true. Let m;;;: 2, and suppose the holds for m -1, with the 

antichains of the union pairwise Let P be a partially ordered set 
which does not contain a chain of m + 1. 

A chain will be said to be maximal if its element set is not a proper subset 
of the element set of another chain. and an element x of S will be said to be 
maximal ~ for every element y in S which is with x. 

The antichain M consisting of the maximal elements of P is nonempty, since 
the maximal element of an arbitrary maximal chain is contained in M. It follows 
that the partially ordered set P ,M does not contain a chain of cardinality m. 
Suppose that P ~\1 contains a chain x! < X2 < ' , . < x", of cardinality m. 
Then there exists Z EM such that Z> xm , since otherwise one has Xm EM and 
this contradicts the fact that Xm E P 'M. Thus Xl < X 2 < . , , < x'" < z is a 
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chain of cardinality rn + 1 in P, which contradicts the hypothesis. Since P ""M 
does not contain a chain of cardinality m, it follows from the induction hypothes-
is that P is the union of m -1 disjoint antichains. These, 

of Pinto rn antichains. [L. Mirsky, American Math. 
Monthly, 78(8) ),876-877.J 

The dual of this proposition also holds for any partially ordered set P. It is 
called Dilworth's theorem: The smallest number of chains into which P can be 
partitioned is equal to the maximal number of elements in an antichain. 

4.8 Each partition Pk with 1 ~ k ~ n 1 has k classes and is obtained from 
! by com bining two classes into a class. Thus, !, ... , ~ ! are 

then the Pk can be chosen in (k;l) ways, The number of chains 
oflength n is 

4.9 Suppose that 1~IEi=.0'andlet ={Xl'"'' SincexlIi'n~~ 
there exists a set FJ E F such that Xi Ii' Fi for i = 1, ' , , , r, It follows that n 
, .. n =.0'. which contradicts the hypothesis. In if, [or Xj E 

PI n ' . 'n then Xj E and Xj E but construction xJ Ii' 

4.10 Let the family SI <:1<:,' It follows that all the sets of SI are 
pairwise distinct subsets which are distinct from subsets of S. In fact, if there 
exists an index i such that X ""Xi E S and Xi E S, then (X ""X 1)nX;=.0', which 
contradicts the definition of the family S, One can th us cone! ude that 2r ~ Ip(X)1 
=2n, or r~2n-l, and thus max r~2n-l The bound is attained if 
y = X for an element x E X and if S is the of sets { Ii v I Yj. 
In this case == IP( YJI=2n

-
1 If BE S then A nB::f::0. since X E A and x E B 

and hence x E AnB: Acta Math, Acad. Sci. Hung" 15 

4.11 Fix a subset C E F. The function f : F -> P(X) defined by f(A) A c:, C 
is I n if At 6 C = c:, C, then from the properties of 6 one can 
infer that At t 6 C) 6 C c:,C)6C= and thus A l =A 2• It follows 
that the num ber of sets of the form A 6 C, where A runs the family F, 
is at least to = m, 

4.12 Let S = {I, . , , , n}, and denote Ai the set of families of nonempty, 
dist inct subsets of S which do not contain the element i E S, Since the 

number of families of nonempty pairwise distinct subsets of S is equal to 
1, it follows that 

A(n)=22 '-1_IA t v '" vAnl, 

By applying the of Inclusion and Exclusion one finds that 

IAtv"'v IAinAjl+-"· 
1.::>' It 
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Since In lEK '~I, where IKI=k, the formula for follows immedi-
if one takes into account the fact that the set K can be selected in G) ways 

as a subset of S. [L. Comtet, c.R. Acad. Sci. A262 (1966), 1091 1094.] 

4.13 Let A=(Sjh';j<Ck be an irreducible of the set S. [t follows 
from the definition that each subset Sj contains a nonempty subsel T; of S. 
consisting of elements which do not belong to the other subsets of the 

Let T = I It follows that the subsets ... , Ik form a partition of the 
set T. If == one sees that k ~ i ~ n and all irreducible of S can be 
obtained without in (he following way every i): For each of the 
C) choices of T as a subset of S, consider the SU, k) partitions Tl u .. u Ik 
of T. Each of the II i elements to a family of subsets chosen 
from among SI "T1 , ••• , Sk "'-..Ik which contains at least two sets. and thus the 
number of possibilities is 2k - (~) - (~) = 2k - k -I. From this observation the 
formula for I(n, k) follows. 

The expression for /(n, n -1) is obtained by using the fact thai S(n. n - 1) == (;). 
In order to obtain the expression for I(n, suppose Ihal y 11: S. Then there 
exists a from the set of partitions with three classes of Su { onlo the 
set of irreducible 2-se! of S, defined as [ollows: The partition S u 
== U S2 uS 3 is associated with the irreducible of S whose sets are 
SI U(S3 "{ r}) and S2U(S) "{y}), where S3 is the class of the partition which 
contains y. It fonows that I(n. 2)=S(n+ 1. The same conclusion holds if one 
applies the recurrence relation (a) of Problem 3.5. [T. Hearne, C. Wagner, 
Discrete Mathemalics. 5 (1973),247-251.] 

4.14 Let t be the smallest integer such that [t2/4J > 11. Consider the follow­
sets of natural numbers: 

( 
J' 

t 
where 1~j~2 

Let 1 ~ k ~ m, denote a subfamily F of this family of sets, which is union-
free. the number Ik (or if there does not exist another sel AI,. j, of this 
family with m sets F with the property that ik = is and js <h (or jk and is < [k)' 

At least one of the ik and A of Aik •h must be labeled, since otherwise 
AI,.h would be the union of two sets in F, contrary to hypothesis. Since a 
labeled can be an for one set it follows that m ~ t 
and thus 

or f(n)~ 1. 

In order to obtain the lower bound, let {A l' . • . • be an arbitrary family of 
n distinct sets. Construct a subfamily which is union-free in the following way' 
Let Ail denote a minimal that is, one which does not contain another set as a 
proper subset. If the sets Ai" ... , Ai, have been selected, then the set +1 

will be a minimal set in the family {AI" .. , An} "'-..{ ... , Ai,\' which is not 
the union of two distinct sets of the family (AI" ... , . One can select AI,. I 
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in this way if n-s> since there are (~) unions of two distinct sets in 
the family ... , Ai.}. This construction defines a subfamily {Ai,> ... , 
where r+ )f2~n, that r~-f2n-l. 

The equation Ajv Ak i, j, k E ... , i,} are pairwise distinct) 
cannot hold, and thus family ... , AI,} is union-free. In fact, if were 
selected after and Aj • this equality would also contradict the construction, 
for otherwise it would follow that Ak was not minimal when it was selected, 
which contradicts the definition of the family {AI, •... , AiJ Erdos. S. Shelah, 

Theory and Applications, Proceedings of the Conference at Western 
Michigan University, 1972, Lecture Notes in Mathematics. Springer-Verlag, 
1972.] 

4.15 For every XES let M(x) {i I x E }. It can be shown that for every 
subset Tc {1, 2, ... , n} with ITI = n - k + 1, there exists XES such that M(x) = T. 
In fact, since UltT Ai is a union of k-1 subsets of the given family, it follows that 
there is an element XES which does not belong to this union. One can show that 
M(x)::::: T. By construction M(x) c T. If M(x) is a proper subset of T, it follows 
that IM(x)1 ~ n k. Thus there exist k sets which do not contain the element x. 
which contradicts the hypothesis that every union of k sets of this family is 
equal to S. It follows that M(x) = T, and thus the function which associates with 
each element xES the subset M(x) has a restriction defined on U c S, 
with values in the set Pn-k+ l({l, ... , It follows that 

If IS! = "1)' then one can conclude from the that 
n 

L 
i= I 

=(n-k+ 1 =(n k+ 1) en) 
and it can be seen that 

== n k + 1 (n (n 1) 
n k- == k-l 

for every 1 ~ i ~ n. This deduction uses the fact that in this case = n k + 1 
for every XES. 

4.16 Let me be the smallest natural number with the property described in 
the statement of the problem, and set U~= 1 XI = Y. Since iXil = h for 1 ~ i ~ k 
and Xjc Y, it follows that k~(I~') and thus Iyl, or mo~min In orderto 
prove the opposite inequality. let Y c X with I YI =mo. Since h ~ k, one can 
choose h-element subsets ... , X. such that U~= 1 Xi == Y. In this property 
follows from the inequality mo ~ kh. however. that mo > kh. Since 

h !) < k by the definition of mo, and since rna ~ kh + 1, one can conclude that 
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which is a contradiction. construction IU~:l Xil=IYI mo, and thus 
min ! X il ~ mo, which establishes the identity in question. 

4.17 Let YcX with IYI=p. The set Y may be written as the union of k 
sets, Y = A I V .. , V Ak , in (2k -l)P different ways. In each of the p elements 
of Y can to 2' -1 nonempty families of subsets A I' . . . . . [t follows 
from the fact that Y can be chosen in different ways. that 

LIA!v ... vA,I= ± p (2k-l)P=n(2k-l) ± (n 1) (2k _llP -
1 

p=! p=1 p-lj 

I) 

4.18 From the one can also conclude that 
= IJ if IX 1== n. Recall that the of 

CfAtv' . v =CAln'" n 

determines a bijection between the family of subsets of the form AI v .. , v 
and the family of subsets A In' .. n Furthermore In' . , n CA'i 

n IAI v ... vA.I. One can thus write 

I) , 

which is the desired result. One should also note that each or the indicated sums 
contains 2"" terms and each of the subsets A I' ... , Ak can be selected from among 
the subsets of X in 2" ways. [1. E American Math. Monthly, 86 
(1979), 223.] 

4.19 Suppose that a filter basis S contains the sets A I' A l , .. , It follows 
that there exists Bl E S such that BI CAl n Similarly, there exists E S 
such that c Bl n A3, and so forth. Finally there is a Bp_ I E S such that 

I cBp _ 2 nA p and c A1+ 1 for i= 1, ... , p-l. It is also the case that 
c , By construction, 

Bp - 1 cB p - 2 c ... cB 2 cB 1, 

and hence there exists a set B ! E S such that B for i = !, . , . , p. 
Thus every filter basis S has form: There exists Bc B 

such that 

S={B,Bv .,Bv (1) 

where ... , Cs are different nonempty subsets of X Let IX ""-BI 
=k. Then B=I=0 that O~k~11 1. Since is a family of 
nonempty subsets of X~, it follows that o~s~ =n-k. and 
thus the set B can be chosen in (n:.)=G) different ways. For every choice of 
B the family of subsets of X [which may be (8=0)] 
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can be chosen in a number of wals which is equal to the number of subsets of a 
(2k -I)-element set, namely, 22 -I. (Note that X '."B has 2k -1 nonempty 

If IBI = n - k, it follows that the number of ways in which a filter basis 
of form (1) can be selected is equal to 

The number offilter bases for an arbitrary n-element set is obtained by summing 
these numbers over k=O, ...• n-1. 

4.20 Let X be the union of all the elements of the sets 
1 ~ m. Suppose that X •... , and let (x P(1)' •.• , 

permutation of X. 

and Bj where 
be an arbitrary 

There exists at most one index i for which each element of the set AI has an 
index smaller than each element of the set B;, In fact. that this is not the 
case. Let be two indices such that each element has an index smaller 
than each element of B; and each element of has an index smaller than each 
element of B j. By the hypothesis, there is an element x Plk) E Bin A 2 and an 
element xp(r) E B2 n A l' Since xpir) E A 1 and Xp(k) E B 1. it follows that p(r) < p(k). 
But Xplr) E B2 and Xp(k) E A21 and thus p(r} > p(k), which establishes a contra­
diction. 

Thus there exist at most 11 ! BI) with the desired property, Let i be a 
fixed and consider of the indices of the elements of X such 
that each element of Ai has an index which is smaller than the index of every 
element of B,. The number of such permutations is equal to 

( 
n \ I I( In! 

I p.q. 11 p-q).=(-) , p+q; p+q 
p 

To see this, note that one can choose p+q elements from AlvB; in (p:q) ways. 
The first p elements in order of indices are taken from Ai' and the 
remaining q elements (with indices than the elements of Ai) are associated 
with BI • The indices of the elements from Ai can be permuted in p! ways, the 
indices of the elements from Bj can be permuted in q! ways, and the remaining 
elements' indices can be in (n - p - q)! ways, Thus in this way one 
obtains all permutations of {l, ... , n} with the property that each element of Ai 
has an index which is smaller than each element of Bi • 

Thus each pair (Ai> Bi ) is calculated n times relative to all the permuta-
tions of indices for which each element of

P 
Ai has an index smaller than each 

element of B;, Thus the number of pairs (A j , BI) satisfies the inequality 
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4.21 A chain oflength n formed from subsets of X is a sequence 

M 1 cM 2 c .. cMn_1cX 

such that IMil =i for i= 1, ... , n-l. The number of chains of length n which can 
be formed from elements of the set X is equal to n!. If IAI = r, then number of 
chains of length n which contain A of the form 

is equal to rl(n - r)!. 
If Ai and Aj are noncomparable with respect to inclusion, then every chain 

which contains Ai is different from every chain which contains A j • Thus one 
can write 

p 

L nl !(n -nd! ~n!, 
i=l 

where = nj. But this implies that 

since maxn, C) = ([n~2J)' It follows that max p ~ ([M~2J)' The opposite inequality 
is obtained by considering the family G of subsets of X which contain m = [ni2] 
elements. 

This proofis due to D. Lubell [J. Comb. Theory, 1 (1966), 299]. 

4.22 Let n=(x!, ... , xn) be a cyclic permutation of the set X. Consider a 
cycle C with n edges, and associate the symbols XI, ... , Xn with the edges of C 
(in the usual cyclic order). If an r-element subset A of X contains consecutive 
elements in the permutation n. then it corresponds to a subwalk of the cycle C 
of length r. 

By condition (2) the subwalks which correspond to the sets AI"'" Ap have 
at least one edge pairwise in common. Let X be a vertex of C. Associate the sub­
walk having the same symbols with the corresponding r-element subset or X. 
It follows that X is a terminal vertex for at most one walk AI' In fact. if Al and Aj 
have a terminal vertex in common and i=l=} (and thus Ai and Aj are distinct), 
then they must leave X in opposite directions on the cycle C. Since n;:; 2r. it 
follows that these walks are disjoint relative to edges, which contradicts the 
hypothesis. Now, since each walk AJ (j = 2 ....• p) has at least one edge in common 
with A). it follows that one of the endpoints of Aj is an interior point of AI' But 
since two distinct walks cannot have a common endpoint, one can conclude 
that there exist at most r-l walks Aj with 2~}~p, and hence p-l ~r-l, or 
p~r. 

Finally, for each cyclic permutation n of X, there exist at most r r-element 
subsets of X which consist of consecutive vertices relative to TT. and which 
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satisfy (2). Since there exist (n -1)! permutations of X, one can in this 
way obtain at most - I)! r-element subsets of X. 

In order to determine a permutation for which an r-element set A 
consists of consecutive one must first order the sets A and X "A. 
Since IAI=r. it follows that each set A is counted r!(n-r)! times. Thus the 
number of subsets Aj is p~r(n l)!/r!(n-r)!= :). In order to show that 
max C~ ~), consider the r-element subsets of X which contain a fixed element 
XI EX. There are :) such subsets. 

This proof is due to G. O. H. Katona [J. Comb. Theory, 13 (1972),183-

4.23 Let X Color these elements with one of the two colors 
a or b, so no set Ei is monochromatic. The element Xl is assumed to be colored 
with a. 

that one has colored the elements X 1> ••• ,Xi with 1 < i < n with a or 
b so that no subset is and consider the case which occurs 
when this process cannot be continued. Thus one cannot color the element 
X/+ I with the color a, since there exists a set E c {x b ... , Xi+ I} with Xi + 1 E E 
which has all the elements other than Xi+ 1 colored with a. The element Xi+! 

can also not be colored with b, since there is a set Fc{xl!"" xi+d with 
XI+ ! E F which has all elements distinct from x/+ 1 colored with b. It follows 
that E, F are distinct sets chosen from ... , Em with EnF= +l}' which 
contradicts the hypothesis. Thus one can color Xi + 1 with either a or b so that 
no monochromatic set is "'r",.rll1ro"ro 

It has thus been proved process can continue 
until one has colored X with two colors so that no set is monochromatic. 

4.24 Color the elements of X with red and blue. Assume that the 
"'rlP""t'lrlPt'\T and that each color has probability 1. Let Ai be the 

all the elements of with a color. It 
follows that P(A j)= 1 for every i= 1, ... , n, since there are 2' ways of 
coloring E; with two colors and among these only two lead to a monochromatic 
coloring. Thus the probability that a random coloring contains a monochroma-
tic subset is to 

n n 
P(A 1 U ... u An)< I: P(A i) = 1. 

i= 1 

The first inequality is strict, since the events A I' ... , An are not independent; 
they occur simultaneously when all the elements of X have the same color. 

Thus the probability of the complementary event is strictly positive, which 
shows that there exists a coloring with the desired property. 

4.25 Assume that n~ 3 and the family F of three-element subsets of M 
has the property that for each two distinct subsets A, B E F one has IA nBI =0 
or IA n BI =2. In this case it will be shown that ~ n, which establishes the 
desired nr""p·rrv 

Thus suppose that F contains only three-element sets which either are 
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pairwise disjoint or have exactly two elements in common. In particular, let 
A, B EF such that AnB={a, h}, A={a, b, c}, and B={a, h, d}. Consider two 
cases: 

(I) The element c belongs to another set C E F. The set C cannot contain a 
unique element in common with A. and hence C contains one of the elements 
a or h. But C also cannot contain a unique element in common with B and hence 
dEC. It follows that C c Au B. One can now show that if the elements a, b, or d 
also belong to a set of F other than A, B, or C, then this set must be contained 
in Au B. If the element d is selected instead of c the same conclusion can be 
obtained by an analogous argument. Suppose, for example, that a E C. Let 
a E D and D E F. From the fact that ID n Ai = ID n BI = ID n ci = 2 (which holds 
because {a} = A n B n enD) one can conclude that D is one of the sets A. B, or 
C. However, if hE D. it follows from the fact that b E An B that the pair D and 
A and the pair D and B each have two elements in common. One of these 
common elements also belongs to C, and hence D and C have two elements in 
common. It follows that if D is distinct from A, B, and C, then one must have 
D = {b, c, d} c Au B. On the other hand. consider a four-element set and its 
four three-element subsets. They satisfy the condition that the intersection of 
every two contains exactly two elements. 

(II) The element a belongs to another set C E F. If C also contains one of the 
elements (' or d, it follows that C c A u B and one again has case (IJ. Otherwise 
it turns out that b E C and C also contains an element XI ¥=c, d. In this case the 
elements c and d do not belong to another set of the family F. Suppose, for ex­
ample, that c E D and D '* A, B, C. It follows that a E D and hence dE D and 
XI ED, which establishes a contradiction, since IDI = 3. 

If one of the elements a or b belongs to another set D in F, then D does not 
contain c or d. It follows that D contains both a and b and another element 
X2 ¥=XI' From this observation one can deduce the structure of the family F 
of three-element subsets of M which pairwise have an intersection of cardin­
ality zero or two. 

The family F can contain three kinds of sets: 

(a) three-element subsets which do not have an element in common 
with another subset in F; 

(b) two subsets A and B such that An B = {a, b} and possibly subsets 
C1 ={a,b,xd,C2 ={a,h,x2}"" ; 

(c) two subsets A and B such that IA n BI = 2 and at most two other 
three-element subsets contained in Au B, but with every subset 
from (b) disjoint from the subsets from (c). 

From this one can easily find the maximal cardinality of the family F as a func­
tion ofn. Let max IFI = f(n). Thus ifn =4k, it follows that f(n) = n, and this maxi­
mum is attained when F is obtained by starting from a partition of Minto n/4 
four-element classes and considering all four subsets with three elements of each 
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class. For n=4k+ lone sees that ffn)=n-l, and this maximum is attained by 
applying the construction to the set M where x is an 
element of M The maximum is attained only in this case. For n =4k + 2 one 
has = n - 2. The maximum is attained only in the following cases: 

(I) The construction is applied for n=4k to the set M "'Ix, 
where x, .v are any two distinct elements of M. 

F contains n 2 subsets of type (b): 

h. X2}' ...• 

For n = 4k + 3 it turns out that fIn) = n - 2 and the maximum occurs only in the 
fol1owing two cases: 

The construction is applied for n = 4k to the set M y, 
where x, Y. z are distinct elements of M, and the set {x. y, 
is then added to the family thus obtained. 

(4) F contains n-2 subsets of type (b), as in case (2). 

Since ~ n for n ~ 3, the property in question has been established. One 
considers n ~ 5 in the statement of the problem. because then there are n + 1 

distinct three-element subsets. One can also observe that the limit 
n+l can be reduced to n or n-l when n51 (mod 4) or n52 or 3 (mod4) 
respectively. 

4,26 One can assume that ai' bl ~ 0 for i == I, .... n, since the problem remains 
the same if an arbitrary constant is added to all the numbers ai and Define 
the following polynomials: 

n 

,,", = 2:: 
i~ I 

Then 

= +2 

j(x)+ 

but the polynomial is not identically zero, since {a 1> • • . • =F 
{b l •..• , bn }. 

Further, since j(1)=g(l)=n, one can write 

g(x) 

where k ~ I and p(1) =F O. It follows that 
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f(x)+ 

If one now sets x = 1, it follows that 

2n + g(l) 

k p(X 2) 
(X+ I) -(-) . 

PX 

or 11 
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F or the case n a power of 2. one can construct an example of two collections 
which the given conditions as follows: is formed from 
2/) copies of the for 0 ~ (k + ! )/2. The set ... , bn } is formed 

from k+\J copies of the +1 rorO~ ki2,wheren=2k Fork=2 
these two collections are and {1. 1, 1, 3}. [J. 
E. G. Pacific J. Math., 8 

4.27 If 0eF, it is clear that F= m=1. and thus m~n. If XeF, 
then it is that F = and m 1 and hence m ~ n. it follows 
that m = 2, where x e X and n = IXI;:;, 2 because A 1=;= 
Here too m ~ n. 

Now consider the case in which neither nor X is in the family F. If all the 
sets ... , Am have an element x in common, then the sets Al 
Am ""-{x} are pairwise disjoint and they are subsets of the (n -I)-clement set 
X ""-{xJ. It is easy to see that the maximum number of pairwise disjoint subsets 
of a set Y = {r1> ...• Yn-I} is equal to n, and this maximum is attained for the 

sets: 0, {.vI}.' ., {Yn- d. Thus in this case one has m~ n. 
for every x e X there is a set A E F which does not contain the 

element x. Let d(x) be the number of sets of the family F which contain the 
element x. 

For x E X, let A E F be a set with the that x fA. and let AI .... ' 
d=d(x)] be the sets which contain x. By the hypothesis AI •...• Ad each 

have an element in common with A. Let these elements be •... , Xd' If. for 
example. Xi Xj' 1 ~ i,j and then it follows that Since 
x r; A and XI E A, one can conclude that x oF Xi and thus which 
contradicts the The elements XI, ... , Xd are 
distinct. From the fact that ... , Xd} c A it follows that IAI;:;, d 

Now suppose that m>n. Then m d(x»n- ;:;,n-IAI for each 
(x. A) with x r; A. and hence 

d(x) 
---< 
m n-

(I) 

since O<IAI<n. Now take the sum or the inequalities of form (1) for every pair 
A) with X If: A. 

It has been assumed that for every .x E X there is a set A E F such that 
x r; A, and thus every element x E X belongs to at least one pair A). 
for every A E F there exists an element x E X -4= 0 with the property that 
x If: A, and hence each set A E F to at least one pair 

F or a fixed element X E X there exist m - d(x) sets A with the property 
that x r; A. For a fixed set A there are exactly n -IAI elements x with the property 
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that x ft A. By summing the (1} and by grouping terms one obtains 

(m I I IAI 
(n- A)n_IAI' 

or 

It follows from the definition of that the two sides of inequality (2) are 
which establishes a contradiction. Thus the assumption that m> n is 

false and hence m ~ n. [Po R. P. Algebraic Theory 
1973.J 

4.28 Let {PI' ... , PM 1 denote a set of n points in the plane. Let at be the 
number of points at distance 1 from the Pi for 1 ~ i ~ n. The desired number 
of will be equal to 

Let C, denote the unit circle with center at 
have at most two points of intersection. Thus 
either 0,1, or 2 points of intersection and 
finds that the sum is less than or 

Pi' Each two such circles 
for each pair of circles 

the numbers thus obtained, one 
-1). 

1t is clear that one needs to consider case in which each number at is 
at least to 1. Since each point Pi is an intersection point for exactly (~') 

of these one can write 

-m. 

It follows from the Cauchy-Schwarz that 

Ctl aY ~n iii 
and thus from the preceding inequality one has 

4m2=( i ~ -1)+ 
!= 1 

or 

- 2nm 2n 2(n - 1 O. 

Thus m~(n+ <n.Jn for n';::.1. This 
observation that the inequality is equivalent to n> 

is immediate from the 
-1. [1978 W. L. Putnam 

IJCLlUV.Il. Amer. M mh. Monthly, 86 (1979), 

4.29 Each line of intersection is determined by two 
is determined three points of the set M containing the n 

but each plane 
points. The 
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number of lines of intersection which contain no point of M is to t(~)("; \ 
since one can choose three points from n points in (;) ways, and another plane 
in the remaining set in ("~ 3) ways. The order of selection has no in 
determining the lines of intersection. 

The number of lines which contain a point of M is equal to 
since one can choose three in (;) ways, and by r""T'~lrlPrT 
three to be a common of two in turn, the second plane can 
be chosen in ("~3) ways since one must select the two other from the 
/1-3 

In a similar manner, one can see that the number of lines which contain two 
of M is to (~). Each line of intersection can contain at most two 
of M, since no fou; points of M are coplanar. 

The total number of lines of intersection is therefore equal to 

4.30 One can choose a vertex of the triangle in n ways. The two other 
vertices must be chosen from among the n 3 vertices different from and not 
adjacent to the vertex selected. Thus there are C~3)=(n- -4)/2 
f/V"~H~'HH'''~, of which n 4 must be eliminated, since they to the 
cases in which the two chosen vertices are a side of the polygon. 
There therefore remain (11- 4)(n - ways of the two other vertices. 
Since anyone of the three vertices can be selected as the first vertex, it follows 
that there are -4)(n 5)/6 ways of a which satisfies the 

condition. 

4.31 No three are concurrent in an interior point of the polygon. 
It follows that each interior point of intersection is determined by the 
two diagonals which meet on it and thus by the four vertices of the 
which are the of these Thus the number of points of inter-
section of the diagonals inside the polygon is equal to G). 

Each AB intersects all diagonals which join pairs of vertices, other 
than A and B, in points other than the vertices of the polygon. It follows that the 
number of points of intersection other than vertices of the diagonal AB with 
other diagonals is to the number of diagonals which do not have an end­
point in common with AB. But this number is equal to 

n(n 3) 
-3}+ 1 1, 

since in A and in B n - 3 diagonals intersect, but AB has been counted as a 
UHl,I',V,!l"'l incident with A and with B. 

Multiply this number by the total number of nfn-3)/2. Each 
point of intersection will be counted with respect to each diagonal on 
which it is found. Thus the total number of of intersection other than 
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vertices is to 

Subtract from this number the number of interior points of intersection. The 
number of exterior points of intersection is thus equal to 

11(11- -7n+14) 
-~~-----~ 

-5) 

for every n;;;?! 3. 

4.32 Let A 1> •••• An be n points on a circle. The order is the order in which 
the points are encountered when the circle is traversed clockwise. It follows 
that Al A2 ... An is a convex polygon. Ifthis polygon does not trace a diagonal, 
then the sides of the with the determine n + 1 

Draw the n(n - each time a 
is drawn. 

Each new produces exactly as many as the number of 
segments into which it is divided by already existing diagonals. But this number 
is one greater than the number of points of intersection (in the interior of the 
circle) of this diagonal with existing diagonals. Observe that by this 

each point of intersection of two located in the interior 
is obtained once and only once. It follows that the total number 

of new is equal to the sum of the number of and the number of 
points of intersection located in the interior of the polygon. By hypothesis 
there do not exist three diagonals which are concurrent in an interior point of 
the polygon. Thus one can characterize as a bijection the mapping which 
associates each interior point of intersection of two diagonals to the four 
vertices of the which are the endpoints of the two 

It follows that the total number into which the interior of the circle 
is divid~d is equal to 

n(n­
n+l+~-..:.. 

since the number of interior points of intersection is equal to (:). The formula 
is valid for every n;;;?! 1. 

4.33 The property is established by induction on the number c of curves. 
If c= 1, there are no points of intersection and hence the number of is 

to 1. Suppose that the property holds for every family of c curves which 
have np points of intersection having multiplicity p, for every p;;;?! 2, where the 
multiplicity of a point of intersection is defined as being the number of curves 
which intersect in it. By the induction hypothesis these c curves bound 
1 + n2 + .. + (p -lJnp +. . closed Consider a new curve, and suppose 
that it passes through kp points of intersection of multiplicity p with the first c 
curves ~ The total number of points of intersection of the new curve is 
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equal to kz +k3 + ' " + kp + . , ., and hence the number of arcs induced onthis 
curve is equal to k2 + k3 + ' ... Each portion corresponds to a new with 

to the family of c curves. Thus the total number of regions bounded 
the family of c + 1 curves is equal to 

(1) 

Let mp be the num ber of points of intersection of multiplicity p of the family 
of c + 1 closed curves. This number can be as a function of np and /'p 
in the form 

rnp=np kp+! kp, 

since the np points of intersection of multiplicity p of the c curves must be reduced 
the number I of these which become of multiplicity p+ 1 by 

located on the new curve. One must also add the number kp of points which have 
mUltiplicity p -1 and become of p in the family of c+ 1 curves. It 
follows that 

1+m2+2rn3+" +(p-l)rnp 

+ -l)(np-kp + l + +'" 

=l+nz+ + ... +(p-l)np +'" + +k3+'" +kp+ "'. 

This is the number (1) of regions formed by the family of c + 1 curves. The proper­
ty is thus established by induction. 

4.34 Suppose that (SI" .. , Sm) has an SDR, denoted (a l ., .. , am!. It follows 
that SitU'" uSi,::J{a""", aik}' and hence U'" uSiJ~k for every 
k and every choice of pairwise distinct numbers ii' .... ik • 

The will be established induction on rn. that the family 
.... S'" satisfies the condition for the existence of an SDR. For rn = 1 each 

element of S 1 forms an SDR. 
further that the is true for every rn' < rn, and let 

M(S) (S\)., .• Sm)' Two cases will be studied: 

(1) Si,U ... uS;. contains at least 1\+1 elements for l~k~rn 1 and 
for each choice of distinct numbers it, ... , ik E {I, ... , rn}. Let at E SI' 
(/ \ each time it appears in the other sets of M(S), and denote the sets thus obtained 
by S;'. . Thus M'(S) ... , S;") satisfies the necessary and 
sufficient conditions for the existence of an SDR, since the set Si, U ... U Sj, 
contains at least k + 1 elements and a single element a 1 has been suppressed. 
By the induction hypothesis M'(S) has an SDR. The element at together with an 
SDR for M'(S) forms an SDR for M(S) in which a1 is a representative of SI 

no appears in the sets of M'(S)]. 

that l~k~rn 1, and let [il"'" e{t, ..• rn; such that 
= k. Renumber the family ... , S'" so that Si, becomes 



160 Problems ill Combillatorics alld Graph Theory 

becomes ... , Si, becomes Sk' By the induction (S I' S2' ... , 
has an SDR. Denote it by D* (aI' a2' ... ,ak), and suppress the elements of D* 
whenever appear in the sets SH 1, SH 2, ... , Sm. Denote the sets thus 
obtained I, St+ 2' ... , S~. The system of m - k sets M*(S) =(S:+ I> •• " 

satisfies necessary and sufficient conditions for the existence of an SDR. In 
fact, if u ... u stp ' where i2, .•• , ip} C {k 1, ... , contains fewer 
than p then S 1 U U··· U S~ u ... u contain fewer 
than k+p u ... u =k. By construction SI u ... USk 

and hence U' .. U SI, U ... u Sipl < k + p, which contra-
dicts the that M(S) satisfies necessary and sufficient conditions for 
the existence of an SDR. 

By the induction hypothesis M*(S) has an SDR, which with D'" 
forms an SDR for M(S}, since M"'(S) does not contain any element of D"'. 
[Phillip J. London Math. 10 (1935),26-30.] 

4.35 It will first be shown that if F is a minimal 
of X, then there exists an element x E X such that 

h 
I{E lEE F, x E E}I~- M(n. k. h). 

n 

of h-element subsets 

(1) 

Suppose that the property is that is, for every element x E X the number 
of sets in the F which contains it is smaller than k, In this 
case, the number of occurrences of the elements of X in the sets of F 
[= hM(n, k, is strictly smaller than the of the number n of elements 
of X and the number k, h), which is an upper bound for the number 
of occurrences of each element in the sets of X. It has thus been shown that 
hM(n, k, h) < k, h), and this contradiction establishes (1). It follows that if 
G = {E lEE F, x f E}, then 

n-h 
IG\ M(n, k, h)-I{E lEE F, x E E}I"'- M(n, k, h}. 

n 

Now it will be shown that M(n -1, k, which will a proof of the 
first inequality. For this it is sufficient to show that the family G has the property 
that every k-element subset of the set Y == X contains at least one h-element 
subset of G. 

Let Z c Y with == k. Since Z is a k-element subset of X, it follows that there 
exists an h-element set T of F such that T c: Z. From the fact that Z does not 
contain the element x, one can conclude that x rt T and hence the set T belongs 
to the family G. This observation establishes inequality T. 
Nemetz, M. Mat. Lapok, 15 228-238.] 

By iterating this and the fact that M(k, k, h) = lone can show 
that 

M(n, k, 
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where {x} denotes the smallest greater than or to x. Schonhelm, 
Pacific}. Math., 14(1964), 1405-1411.J 

In order to prove (b) use the following construction: Consider an element 
x EX, and let 0 be an extremal family of M(n -1, k, 11) h-c1ement 
subsets of Y = X Further let H be an extremal family made up of 
M(n -1, k -1, h - 1) (h - subsets of Y such that every set 
of k-l elements of Y contains at least one subset of H. 

Let E be the obtained from H adding the element x to every subset 
of H. Then OuE is such that OnE and hence iOuEi==M(n I, k, h)+ 
M(n-l, k-l, h-l). It can now be shown that every k-element subset Z of X 
contains an h-element subset of 0 u E, and this establishes (b). 

In fact, if x E then Z '-.{x} is a (k-l)-e1ement subset of Y, and hence it 
contains an (h -I)-element subset A in and th us A u {x} c: Z and Au E E. 
If x If; Z, then Z is a k-element subset of Y and thus contains a subset BE O. 

R. International Conference on Combinatorial 
1970; Ann. New York Acad. 175 (1970), 366--369.J 

In order to obtain the lower bound in (c), observe that an It-element subset 
A of X is contained in C=:) k-element subsets of X. For each of the M(n, k, h) 
subsets of an extremal family F, construct all the (~=~) k-element subsets which 
contain it. In this way, one obtains all the G) k-element subsets of X, since every 
k-element set contains an h-element set in F. It is thus to write M(n, k, 11) x 
(~=:) ~ (:), from which one may deduce 

(:) G) 
(~)=(k\' k-h h) 

M(n, k, 

The upper bound is by induction on the index n and by using in-
equality (b), the recurrence relation for binomial and the fact that 
one obtains an for n =. k (and for k = h or h = 1). In fact 

M(n,k,h)~M{n l,k I,h l)+M(n-l,k,h) 

~(n-:~~-I)+(n k:h-l)=(n-:+h). 

Cahiers du Centre d'Etudes de Recherche Operationnelle, 

for the number M(n, k, h} is not known in the case. 
the smallest number of tickets with h num bers needed to have 

at least one lottery ticket if a drawing of k numbers is made from 
a total of n numbers. Turan's conjecture implies that 

M(2n, 5, 3) 2 (n). 
3/ 
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4.36 (a) In order to prove consider the two-element subsets to be the 
of a whose vertex set X contains n elements. One must find the 

minimum number or edges of this graph, such that each set of k vertices contains 
at least one edge. With respect to the complementary one must find the 
maximum number of edges in a G with n vertices which does not contain a 
complete subgraph with k vertices. The expression for M(n, k, 2) is thus obtained 
in the form G) - M(n, k) where M(n, k) is given Tunin's theorem (see Problem 

(b) If k= 1, it can be shown that M(n, n h,lJ=n (n h)+ 1 =h+ 1. Now 
let 2 and SeX, =h. further that Ph-I(X"'.S) is the family of 
(k 1 I-element subsets of X "'.S. Since n - h ~ h(k - 1), one can define a function 

f: I (X "'.S) 

such that the sets are pairwise disjoint. Let F be a family of h k-element 
subsets of X defined by 

F= u 

There exists an (n - X "'.S, which does not con-
tain any set in F. An analogous result can be obtained for a family of 
h k-element subsets of X which are not disjoint. and hence M(n. n h, k) 
~h+l. 

In order to prove the opposite inequality. let T be an (h + I)-element subset of 
X. There exists a function g. T -1- Pk _ "'. T) such that the sets of the ramily 
(g(X») .. <T are pairwise disjoint. This follows from the fact that n - h -1 ~ 
(h+ l)(k- Let 

G =({x}ug(X))xeT' 

One can at this =k for every x E T and also that G 
contains h + 1 subsets. Let U == n - and suppose that there are indices 

...• ir (O;:;;;r;:;;;h+ 1) such that U does not contain np elements of the set 
for every 1;:;;; p;:;;; r. It follows that one can write 

;:;;;IUn +11 h-l- np ' 
[1= 

and hence 

.. 
IUnTI~ I np+l~r+l. 

[1= 1 

Thus U contains at least one element x E T such that x if: ...• xd and 
hence U {x}ug(xl E G. It has in fact been shown that U at least one 
k-element subset of that is, M(n. n - h, k);:;;; h + 1. One can finally conclude that 
M(n. n-h, k)=h+l for every k'#2 and n~k(h+l). Cahiers du 
Centre d' Etudes de Recherche OperGtionnel/e, 15(3) (1973). 

~ 
I 

I 
1 
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It is also known that M(n, n-/1, kl=h+2 for k(h+U- :r;;;:11< 
and M(n, n-h, kJ h+3 for h~2 and k(h+l)- :r;;;:n<k(h+l) 

N. A Collection of Papers in Mathematical Akad. 
Nauk Moscow, 143-152.J 

4.37 The identity is verified counting in two ways the number of 
occurrences of objects in the blocks. One can do this because each of the b 
blocks contains k and each of the l' to r blocks. 
With respect to the second one counts in two ways the occurrences in 
the blocks of pairs which contain a fixed a l' 

The a l occurs in r and in each of them it forms k-l with 
the other k -1 On the other hand the object aj forms pairs with each of 

and each is contained in ;, blocks. 

4.38 The matrices (k - ),ll +).J are of the form 

(
~ ), .. , ~) 
A k .. A 
. . , . . 
, . 
). ), k 

that is, the elements on the main are equal to k and ali the other 
elements are to)" If A is the incidence matrix of a k, 
follows that each column of the matrix contains k elements 

v - k elements are to zero. 
Let B AT A. The element bij of the matrix B is the scalar product of columns 

i and j of the matrix A. Thus bif = k, that is. the number of 1 's in column i of the 
matrix A. If i then columns i and j of A have a 1 in row t if and only if the 
element t of X to both of the sets XI and Xj' Thus the off-diagonal 
element is equal to !Xjll =}.. if a v-by-i' binary matrix A 
satisfies =(k ).)1+}"J O<),<k<v-l,thendefine 

= {i! aij= l} 

for every 1 v. It follows that (1) and (2) are verified. 

4.39 One first evaluates the determinant of the matrix Al'A where A is the 
incidence matrix of a k, ).}-configuration. Recall the form of the matrix 
AT A obtained in the preceding problem; subtract the first row from rows 2 

U, and then add columns 2 through to the first column. In this way one 
obtains an upper matrix with elements on the main equal 
to k + VI, -;. + k and the V 1 elements to k ;., 
Thus det (k leVA }"+k»O, that is, the matrix A is nonsingular, 
since det (AT A)=(det A)2. 

In order to prove that the k, i.)·configuration of the matrix A is a BIBD 
with parameters v, k, k,;') it is necessary to show that each element belongs to 

k blocks and each pair of distinct objects is contained in exactly i. 
blocks. These conditions hold if and only if the matrix A satisfies the equation 

=(k +i.J (1) 
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which is similar to the equation satisfied the incidence matrix of a (v, k, A)­
configuration. The proof of relation (1) is analogous to that given in the pre­
ceding problem, since if C = AAT

, the element cij (of the matrix C) is the scalar 
product of rows i and} of the matrix A. Thus c/i=k if the number of I's in row i 
of the matrix A is to k, and hence each to k blocks. 
If i then rows i and j of the matrix A have a 1 in column t if and only if the 
elements i and} both belong to block t. It follows that the number of blocks 
which contain the pair {i, is equal to ,1.. 

One must finally show that if the matrix A satisfies the AT A == (k - ).)1 
+ then =(k-).ll +AJ. Since each column of the matrix A contains k 
elements to 1 and 1:- k O's, one can show that J A = kJ. A further 
tion is that 

(JA)A 1=(kJ)A 1. 

Multiply both sides of the 
that 

on the right by the matrix AA - 1. It follows 

and thus 

But it follows from (2) that 

Thus 

-;,)1 +AJ)A 1 

=(k-),)A- 1 +),k-1J. 

A -).jA IJ +Ak- =(k-).)A-1J +).k-1vJ, 

since J 2 = vJ and the matrix J has order v. 
On the other hand A kJ. 

identifying the two 

and 

A IJ =mJ, or J =mAJ, 

(2) 

where m=(k I.k -,1.). But I'J= =J(mAJ)=m{JA)J=mkJ2=mkvJ, 
and hence v=mkt, or mk=1. Thus k-)' k 2 so that k2 -k=).(v-l); and 
A -IJ =mJ =k-! J, that is, J =k- 1 AJ, or 

AJ=kJ 

It has thus been shown that J A = AJ; this property is essential to the verifica-
tion of (1). The proceeds as follows: 

AAT =A(AT A)A -1 =A((k-;.)l +).J 

=(k }.)l +).(AJ)A- 1 =(k ).)/ +AJ(AA l}=(k-A)l +V. 
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4.40 Observe that a Steiner triple is a BIBD for which k 3 and 
,1.=1. the relations of Problem 4.37 one can show that r=(r-l}/2 
and b = Th us V:5 1 or 3 (mod 6) because b must be an Kirkman 
showed in 1847 that this condition is also sufficient for the existence of a Steiner 
triple system. 

A simple proof was recently given by A. J: W. Hilton Comhinatorial 
The()r)" A13 (1972). '+LL-,+,,:.). 

4.41 In the solution to Problem 4.39 it was shown that del A)2 
ltV). - A + k). where A is the incidence matrix of a (t, k, ).)-configura-

tion or a BIBD with (r, i" k, k, Since r == k and v b, the relations 
which the of a BIBD must imply that k(k 1) -1) and 
hence L'X-A +k==k2. Thus (k- lk 2 is the square of an Since 1'-1 
is odd, it follows that k-A is a perfect square. 

4.42 Let p be the maximum number of subsets with the desired property. 
Then by the family of sets 

uB AcY,IAI=r;BcX,,",y,IBI=[(n k)/2]}, 

one can show that 

In order to obtain the opposite let F be a maximum family of 
subsets with the desired property, and suppose that A E F. Let 

Fl ={B I B E F, Bn Y =An Y}, 

and let be the obtained from F I by suppressing all elements of AnY 
in the sets B of . It turns out that is a family of subsets of X ""' Y which are 
noncom parable with respect to inclusion. It then follows from Sperner's 
theorem that 

which that 

since IAn Yi=r. 

4.43 Let KaU)=={XEXif(x) ai. It will be shown that fU(xJ)=a for 
every x E X if and only if fiX) c In fact. if f(X} Kif) it follows that 

=a. since f(x) E f(X), and hence f(x) E KaU). Suppose that fU(x)) a 
for every x E and let Y E f(X); it follows that there exists x)' E X such that 
f(x),) = y. This implies that =(1, and hence Y E KaU) or f(X) 
KaU)· 
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Since b = f(a) E X and J(f(a)) = a, it follows that f(f(f(a))) = f(a). But 
f(f(f(a))) = f(f(b)) =a, or f(a) = a, which implies that a E Ka(f). 

Suppose that iK.(f)i= 1, so that K.ff): {a}. It follows that f(x)=a for every 
xeX, or Ka(f)=X, which is a contradiction, since l=iKalf)i= =n~2. 
Hence iKa(f)1~2. 

Let {a,xl
t

, ... ,xl p}forl ~n-1.Thisimpliesthatf(a) f(x;)='" 
= flxl ~:::::: a, and hence for any x e X "-K.(f) one has E 

because fiX) e Ka(!). 
Thus the number of functions f : X -> X such that f(f (x)) == a for any x E X 

and iKa(f)i = p + 1 ~ 2 is equal to (n~ l)p'- P- I, since elements ... , Xi p can be 
chosen from X '-.{a} in ("-I) ways. The number of functions : X '-.Ka(fl-

... , XI,} is equal to I. By summing these numbers for p = 1, .... n-1 
one obtains the in the statement of the problem. 

4.44 There exist i) subsets with r+ 1 elements taken from the set 
{O, 1, ... , n}. Delete smallest element of each subset X to obtain a subset 
Y with r elements of the set {I, ... , In this manner, each subset Y is obtained 
with multiplicity equal to its minimum element. 

For example, if Y={YI,' .. , and l~YI < < ... <Y" then Y is the 
of YI subsets X, namely {O, YI,'··' Yr}, 1, YI' .... y,}, ... , {YI-i, 

Y \' ... , y,}. It follows that the sum of the smallest elements is eq ual to c: t). 
and their arithmetical mean is C: :)(~) -\ =(n + l)/(r+ 1). 

(Problem at the 22nd International Mathematical Olympiad, 
Washington, 1981.) 

4.45 The number of nonempty subsets of X is equal to 215 _1=32,767. 
The 15 elements of M have their sum to 2048 + 2047+ ... + 2034 
=30,615. Hence for any X eM, it follows that 1 "-LleY i~30,615 for 
any Y eX, Y Using Dirichlet's principle it can be seen that there exist two 
subsets U, VeX such that LiEUi=L)£vj. Now let A=U"-(U(1V) and 
B == V '-.( U (1 V). This property does not hold for 12-element subsets of M. 
To see this let Y= 2,2 2, ... , 211 =2048}cM. The existence of A, BeY, 
A (1B such that i= LJ<Bj=n would imply that 11 has two distinct 
representations in base 2, which is false. 

4.46 The p vectors (1, 1), (2, 2), ... , (p, p) constitute a set and 
hence a(2, p)~p. Since (a, b) is not covered by any vector in the set (ai, btl .... , 
(ap-i, bp_ d where ai=af and bi=b, for j= 1, .... p-l, it follows that a(2, p)~p, 
and hence a(2, p)=p. The number of vectors which differ from a given vector 
in at most one component is n(p -1) + 1. Thus each vector of H covers n(p -1 l+ 1 
vectors of F, and H contains at least p"/{n(p 1)+ I} vectors. [0. Taussky, 
J. Todd, Ann. Soc. Polonaise Math., 21 (1948), 303-305.J 

J. G. Kalbfleisch and R. G. Stanton [J. London Math. Soc., 44(1969), 
;howed that a(3, pl=[(p2+ 1)/2J, and S. Zaremba [ibid., 26 (1950), 71 
)roved that if p is a prime or a prime power and n{p -1) + 1 is a power of p, 
hen a(n, p) -1)+ I}. 
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4.47 Every positive integer can be written uniquely in the form where 
P is a non-negative integer and q is a positive odd integer, called the odd part of 
n. Therefore the odd of an from the set M = {1, 2, . , , , 2n: must be 
one of the n 1. 3, 5, ... , 2n -- 1. Given n + 1 in M, at least two 
must have the same odd : that is, they must be of the form 2P'q and 
where PI =FP2' If, for PI <P2 then 2P1 q divides (W. L Putnam 
Math. Competition, 1958.) 

4.48 Let X {Xl.".' x",}, and denote by nl> ' , . , n", the numbers of sets 
among AI, ' , " A100 which contain Xl' , .. , X", respectively. Then 

100 

n 1 + - .. + n", = I lAd x 100=75m, 
i= 1 

which implies that there is an index i such that nj;;::' 76. for 
that i = 1 or n;;;::' 76, If x I is deleted from X, one obtains a subset X I with 
m -1 elements. Let B I' ... , Bs be the sets among A I' ..• , A 100 not containing 
X l' If s =0 let Y = Otherwise. it follows that s:'( 100 -- 76 = 24. 

Since I, it can similarly be shown that there exists an element 
X2 tomorethanisofthesetsBi.Let. " be the sets which 
do not contain x 2 (and hence not Xl' construction), where p < s--
or p:'( 5. If p =0 let Y == {x I, X2}' Otherwise. it follows that there exists X3 which 
belongs to more than ~p sets from . ' . , C p' Because p:'( 5, it follows that 
pi4:'(i, and hence at most one set from .... Cp does not inc1udex3' If all the 
sets contain X3. the set Y={x i • X2, X3}' Otherwise. let X4 be an 
element of the unique set C1 which does not contain X3 (and hence nol XI or 

In this case one can choose Y = {x 1, X 2, X), X4}; Y has at least one element 
in common with every set for 1:'( i:'( 100. A similar problem was at 
the W. L. Putnam Math. Competition in 1980 (Problem B-4). 

4.49 Suppose that the plane has a finite metric basis B. Then there 
exists a sufficiently large ~~'~"M'- which contains B. Examination of 4.1 
shows that the x and y have equal d4-distances from the 

y 

Fig. 4.1 

/ 
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I 

BI 

A1V'~ B2 

~ ~B3 
r A2:~ l~B4 I . 

A3f~ ~ Bs 

I 
A41~ ~ B6 

As 

~ VI I 
0 A6 x 

Fig. 4.2 

This contradicts the assertion that B is a metric since any set which 
contains a metric basis is also a metric basis. 

In order to show (b) consider the in the plane bounded by the lines 
x = 0, y x + y == n -1 and x + y = n + 1. We shall choose to be the rectangle 
R, composed of all digital points in the region with the exception of the four 
points having coordinates (0, n), (0, n+ I), (n, 0), (n+ 1,0) Figure 4.2). It 
follows that R contains 3n - I digital points. Denote the (digital) intersection 
points of the sides of R with lines of 1 
An, Bn It is clear that for l~i~n, d4 (A" M}= ,M) for any 
Min R such that MfA;, It follows that any 4-metric basis for R must contain 
at least one point from every pair {Aj, Bd· for 1 ~ i~ n. This implies that dim4 
(R);::' n, where dim4(R) denotes the number of elements in a minimal metric 
basis for R (Le., the metric dimension of 

It will in fact be shown that B={C 1, ••• , i, where =Ai or =B, for 
l ~ i~ n, is a 4-metric basis for R. 

One observes that the pairs of digital points of R which have equal 
distances to and 1 are {B I • Bi+J and the of the form {AI. Btl, .... 

l' I}, 2, Bi+ . Bn}· Suppose now that B is not a 4-metric 
basis for R. Then there exist two distinct digital points M, N such that M, N f B 
and M and N have equal distances to all of B. If B contains and Ai+ 1. 

it follows that {M, N}={B;. Bi+d, since M and N do not to B. In a 
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similar manner one can show that if Ai, Bi+1 EB then {M, N}={B j • Aj + 1 

if Bi, I EB then {M, N} {A;, Bi+d; and if Bh Bid EB then {M, 
{Ai' Since n;;:t3, one can apply this argument to the pairs {C I , 

and { . It turns out that {M, N} = A 2 , B2 } ("I A3, 

== {A 2, B 2}' This establishes a contradiction, since M and N do not 
It follows that dim4(R) == nand R has exactly 2" minimal 4-metric bases. [R. A. 
Melter and 1. Computer Graphics and Image Processing, 

(1984),1 

4,50 Suppose first that L\ is a finite plane. Note that the condition 
v;;:t4 implies that the order n of L\ is at least 2 and that the block size k is at least 
3. Condition (I} is satisfied, since ;. = 1. It will be shown that every two lines of L\ 
intersect. Suppose that there exist two lines and such that Ll ("I 
If == {Xl"'" xd, then by hypothesis Xi to k lines 
Lr for every i = 1, ... , k. Condition im plies t hat for every 1"- i, k, 
i and 2 ~ m, p ~ k. In fact, iffor LT = then the pair , Xj} is 
contained in two lines and , which contradicts In this case the number 
of lines of L\ is at least 

which contradicts the hypothesis. 
Since every two lines LI and L2 intersect, it follows from (1) that ILl ("IL 2\ = 1 

and (2) holds. Since r= 3, one may choose a point Xo and two lines and 
L2 it. Now choose Xl and X3 on distinct from Xo. and choose 
X2 and X4 on distinct from Xo' Since (1) one easily verifies that ,X2, 

X3' X4} satisfies condition (3). 
suppose L\ satisfies (2), and First it will be shown that 

every two lines contain the same number of points; this involves two 
lines and a bijection between them. 

Given any two lines Land t, there exists a point Xo ~ LvI:. To see this let 
{XI' X2, X3, be a set whose existence is implied by (3), and let LflI:= 
If {XI' ... , X4} ¢Lv1:.., then clearly one may choose Xo E If 
{Xl' ... , c Lv r., then condition (3) implies that J' rt: {Xl' ... , X4}, and hence 
one may assume that x I, x 2 E L ,,1:.. and X3, X4 € I: Let LI be the line through 
XI and .'(3. and let be the line through X2 and X4 which exists by (1). Let 
{xo}=L l By xo~LvI:. 

Now define the function y :L-+ I: as follows. If X E let denote the 
line [in virtue of (2)] which contains x and X o, and let y(x) be the unique point 
[in virtue of (1)] which is contained in ("II:. 
exactly one line contains both Xo and Thus 
symmetry. 

Thus every line contains Now suppose that k=2. 
This leads to a contradiction since XI' E X2, X4 E LI ("I 
and (3) implies that Xo ~ I' ... , It follows that k;;:t 3 and the number of 
points v;;:t 4. Since x 2. X4 ~ L l , one can also see that r - 2 or k < I' - L This 



implies that 11 is a (v, k, 1 )-configuration. By Problem 4.39, 11 is a finite 
of order k - 1. 

It is not difficult to see that there exists one of order 2 
It has set V={l, .. ,7} and line set E=({1, 2, 
4, 6}, 5, 4, 7}, This is also the 

system on seven vertices (up to 

CHAPTERS 

5.1 Let 

A ={mll ~m~ m=O 

B={mll~m~ m=::l(mod 

C={mll ~m~3n, m 2 (mod 3);. 

It follows that IAI IBI=lcl n. The sum x+y+z=::O(mod 3) if and if 
x, y, z E A or x, y, z E B or x, y, z E C or x, )" z each to a different set 
among A, B, C. Thus the number of solutions is to 

n(3n2 
- 3n + 2) 

of a number n into at most k form a set with 
P(n,1)+ + k) elements. Each of n into at most k 
can be in the form n=a1 +a2+ ... + a", 0+'" +0, where the sum 
containsktermsanda1 ;;;.a2;;;.···;;;. l(l~m~k).Fromthis for 
n one can obtain a partition of n + k in to k in the manner: 

n+k=(a1+l)+(a2+1)+'" + +1)+1+'" +1 

where the sum contains k terms and a1 + 1 ;;;. a2 + 1;;;' . " ;;;. am + 1;;;. 1. 
The mapping thus defined is an since different partitions of n 

into at most k to different of n + k into k The 
mapping is also since every partition of n + k into k parts results from 
the partition of n with m ~ k parts obtained by 1 from each term of 
the partition of n + k and retaining the first nonzero terms. The existence of a 

between the set of partitions of n into at most k parts and the set of 
partitions of n + k into k implies the validity of the recurrence 
relation. This the computation, by iteration, of all values of PIn. k). One 
starts with P(n, l)=P(n, n) 1 for all It and P(n, k)=O for n<k. 

5.3 A bijection will be defined between the set of partitions of n into odd 
and the set of partitions of n into distinct parts. Thus suppose 

that in a partition of n into odd the number 2k + 1 appears p times. Write p 
as a sum of powers of 2: 

p (1) 
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The (2k+ l)p entries in the Ferrers diagram associated with the partition of 11 

as follows: Put in different rows + 1 )2" 
1 )2" entries. Maintain the order of the 

num ber of entries from to bottom. For exam pie, the 7 + 5 + 5 + 3 + 
3+ 3+ 1 + 1 + 1 + 1 is associated in this way with the 10+ 7+ 6+4+3 
into distinct The thus obtained have distinct parts because 
every can be uniquely as a of an odd number and a 
power or2. 

The injeclivity of the mapping follows from the uniqueness of the representa-
tion (1). In order to show that this is a surjection, consider a 
partition P of n into distinct parts. Each can be uniquely written as a 
nrr,{111rt of an odd number and a power of 2. the terms of the sum 
and combining common factors one obtains only terms of the form (2k+ l}p 
where k?J:. O. This will generate p terms equal to 2k + l. 

By arranging these terms in decreasing order one obtains a partition Q of n 
into odd Apply the previously defined mapping to Q. The result is the 
partition P and this establishes the surjectivity of this mapping. 

5.4 Let at + ... + am n be a partition of n into m distinct parts. 
It follows that al > az > ... > 1, which that 

As a result one can write 

(m-l)}+ -(m- + ... +am=n (;). 

which is a partition of n - G) into m parts. 
Thus each partition of n into m distinct parts is associated with a 

partition of n - (~) into m parts. This is injective. In order to 
show that this mapping is a consider a of n - (~) into m parts. 
Add the numbers m I, m - 2, ... , 1,0, to each of the m parts in 

order. One thus obtains a partition of n into m pairwise distinct 
parts. If one the transformation defined to this 
one obtains the partition of n - into m parts with which the process originated. 
Thus the between the of n into m 

and the set of the P(n - m) partitions of n - (~) into m parts is a 
This the proof of property in 

5.5 Suppose that the partition of n contains k I terms to 1. The 
sums formed by the elements to 1 represent every number 
between 1 and k1 • Thus the numbers 2, ...• kl cannot appear in this partition 
of n because of the of the Since the number k 1 + I 

rpf".rp~:pn'tpt1 as a partial sum, it must also be a term of the partition with 
>0. It follows that all numbers between 1 and kl + + l) 

as a partial sum. 
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this argument. one finds that the numbers which occur in the partition 
of n are 

1, kl + 1, (k l + 1)(k2 + 1), .... (k l + 1)(k2 + 1)'" + 1), 

where (k l + 1)' .. (k j + 1) has multiplicity to kj + 1 for i= 1, .' ., m. Since the 
sum of these terms is to n, one can write 

n=k 1 +k2(k l +l)+'" +km + l(k 1 +l)'''{k",+1) 

andhencen+1 +1)'" 1+1). 
If n+ 1 is then m=O and the only partition of n which satisfies the 

condition of the problem contains only terms to 1. If n + 1 is not 
then there is another solution to the problem. In fact it follows that 

n+l=(k 1 +l)(k2 +1) 

with k I' k 2 ~ 1. and the partition 

n=l+ '+1;-

has the property that every number between 1 and n can be uniq uely rPTITP',pn 

as a partial sum of this partition. 

5.6 It follows from the rules for removing that I/I(n)= 
Qe(n) - Qo(n) where the number of partitions of n into an even 
number of distinct and Qo(n) represents the number of partitions of n 
into an odd number of distinct parts. 

In order to prove Euler's identity, one defines a transformation of a Ferrers 
with an even number of rows into a diagram with the same number of 

cells and an odd number of rows and vice versa. Since one considers only 
partitions into pairwise distinct parts, the diagram of this kind of partition is 
formed of several trapezoids placed next to each other as in Figure 5.1. Let the 
number of cells in the last row of the diagram be equal to m, and let the number 
of rows in the upper be to k. 

}~T 

SOUTH 

fig. 5.1 
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If m:s;:; k, one suppresses the last row of the (labeled SOUTH) and adds 
one cell to each of the fm;t m rows of the upper trapezoid (in a line inclined at 45' 
to the east in the This transformation does not change the total 
number of cells. One obtains in this way a new diagram in which each row has a 
different length. The parity of the number of rows is changed with respect to the 
initial diagram. The diagram of Figure 5.1 corresponds to the partition 

23 = 7 +6+ 5 + 3 +2, 

After performing this transformation, one finds the row SOUTH laid 
EAST, Since m=2 and k=3, the 23=8+7+5+3 is 

obtained. 
if the diagram contains at least two trapezoids and if m > k, then take one cell 

from EAST in each row of the upper trapezoid, and with these cells make a new 
row SOUTH in the new diagram. This construction is possible because In> k 
and thus the row SOUTH is shorter than the old row SOUTH in the diagram. The 
length of each row in the upper trapezoid has been shortened by one. It foHows 
that all the rows of the new are different in length, The new 
diagram contains the same number of cells as the old diagram, but the parity 
of the number of rows has The new diagram contains one more or 
one less row than the 

This operation can be carried out when the consists of a single 
trapezoid (when the diagonal EAST contains k cells and k is equal to the number 
of parts of n) if m d: k and m l' k + 1. 

The transformation just described is an involution on the set of partitions of 
n into pairwise distinct parts. (This means that if this transformation is applied 

one obtains the original diagram.) It follows that the transformation is 
Thus the Ferrers diagrams for partitions of /1 which admit this trans-

formation can be divided into an equal number of with an odd and 
even number of rows. One can now find the which do not 
admit this transformation. They consist of a single trapezoid for which m = k 
or m k+ 1 (Figure 

In the first case 

fig. 5.2 
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and in the second case 

Thus if n is not anum ber of the form (3k 2 ± 
into an odd and even number of distinct terms. If n = 

(3k2 ± k)!2, then Qe(n) = ( -1 )k, since there remains a unique with 
k rows outside this bijection. It follows that I/I(n) 0 for n t (3k 2 ± k)/2 and 

=\ It ifn ±k)/2. 

5.7 The proof will be 
analogously. 

for case (a). The other cases can be established 

Consider the expansion 

(l-al 

=(l+alx+ 

1 +a1x+ + 

Observe that the term which appears in the coefficient of x" is 
such that Al + -I- ..• + k)'k = n, and thus it determines the following partition 
of n: 

n=k+k+'" +k+'" +2+2+'" ..... 2+1 1+'" +1. 
_.--- '----v---' 

The rules for removing imply that in this case the exponents of 
the symbols which appear in the coefficient of x" generate, without repetitions, 
all the of n. If one sets a 1 = a2 = . . . 1, then the coefficient of x" 
will be to the number of partitions ofn. Part of the problem 
now follows immediately, since }'2 =}'4 = .,. O. 

The proof of part (e) is contained in the solution of Problem 5.13; the proof 
of part (d) is analogous to that of part (eJ. 

The property in Problem 5.3 follows from an algebraic calculation 
due to Euler and based on the use of generating functions: 

1------,.,.--,---,,,.--= --. 
(1- 1 x 

+ x)(1 + 

5.8 Euler's identity and the for the generating function 
of the num bers P(n). one can write 
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After to zero the coefRcient of x" on the left-hand side of this equa-
it turns out that 

I P(n- 0, 
j"O 

or in other words 

P(nJ+ I (-1)' {p 
k" 1 

This is in fact Euler's Pentagonal Theorem, 

5.9 Consider the expansion 

(l+al x + arx2)(l + 

+p(n- =0, 

+ 

and observe that each monomial 01!a~2' "a~k which occurs in the coeflkient 
of x" has the property that O~AI~2 for 1 ~ i~k and ':1 + +" + =11, 
and thus determines a partition of n of the form 

n=(k+ ." +k)+ ." +(2+ ". +2)+(1 + ." + 

The numbers of are to )'k' ... ').2' )~1' The rules 
for parentheses imply that the exponents of the sym boIs which make 
up the coefficient or x" generate. without all partitions of n in which 
no integer occurs more than twice. 

Taking a! =02 = .. , = I, one finds that the generating function of these 
partitions of n is by 

G1(x)=(l+x+x2 )11+ +x4 )"'(1+xP+ 

for the generating function of the numbers P(Il), it is 
seen that the function for the number of partitions of n into parts 
which are not divisible by 3 is 

f n (l-

p;t 3) 

11 remains to show that G1(x) the identity 

(1 +xp +x2p)(l- 1-

In fact 

(j 



..... Hf H ", "'IIVW 11 \lfOm rroOlem ,.1) that the 
numbers P(lIl is 

function of the 

prO) -I- P(l)x + ... + P(lllx" + ... = -----.::---~._..-.- (1) 

while the function of the numbers Q(n) can be as 

Q(O)+ Q(l)x+ ... +Q(nlx"+ ... 

where PlO) == Q(O) = 1. The substitution of - x for x in (2) yields 

1 

after x 2 for x in the result is 

(4) 

The 

then leads to the following relation between the associated formal series: 

Q(i)x i L (- 1 )iQU)xi = L Q(i)x 2 i. 

j;.O 1;.0 

The proof of part (a) is completed by equating the coefficients of 
sides of this identity. 

The proof of part (b} starts with the identity 

on the two 

This implies that 
finished by 

Pfj)x 2). and the proof is 
Karpe, Casopis Pest. Mat., 

94 (1969),108-114.] 

5.11 Each of n into m parts of the form n = n 1 + .. -I- n", with 
n 1): .. ): nm ): 1 corresponds to a partition of n - m obtained by writing 

n m 1)+{n2-1)+"'-I-(nm-l), 

and the possible elimination of zero terms. 
The thus defined is injective. One can also show that it is 

for m): In fact, from the 

n-m=r1 + ... +rk 

of n- m, it follows that m, since otherwise one would have 

(1) 

m+ 1 and 



hence n-m):k):m+1. This implies that m:((n-! The latter inequality 
contradicts the hypothesis m): Now add one to each term of(l) and m - k): 0 
terms equal to 1 to obtain a partition of n into m parts: n + I) + .. + 
h + 1l+ 1 + ... + 1. Its under the given mapping is precisely the parti­
tion (1). 

5.12 Suppose that n=x+ y+z with x> r>z): 1 is a partition of 11 into 
three distinct It follows that 

(x+ y)+CI' +(x+=)=2n 

and 

(y+ z) +z)=x+)'+2z>x+ y. 

Thus x + y.), + z. x + z are the lengths of the sides of a triangle with perimeter 2n. 
It is also the case that no two sides are equal, since 

.\:+y>x+z>y+z. 

Conversely. suppose that a> h > c are the of the sides of a 
triangle with perimeter to 2n. Let 

x=n-{l, y=n-b, z n-(;. 

It follows that 

b+c-a 0 x > , a-b"!-c O. 
Y 

a+b-c 
and z >0. 

Further, x<y<z and x+y+:=n, while x+y=c, x+z=b, and .r+z=a. 
There is thus defined a mapping of the set of partitions of n into three distinct 

parts onto the set of of perimeter 2n with integral sides, no two of which 
This is The construction shows that it is also 
This follows from the fact that, starting with a triangle of perimeter 

2n with sides a> b > c, one obtains a partition ofn of the form n = x+ y + z where 
x+ y=c, x+z=b, and y+z=a. Thus the of this partition under the 
mapping being considered is the original triangle. Since the mapping is bijective, 
one can conclude that the number of triangles which satisfy the given condition 
is equal to 

The number n can be as a sum of three positive {two 
which differ only in the order of the terms are to be considered 

distinct! in 

(11-1) 112-311+2 
\ 2 2· 

different ways (Problem 1.19). It follows from this that two terms are equal in 
each of the following of 11: 

••••• _____ .. IiIIIIIIIII-IIIIIIIII--Fll!li ... --~rtlM~"V'~---'-''''·'''''· . 



178 Problems in Combinalorics and Graph Theory 

n=1+1+(n 2J=1+(n 2)+1=(n 2H-l+1 

=2+ 2+(n-4) =2-l-(n-4)+ 2 

3+ 3+(n-6) = 3 .. !-(n-6)+ 3 

-4)+2+2 

-61+3+3 

There are thus 3(n - representations if n is even and 3(1l- 1 li2 representa­
tions if n is odd and n:;;;: 4. But for n = 1, 2, 3 one has Q(n, 3) =0, and hence the 

formula is verified. 
If n is a of 3, one must also subtract 2 from the numbers obtained, 

since there is a of n with three terms which is counted three 
times instead of being counted only once. For example. for n=6 one obtains a 
unique partition with two terms to 2. 6 = 2 + 2 + 2. 

In order to obtain the num ber of representations with three distinct 
terms, one must subtract from the number of all representations of n as the 
sum of three the number of representations which contain equal terms. 
The result is that this number is equal to 

n2 
- 3n+2 

1(n-2)+2 if n 
2 

nl - 3n -I.. 2 
-I) 

nl- 6n -I.. 5 
if n = 6k -1..1, -----

2 
,,2 3n+2 

- 2) 
nl -6n+ 8 

if I! =6k+ 2, 

, 
3n-l..2 nl -6n+9 11-

1)+2= if n=6k+3, 

nl -3n+2 
-2)= 

nl-6n+8 
if 6k+4, n 

2 

nl - 3n-l.. 2 
, 

6n-l.. 5 
-1)= 

n-
if 6k~5. n 

Since these of n as the sum of three terms contain only pairwise 
distinct terms, in order to find the of n into three pairwise distinct 
parts, one must divide the number obtained in each case by 31 = 6, since the 
order of the terms is no of any It can be seen 
that all the obtained have the form 

+ 1 for every n. 

For example, for n 6k+ lone has 

nl -6n -24k 5 
"--='~------=3k2 2k-

12 12 
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and thus 

-6n..l-5 

12 

It follows from the inequalities 

n2 6n..l-5 Q I) n2-6n..l-12 
tn. -

that 

Q(n, 3) == 

179 

5.13 One first shows that the number of partitions of n into distinct 
odd terms is equal to the number of partitions of n with a symmetric Ferrers 
diagram. (The axial symmetry of a Ferrers is with respect to a line 
drawn from the top left of the at an of 45° with the horizontaL) 

Define a from the set of partitions of n with symmetric Ferrers 
onto the set of partitions of n into distinct odd terms as 

follows: that a F errers has k cells on the 
and let a1 be the total number of cells which are found in the first row and first 
column of the diagram. Since the diagram is symmetric, it follows that a1 is odd. 
Now let Q2 denote the number of cells which are found in the first row and first 
column of the diagram obtained by suppressing the a1 cells. Similarly let a3 be 
the number of cells which are found in the first row and first column of the 

obtained when the a2 cells are and so on. One thus obtains 
k odd numbers a1 >a2> ... >ak which define a of n: n= 
a1 +a2 + ... +ak' 

For example, consider the partition of n=30 with the Ferrers 
diagram of Figure 5.3: 

30=7+7+5+4+3+2+2 

I 

Fig. 5.3 
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In this case al = 13, {/2 = 11, {/3 = 5, (/4 = 1, which to the partition 
ono into four odd 30= 13 + 11 + 5 + 1. 

It is clear that this correspondence is injective. In order to establish the 
surjectivity let n = {l1 + ... + ak be a of n into k distinct odd 
parts. A symmetric Ferrers will now be constructed Or cells in 
the rth row and column for 1 ~ r~ k. It will turn out that for the described corre-

the of this partition with Ferrers is 
nrF·t'i,plv the partition of n into odd parts, and this establishes the 
surjectivity and hence the bijectivity of the ,..",·rp,:nr"".i 

The number of partitions of n with 
coefficient of x" in the product 

In fact, in order to obtain a term equal to x" in this expansion one must multiply 
terms of the form x D

" ••• ,xu,, where 0 1 +02 + ... + Ok = n, al •... ' (lk are 
pairwise distinct odd numbers, and we set (11;;:;: (12;;:;: ••• ;;:;: {lk in order not to 
count these monomials twice, Since the coefficient of each product of the form 
XD' ••. XO

, is to 1, it turns out that the coefficient of x" is equal to the 
number of partitions of n into pairwise distinct odd parts. 

To obtain the function for the number of Ferrers 
with k cells on the one suppresses the square with k cells 

on a side which lies in the upper left-hand portion of the 
Now consider the number of cells in row i plus the number of cells in column 

i (i;;:;: k + 1) as a new term in a partition of n with a term to k 2 and a sequence 
of other terms less than or equal to 2k. For the diagram of Figure 5.3 this new 
partition can be written 

30 +6+4+4. 

One thus has shown that the number of partitions of n with symmetric Ferrers 
having k cells on the diagonal is equal to the number of of 

n of the form 

where k;;:;: III ;;;:;: (/2;;:;: ... ;;;:;: (I,. Similarly one finds that the number of these 
partitions of n is to the coefficient of x" in the expansion of the product 

+ + +"')(1+ + ...... ')'''0+ + + .. ) 

In fact the number of partitions of m = n - k2 into even parts which are less 
than or equal to 2k is the coefficient of xm in the expansion of the product 

(1+ +X4+ "')(1+x4+ + "')"'(1+ +X4k+ "'). 
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In order to show 

(l 

start with the 

+ (I~XR + .. ), .. (I + GkX2k + 

.•• (I~' + ' , ')Xm + " . 
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= 1+ (11 

The term (11' 
relation 

which appears in the coefficient of xm satisfies the 

+ . , , + 2k}'k m, 

and thus it defines a partition of m of the form 

2k+ 2k+ ... + 4+'" +4+2+ ." +2. 

It follows from the rules for removing that the exponents of the 
which appear in the coefficient of xm generate, without all 

of m into even Thus if (11 {/2 ' ., =(lk = 1. then the 
coefficient of xm will be equal to the number of partitions of m into even 
which are less than or equal to 2k. This the which has been 
obtained for the function of the Ferrers 

with k cells on the diagonal. Thus 

represents the generating function for the number of symmetric Ferrers diagrams 
with n cells; this the proof of the first identity. 

In order to prove Euler's identity, observe that (as in the discussion of the 
function of the number of of n into distinct odd the 

number of of n into k distinct odd is the coefficient of in 
the of the product 

(1 

On the other hand, it has been seen that there exists a bijection of the set of 
partitions of n with Ferrers with k cells on the diagonal 
onto the set of partitions of n into k distinct odd parts, Thus the number of 
partitions of n into k distinct odd is equal to the coefficient of x" in or 
the coefficient of in 

One thus obtains the 
'YJ 

(l+xy)(l+ + y). = I ------.------;--,------,,,,­
k~O 
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Also, if the substitution J' x, is made then the is 

5.14 Let 2n + 1 = 21, + + ... + 21, + 1 be a partition of 2n + 1 into powers 
of two, where i l ;;:: i 2 ;;:: ..;;:: 0. It follows that 2n + ... + 21

,; this corre-
spondence is a bijection, and hence B(2n + 1) = B(2n). In order to prove (b) 
note that the set of partitions of 2n whose parts are powers of two can be written 
as Anu where An is the set of of the form 

2n=21'+2 12 +".+ +1, 

where i 1 ;;:: i 2 ;;:: ... ;;:: i,;;:: ° and BM contains all the partitions or the form 

2n 2" +2'2+ ... +2\ 

where i l ;;:: i 2 ;;:: .• ;;:: I,.;;:: 1, and hence An!1 BM 

Since in the first case one has 2n -1 = + ... + 2i
" and in the second 

11 = 1 + ... + 21, -1, where i 1 -1;;:: ... ;;:: 1;;:: 0, and these (YIlrrp',n(\I1r! 

between sets of partitions are one can conclude that (b) follows. 
may be induction on n, since B(2)=B(3)=2, B(4)=8(5)=4. 

Suppose to be truefor all m:( n - 1. If n = then B(2m) = -1) + B(m) 
is even, and if n = 2m + 1, then B(2m + 1) = B(2m) is also even by the induction 
hypothesis. 

5.15 Let r = [.In], and let K be a k-element subset , .. ,ad of {1, ... , r} 
for 0:( k:( r. It follows that K generates a of n whose parts are a 1 , .. • , ak! 
n-(al + ... +ak), in view of the fact that (/1 + ... +ak<kr:(r2:(n. Thus 
P(n);;:: 2', since in this case different subsets of {1, . . . . induce distinct 
tions of n. 

CHAPTER 6 

6.1 There is a unique walk which joins each pair of vertices of a tree. The 
subgraph induced by B does not contain since A itself does not contain 

If x, y E B and x i=}', then x, yare vertices of each subtree AI' .... 
and thus each of these subtrees contains the unique walk Z l' ... , Zk' ,l'J 
joins x and J in A. Hence Zl"",ZkEXl"'" or Zl,,,,,Zk EB. and thus 
the subgraph induced by the set of vertices B is connected and is in fact a tree. 

6.2 The proof uses induction on the number of vertices in the tree G. 
lf G has two vertices the property is immediate. Suppose that the property 

holds for all trees with at most n vertices. and let G be a tree with n + 1 vertices. 
G contains a vertex x of degree 1 which is adjacent to a vertex .\'. By the induction 
hypothesis the property is valid for the subtree obtained from G sup­
pressing the vertex x and the [x, If no subtree G1 , ... , Gk is the graph 

of only the vertex x, then all the subtrees , ... , Gk obtained from 
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G I' . . . • by the vertex x have at least one vertex in 
common. In fact, if x is a common vertex for Gj and G;, then y is also a vertex 
common to and and thus also for Gj and Gj. the induction 
Gj. . . . . have at least one vertex in common, and thus the subtrees G I' .. • Gk 

have this property. If, for G1 contains only the vertex x. then x is 
common to all the subtrees and the property is again verified. 

6.3 The induction on the number n that a tree with 11 

vertices has n - 1 
If n = 1, the tree has a vertex and no that the property 

is true for all trees with n vertices, and let A be a tree with n + 1 vertices. The tree 
A contains at least one vertex of degree 1, since otherwise A would contain a 
cycle, which contradicts the definition of a tree. In fact, let 

be an elementary walk of maximal length in A. Since d(Xk) ~ 2, it follows that x. 
is adjacent to at least one of the vertices Xl" .. ,Xk-2' Otherwise one would 
obtain a walk than L, which would contradict the maximality of L. One 
thus obtains a which passes the vertex -'k' 

It has been shown that A contains a vertex of 1. Let d(x) == 1. and let y 
be the vertex to x. If one suppresses the vertex x and the 
then a Al is obtained which is connected and without cycles, and 
hence is a tree. By the induction hypothesis Al has n vertices and n-l edges, 
and thus A has n + 1 vertices and n edges, and the property is established. 

The necessity of the condition in the problem is now immediate, since 
d 1 + ... + dn = 2m = 2n 2, where m denotes the number of of a tree with n 
vertices. 

Suppose now that dl + ... +dn =2n 2. At this point we use induction on n. 
For n == 1 it follows that d l and for n = 2 one has d l == 1 and hence the 
trees are K 1 and K2 Assume that the property is true for n-I 
integers; we establish it for d1 , • •• ,do whose sum is to 2n 2 
with n ~ 3. It follows that d 1 = 1, since d 1 ~ 2 would imply that d 1 + ... 
2n>2n-2. Similarly dn > 1, since otherwise dl + ... +dn=n<2n-2. Thus 
d2 +"'+ l+(dn 1) 2n-4=2(n-l)-2,and by the induction hypothesis 
there is a tree A n - 1 vertices of degrees d2 , •.. , I' dn - 1. One can 
add to the tree A a new vertex which is connected to the vertex of A of 
do 1. In this way a tree is constructed with d l , ... , 

6.4 Suppose U I is the set of edges of the tree A l' and U 2 is the set of 
of the tree . let u E U I" If the edge u is suppressed from the tree 
then a graph G l is obtained which contains two connected components eland 

In fact, if the graph obtained had contained at least three connected com· 
ponents, then by adding the edge u between two vertices located in different 
components the resulting graph would not have been connected and hence 
A 1 would not be connected. Thus the definition of a tree would be contradicted. 
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On the other hand, it has been seen that every tree with n vertices has n - I 
6.3), and thus by suppressing u the resulting graph IS 

no since it has n- 2 
There is an v E U 2 which joins two vertices located in components C 1 

and . For otherwise it would follow that the of the tree only 
of vertices located either in , which would imply that A2 is not 

connected. But All a tree, is and hence there exists an 
v E U 2 which joins vertices located in and . Since does 
not contain a cycle, it follows that the obtained from G 1 by the 
edge v also does not contain cycles and is connected. It is thus a tree. which 
wi!! be denoted 

But is a spanning tree of G which has more edges in common with 
than A l' this transformation, replacing all the edges U E U I ""'U 2 

of U 2, to obtain finally a tree Br = where r;:::' 2. 

6.5 We show that if all the vertices of 1 of the tree G are sup-
pressed then e(x) is decreased by 1 for every vertex of the 
All the vertices at a distance e(x) from x have 1, and thus by 
them decreases for all of the vertices. One can also observe that 
by this operation e(x) decreases exactly one, since the longest walk which 
leaves x ends in a vertex 1 in G, which is then suppressed. The property 
is true for a graph with a vertex. Assume therefore that it is true for all 
trees with at most n 1 vertices. Let G be a tree with n;:::. 2 vertices. Denote by 
C the set of vert ices x in the center of G, that is, those for which e(x) is a minimum. 
Suppose that C does not contain a vertex of 1, and suppress all vertices 
of l in the G. For all the vertices the value of e(x) is 
reduced by one. and hence this operation a new tree G' is obtained with the 
same center C. Since G' has at most n - 2 it follows from the induction 
hypothesis that C consists of one vertex or two and nr(\T\prtv 

(a) is therefore established. If C contains a vertex of 1, then x 
will be adjacent to a unique vertex y. It is clear that J' is strictly nearer than x to 
every other vertex of G. Thus e(x) can be a minimum only jf e(x) 1 and G is a 
tree consisting of x and y joined an In this case C = y) and the 
nrr,nprtv is established. 

By Problem 8.4, the walks of maximum in a tree have a 
intersection. It can be shown that this intersection contains the center of the tree. 

(b) Let L be a walk of length which starts at x. If L does not contain 
either}' or z, then 

e( y) = + 1, e(z)=e(x)+ 1. 

and hence 2e(x) < + e(z). The walk L cannot contain both y and z, since 
both vertices are adjacent to x. For example, if L contains y, then 

e()')~e(x) 1, e(z) +1. 

and thus e(y) + 
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(c) It is easily shown that the distance thus defined on the set of vertices ofa 
connected graph is a metric for this set and thus satisfies the inequality. 
Let x, y be vertices such that d(x, y) =d(G), and let z be a vertex of minimal 
eccentricity [ It can be shown that 

d(G)=: y)~d(x, z)+d(z, y)~p(G)+p(a)=2p(a). 

6.6 Let L= , ... , X2k 2] be a walk of length 2k - 3 of a tree A. To every 
vertex y which is not on L associate a walk, in the manner' Let M 
be the walk which )' and a vertex z of L and which has only the endpoint z 
in common with L. If the length of M is greater than k - L let Ly be the subwalk 
of M oflength k, and with endpoint .1'. Otherwise L). consists of M and a sub walk 
of L. The construction is always possible, since L has length 2k- 3 and thus 
there is a subwalk of L of length k - 1 incident with an endpoint of M. In fact. 
in the opposite case L would have length less than or equal to 2(k - which 
would contradict the 

It is also the case that L contains the subwalks [x I' ... , Xk+ 

X2k- 2] of length k. One thus obtains n (2k- 2) + k - 2 n - k 
walks of length k. 

- 2,· , ., 

distinct 

6.7 (aj Let denote the obtained from a by suppressing the 
vertex x and the incident with x. Since a is a tree, it follows that ax is not 
connected and yand z are found in different connected components of which 
contain kl and k2 vertices This that kl +k2~n 1. It 
follows from the of the function from x to J' at each 
step one moves closer by a distance 1 to kl vertices, but further away by I from 
n kl vertices. It is hence the case that 

+kl (n- =s(y)+ -no 

One can show analogously that 

s(z)+ 2k2 - n. 

By adding these two identities it turns out that 

=s(y)+ s(y)+ -2. 

(b) that there are two nonadjacent vertices x and y such that s(x)= 
s(y)=minimum.Let XI,X2" be the walk which xandy 
in the tree (p';:! By hypothesis The inequality in shows 
that 

S(X)+S(X2» S(X 1)+S(x), 

and thus 

S(X2) > six 1) ~ 

It also foIIows that s(xJ)+s(x3»2s(X2»S(Xl) and thus S(X3»S(X2» 
s(x), and so forth. Finally one s(xp» ... >S(Xl)~S(X), 

which contradicts the equation s(x)=s(J'), since 
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The points in which s(x) attains its minimum form the barycenter of the tree 
G. By a walk with an odd even} number of vertices 
one observes that the vertex (or of two adjacent 

If Xl' ... , xp are the vertices of a walk and Yl , ... ,}'q are other vertices 
by an to Xl' then if p is even, it follows that the center of the tree 

thus obtained is the vertex . If q is sufficiently large, for q 
then the barycenter of the tree Xl' while the distance between the center 
the is p/2 - 1. This number can be for values of p 
which are sufficiently 

6.8 If the tree G has vertex set X of cardinality n, it follows that it also has 
n - 1 Then in the sum d(x. ,1') there are exactly 2(n -1) terms equal 
to 1, and the other nonzero terms are greater than or equal to 2. If G is a star 
(the K 1,n-l), all the terms different from 0 x = .v) and 1 are equal to 2. 
If G is not a star, there is at least one term equal to 3, and thus the desired mini­
mum is attained only for the tree 1 In order to find the maximum of this 
sum one can show that s(xj is a maximum in the set of terminal vertices of a 
tree when the tree is a walk and x is one of its If L is a walk 
with n vertices and x is one of its endpoints, then 

s(x)=1+2+" +(n-l). 

If G is a tree and x is a terminal vertex with e(x) = d. then there will exist at 
least one vertex at a distance 1, 2, ' .. , d from x. It follows from the definition 
of that the sum which enters into is of the form 

s(x)=l +2+ .. , +d+d1 + ... + 

where d1 ,.,., dn- 1 -d"d. comparing this with the expression for in the 
case of the walk L. one finds that the maximum of s(x) is attained only when 
d = n -1, that is. when G is a walk and x is one of its One now uses 
induction on n to prove that Lx,yeX d(x, y) is a maximum in the set of trees G 
with n vertices from the set X when G is a walk. For 1 ~ n" 3 the property is 
immediate, since in this case every tree with n vertices is a walk, 

Suppose now that the property is true for all trees with at most n -1 vertices, 
and let G be a tree with n vertices which consist of the set X. If a is a vertex of 

1 in the tree then 

d(x, .v) 2s(a) + L d(x, y). 
Xd'El' 

is a maximum only if G is a walk and a is one of its end­
points. In this case the second term can also be shown to be maximal by 
the induction to the subtree whose n - 1 vertices make up the set y, 

6.9 Consider th ree pairwise different indices i, j, k e {I, .. , , r}, [If, for ex-
then dij + =0 and (a) is Since A is a tree, there 

exists a unique walk Lij [x;,... between the terminal vertices XI and Xj' 
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" P---C--<>--r!v 

XI 

Xj 

Fig. 6.3 

There is also a vertex v E such that the 
vertices in common with other than the 

walk from I' to Xk has no 
1'. It follows that 

Xj)+ 

which (a). 
Consider i,j, k, I E {I, ... , r} which are pairwise difTerent. If, for example, i 

the three numbers become dkb dki+dl/, dkl+d ll , and thus two are equal and the 
third satisfies the inequality 

dkl~dkl+di1' 

In fact, the distance defined between the vertices of a satisfies the con-
ditions ror a metric, including the 

Let Lij and Lkl be walks which vertices Xi to Xj and Xk to XI> respectively. 
These walks can have no, one, or two or more vertices in common. 

If the walks have no vertices in common, let u be a vertex of the walk Lij and t' 

a vertex of the walk Lk/ such that the walk with endpoints u and r has 
in common with the walks Lij and Lk/ only the u and v (Figure 6.3). 
In this case, it follows that 

dik+dp = +djk=dij+ + vJ, 

which establishes (b). 

If and have exactly one vertex u in common, then dij + dki = d1k + djl = 
+ 
If the walks and Lkl have at least two vertices u, v in common tFigure 6.3) 

then (b) is also true. If u and w denote the endpoints of the subwalk common to 
the two walks, then it follows that 

dij+dki=di/+djk=dik+djl+2d(u. w). 

Let r~ 2 and (diAJ = j,., be a symmetric matrix with "('\,,.",'0 
such that dij =0 if and only if i which satisfies 

to show (by induction on r) that there exists a tree A with r terminal vertices 
Xl •... ' xr such that d(x" xj)=dijfor i,j= 1, ... , r. A. Uspelli Mat. 
Nauk,20 94-96.] 



6.10 The proof will proceed by induction on r. For r=2 the property is 
since every tree with two terminal vertices is an 

walk and the fact that dAO, 2)=dn(l, 2) shows that the two walks have the same 
number of vertices and are thus isomorphic. 

Let r>2, and suppose that the property is true for all trees with at most r-1 
terminal vertices. Let VA denote the vertex of degree greater than or equal to 3 
of the tree A, which is closest to the terminal vertex labeled r. Similarly let Vn 
denote the vertex of the tree B. It follows that there exists an 
elementary walk [VA"'" r] in the tree A, such that all vertices located between 
VA and r have 2 in the A (their set may possibly be empty). There 
is a similar elementary walk [VB"'" r] in B. the terminal vertices 
with label r as well as all internal vertices on the walks ... , r J and [VB" .. , r ] 

In this manner one obtains trees AI and B\ which each have r-1 
terminal vertices with labels selected from the set {1, ... , r 1}. The distances 
between the terminal vertices i and j are the same in A and B for 1 ~ r-1 
and thus will remain unchanged for the trees A 1 and B I' By the induction 
hypothesis A 1 and are isomorphic trees, and thus there exists a bijection f 
from the set of vertices of A I onto the set of vertices of which preserves the 

of vertices. 
One can assume that i for i=l, ... ,r-l, because it is possible to 

relabel the terminal vertices of BJ so that this condition is satisfied and the 
distances between the terminal vertices i and j are the same in A 1 and B I' It 
is now possible to show that f(vA)=vn. that f(VAl7'=Vn. There exists a 
unique walk in B I which joins !(VA) and Vn which can be extended in an arbitrary 
fashion to a walk which the terminal vertices i and j in B l' It follows that 
dn(i,j) + dBti, r) - dBU, r) = 2dB(i, Since f(VA) is found on the walk which joins 
i andj in Bl (which is isomorphic to AI)' it follows that VA is found on the walk 
which in AI' one can conclude similarly that 

dA(i,j)+dA(i, r)-dAU, r)=2dA(i, VA)' 

Since the distances between terminal vertices are the same in the trees A and B, 
it also follows that dn(i, VB) = dA(i, VA)' But dB(i, =dBtU, vn) and dA(i, VA)= 
dA,(i,vA)' Since and BI are isomorphic under f, it follows that dA,(i, VA)= 
dB,(i,J'(VA)) =dB,(i, VB), which contradicts the fact that f(VAl 7'= eB and the vertices 
f(VA), Vn, and i are found on the same walk. f(v A) = Vs. Let i, j with 
1 ~i r-1 be labels for two terminal vertices such that VA and !(VA)=VB 
are found on the walk with endpoints i and j in A! and and 
hence in A and B. 

One can thus write 

dA(r, il+ j)-dA(i,j)=2dA(r, VA)' 

dn(r, i)+dn(r,j)-dnti,j)=2dB(r, VB)' 

Since the left-hand sides are equal by the hypothesis, it follows that dA(r, == 
dll(r, 1:n), and hence the walks [VA, ... , r] and [vn,"" r] have the same length. 
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Xl"'" X., rJ and [VB,"" r]=[VB. YI.··" Yb and 
g between A and B as follows: f(x) for every 

vertex x of AI' and 

g(r) == r. 

A. Smolenskii, Jurna/ V ici.5 I. Mal. i. Matem. Fiz. 2(2) (1962), 

6.11 The proof will use induction on the number of vertices. If IX! = 1 or 2 
the property is immediate. 

that the property is true for every tree with at most n - 1 vertices. 
I t will be shown that it is true for a tree G with n;;" 3 vertices. If f is a bijection, 
then fIx) -+ f(y) for x i= y. Also [x, y] E U implies that [f(x), I(y)] E U and 
thus f is an automorphism of G. terminal vertex (of I) is thus 
mapped f into a terminal vertex. 

Let G' denote the subtree of G obtained by all terminal vertices. 
It follows that G' is nonempty, since n;;.,3. If X' denotes the vertex set of G'. 
then I(X') = X' and the restriction of f to X' has the same property as f. 
Thus by the induction hypothesis (and consequently I) has a fixed point or a 
fixed edge OX'I ~ n - If I is not a bijection, then I(X) is a proper subset of 
the vertex set of G. It follows from the conditions on f that these vertices induce 
a connected subgraph of and hence fiX) is the vertex set of a tree and 
!/(X)I~n- L 

Since l(ffX» c I(X). one can consider the restriction of I to the subtree 
genera ted by the vertex set f(X), which has the same properties as f. By the 
induction hypothesis this and hence also I, has a fixed point or a 
fixed 

The property is no longer valid if G contains cycles. For example, suppose 
G=K 3 contains vertices x, y, z and let I(x)= y, I(y)=z, I(z)==x. In this case 
the mapping f has neither fixed points nor fixed edges. 

6.12 It has been seen (Problem that the center of a tree always consists 
of a single vertex 14 or two adjacent vertices 14 and v. The proof uses induction 
on the number m of vertices of X to show that if the tree A has a single vertex 14 
as its center then flu) = u. If the center is {u, then either /(14) = u and 
or I(u) = t' and ltv) == u. Since the bijection / preserves adjacency of VPf'i1I',PC 

it follows that x and have the same in the tree A. 
For m= 1 the tree is equal to its center u and hence 1(14)=11. For m=2 the 

tree is identical \vith its center and the property is again satisfied. Suppose that 
the property is true for all trees with at most m -1 vertices (m;;" 3), and let A 
be a tree with m vertices. If Xl' ... ,Xr is the set of terminal vertices of A, then 
it follows that I(x d .... , f(x,) are vertices of degree 1 and thus constitute a 
permutation of the set of terminal vertices. Consider the restriction of the 
function f to the set of vertices of at least 2 in A: 

g: where 

and g(x)= I(x) for every x E X,. It follows that g is an automorphism of the 
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subtree A" of A with vertex set X,,, In the solution of Problem 6.5 it was shown 
that A and A,. have the same center. It therefore follows from the induction 
hypothesis that either the center of A is equal to u, in which case g(u)= I(u)=u, 
or the center of A consists of the adjacent vertices u and v, in which case either 
g(u)= flu)=u and gft')= !(v)=t'. or g(u)= !(u)=r and g(v)= I(t') =11. 

The stated property is thus valid for every m. Since it must be shown that 1 
has a fixed point, the only case which must be investigated is that in which A 
has center (u, d with j(u) [' and f(r) u. Let and Au denote the subtrees of 
A obtained by suppressing the [1/, 1'J and which contain the vertices u and !' 
respectively. Let Ii l' ... , II, denote the vertices in Au which are adjacent to u. 
Since 1 preserves adjacency in A. it follows that f(UI),"" flu,) are adjacent 
to v in the subtree AI" and so on. 

Let and X" denote the vertex sets of the trees and Au It 
follows that I(X.) = Consider the restriction of the function 1 to the set 
Xu; denote it by h: X .-X v' The function h is a bijection, and y] is an 
in the tree A. if and only if hU')] is an in the tree Av. Thus h is an 
isomorphism of the trees Ali and Av. I t follows that and have the same 
number of which that 1= + and is thus an 
even num ber. 

h was assumed that 2n+ 1, and thus the case in which f(u)=v and 
u does not occur. It foHows that! has at least one fixed point. 

6.13 Let A I X and x denote the graphs obtained from AI and 
by x and the incident with x. Since a tree with /1 

vertices has /1-1 (Problem 6.3), the of the vertex x in the tree Al 
is equal to 

where m(A l x) denotes the number of 
that 

The fact that the Al -x and 
1l(A 1 -x)=m(A 2 -x). 

in the graph Al - x. It also follows 

(2) 

- x are isomorphic implies that 

By and (2) one can show that dA,(xl=dA,(x) for every vertex x EX 
md thus the trees A! and A2 have the same terminal vertices 1). Let 
r be the set of terminal vertices for the trees A 1 and A 2• If I TI it follows that 
41 and A2 are walks oflength IXI- I, and thus Al and have the same diameter. 
iuppose that i TI ~ 3, and let L be an elementary walk of maximal length in the 
ree A l' The length of L is by definition to d(A d, the diameter of Ai' 

The endpoints of this walk are two terminal vertices in the set T. The set T 
dso contains at least one other terminal vertex x which does not to the 
valk L. By hypothesis - x is isomorphic to Al - x. Since the walk L is con-
ained in the A I X, it follows that - x contains an walk 
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which has the same length as the walk L. Thus the graph 
walk of the same as L. It follows that 

the roles of A 1 and in the one can 
conclude that ~ d(A 2) and hence A 1 and have the same diameter. 

It can also be shown that under the conditions the trees A 1 and 
are [P.1. Kelly, Pacific J. Math., 7 (1957), 961-968.J 

6.14 One can obtain an arborescence from the tree G by the 
vertex Xl to be the root and directing all the of the tree so that for every 
vertex yi=x l there is a unique which in Xl and terminates in y. 
In this way a order is defined on the set X: Let Xi ~ Xj if the unique 
from Xl to Xj contains the vertex Xc. 

Let the matrix Z be defined as follows: zu=l if x!~ 
o if Xi is not less than or to Xl' In the solution to Problem 2.19 

that one can renumber the elements of X so that Z is upper 
with Zji= 1 for i= 1, ... , n. It follows that del Z = L 

Let 

1 
-2 
o 

o 

I 
o 
2 

o 

~\ 
-2) 

It will be shown that ZT AZ = D. In fact, the element in row i and column j of 
the matrix ZT AZ is 

n 

I ZkiQklZlj= I I Ukl' 
1= 1 Xk4!tXi :q~:t;j 

But Qkl:i= 0 only if k = I or k = 1 or 1== 1, and hence 

I (- 2)+ I 1 + I 1, 

since x 1 ~ Xj for every i = 1, ... , n. Let X,. denote the last common vertex of the 
paths from Xl to Xi and from Xl to with XI being considered as the initial 
point. It follows that 

,x,.)+ 1)+ +1)+(d(x 1 , +1) 

=d(Xj,x;)+ ,x)-2d(Xl,XI'J x}l. 

Thus it has been shown that = D and finally that det D = det A. By 
the other columns to the first column of the matrix A and expanding the 

resulting determinant on the first column one sees that 

det A := ( n - 1)( - 1 _ det A, and hence det A = - (1'1-

[R. L. H. C. Pollak, Bell Techn. 50 2495 
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6.15 (a) Since every tree has at least two terminal vertices. it follows that 
the procedure previously described one obtains a tree only 

of the vertex Xn and another vertex adjacent to Xn• The Priifer code of A is com­
pleted by a new position (In-I = n. 

Let b l , ... ,bn I be the indices of the terminal vertices which are 
when the algorithm determining the Priifer code is applied to the tree A. It will 
now be shown how to determine the numbers bi from the Priifer code 

, ... ,a,,-l)· 
It is clear that bi is dilTerent from b l •.. " I and also from (Ii' since Xb,] 

is an in the tree A. Since the vertex Xh, has been it cannot be 
adjacent to a terminal vertex at a later Thus bti=aj for i. 

Conversely, if k t {hi," , ' .. , an- d, then the vertex Xk is a terminal 
vertex of the tree A-{Xb

" 
••• , obtained from A by suppressing the ver-

tices with indices ... , bi - I- otherwise it would have to be to 
a vertex which will be suppressed at a later step. It follows that k E {a;, ... , (in- d, 
which contradicts the hypothesis. Hence 

(1) 

Thus the Priifer code uniquely determines the numbers 
tree A which consists of the [x." It follows that the (,1"'I1·r""nn,nt1 .. I"I(·" 

which associates to every tree its Priifer code is 
Now let (ai' ... , an-I) be an arbitrary sequence of 

and (/n-l n. Define the numbers bi recursively by 
xa, and Xb, by an for i = 1, ... , n-1. 

such that 1 ~ai~n 
(1). Join the vertices 

One can now show that the A obtained in this manner is a tree whose 
Priifer code is (aj, ... , (/n-l): thus the under considera­
tion is surjective, and hence In order to establish this property it is 
sufficient to show that Xb, is a terminal vertex with minimal index of the graph 

A;= ... ,Xb, }. 

It follows from that bd aJ for i, and thus ad bl , •.• , bi - 1 , which 
By construction the vertices and xv, are 

with a vertex in the Ai' vertex cannot be 
adjacent to a vertex of other than x. I ' since if [xa!' XbJ] were edge of 

incident with Xb" it would follow that j > i, since Xbj is a vertex of A j • 

But Xb, is one of the vertices xaJ or Xb" and thus bi == bj or bl = which con· 
tradicts identity (1), sincej > i. It follows that Xb, is a terminal vertex of the graph 
Ab and hence A and all of the graphs are trees. This property follows by 
induction on i. For i = n the graph An is composed of the vertex xv" and is thus a 
tree. The fact that is a tree is a consequence of the fact that + I is a tree. 

Suppose now that has a terminal vertex Xk with k < bi' It follows from (1) 
that either k = b, with < i or k = (lj with j:;::' i. The first alternative is 
since Xb, is a vertex in the tree AI' which does not contain the vertices 

,,,,,xbl.,.Ifk with i,thenj~n-2,sincean_l n~bi>k.Butithas 
been shown that a terminal vertex of which is to = Xk' 
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The vertex Xk' 

It follows that 
to the edge [x.}' 
since n- 2. 

a terminal in Ai' is also a terminal vertex in 
and XV} are both terminal vertices of A j' and thus 

This is a contradiction, since has 11 + l)c 
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(b) The num ber of trees with n vertices Xl' .•• , Xn is thus to the number 
of sequences , ... , (/n- d with h;; (li ~ 11 and (In- 1 = n, Hence it is to n" 2, 

Observe that each vertex Xa, occurs in the (ai' .... an - 2) 
d.,-l times. In fact, the indices of the terminal do not appear in 

the sequence. but a vertex Xi of degree di)c 2 will become a terminal vertex after 
dl 1 of its neighbors have been eliminated. It follows that the number 

of trees with d(xl)=dl , ,., d(xn) = whose sum is equal to twice the 
number of 2n 2) is equal to the number or sequences .. , .• Ci n - 2) 

which contain the number k dk - 1 times for 1 ~ k ~ n. But this number is equal 
to the number of arrangements of n - 2 objects in n cells such that the kth cell 
contains dk -1 for 1 ~ k ~ n. The objects in cell i represent the number 
orderings of positions in which the number i is found in the sequence 
(al" .. ,an - 2)' By Problem 1.15 this number is equal to 

6.16 Let A be a tree with vertices Xl, .•• , X •. If an arbitrary is sup-
the result is two trees which contain all the vertices 

of A. Label the of the Since A has n-1 
from the tn trees with n one obtains (n - l)ln of trees of 

this kind with one vertex labeled in each tree. that A 1 and A 2 are two 
disjoint trees with k and n - k vertices respectively and which together contain 
the vertices Xl' ..• , X •. One can label a vertex of A I and a vertex of A 2 in k(n - k) 
ways for 1 ~ k~ n-1. The vertex sets of AJ and can be chosen in -;) ways 
under the condition that a fixed vertex Xl belongs to the tree A 1 in order to 
eliminate repetition. 

One can find tk and cn- k trees with vertex sets Al and , respectively, and 
thus, by counting (in two ways) the pairs of disjoint trees which contain 
the vertices Xl, .•• ,Xn and have a labeled vertex in each tree, one finds that 

"-1 (n-l) 
k-l 

-k)=(n-l)tn' (I) 

Since 

(n - I) n -1 (n - 2) 
k 1 n- k-l' 

both sides of (l) by n - 1. the desired identity is obtained, after 
Recall that G=;)=(:=;), As a result of 
becomes 

the indices k and 11 - k. 

(2) 
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Addition of (1) and (2) yields 

n- (~) tktn-kk(n k)=2(n (3) 

This can also be found directly if x 1 is not a fixed vertex in A!. 
It will now be shown by induction on n that tn == n"- , For n = 1 there is a 

unique tree with one vertex and the formula is satisfied. Suppose that tm = mm 2 

for every 1 ~ m ~ n -1. It will be shown that t n= nn- 2, Since (3) holds, one must 
show that 

1 = 2( n _ 1 )n" - 2, 

This equation is in fact identity (c) of Problem 1.29 and implies that tn = 
Dziobek, Sitzungsber, Berl. Math, G" 17 (1917), 64-67.J 

6.17 that the terminal vertices are fixed and in fact that they are 
Since d 1 = . , , = dp = 1. it follows from the problem that 
number is equal to 

In 2)! 
(1) 

vhere the first summation is taken over all values 

2 and 1 + '" +dn=2n-2-p. 

'he second summation is obtained by substituting the variables kp+ 1 = 
1 -1, . , . , kn = 1 and hence kp+ 1 , ' , , ,land kp + 1 + .. , + kn = n - 2, 
number 

the number of ways of arranging n - 2 in n - p cells so that the 
rst cell contains 1 ' , ., the (n - p)th cell contains kn vVJ'''''''''' 
~ 1 for i=p+ 1.,." n. this number also represents the number of 
mctions 

f:X-,Y 

here jX!=n 2, IYI =n p, and if Y = {YP+l"'" .rll} then If 
+ J ~ i ~ n. It follows that the sum (1) is equal to the number 
mctions sn-2.n-p=ln p)!S(n 2,n-p). where 2.n-p) is the 
.Imber or the second kind (Problem 3.4), 

Since the p terminal vertices are not specified, they can be chosen from the 
:t of n vertices in ways. Thus the num ber of trees with n vertices p of which 
lYe 1 is equal to 

n! ~ 
p)! S(n-2, n-p) Sin-I, n-

p 

\" Mat. Kw. Int, K cizl., 4(1959), 
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6.18 (al Let f(n) be the desired number of possible ways of selection. It 
follows that f(I)= 1 and f(2)=2. This corresponds to the choice of edge 
[Xl' Yt] and respectivcly to [Xl' X2J and [.1'1' .l'2J or [Xl' J'IJ and [X2, Y2]. If 
the ladder graph has 2n vertices. then one can select [x ,. }'tJ and for the remain-
ing edges there 1) possihle choices. One may also select and 
[YI' Y2], leaving further choices. It then 

f(n-l)+ f(n-2). 

and this relation the initial values f(l) implies 
that fin) = F n' num ber. 

(b) Let g(nl number of spanning trees It 
follows that g(l) = 1 w hcn thc spanning tree consists of LX l' .It J. Also g(2) = 4 
for the trees which are obtained from a cycle with four vertices if one suppresses. 
in turn, an edge of the cycle. 

In order to prove the recurrence relation for Yin), consider the graph of 
Figure 6.1 with 2n+2 vertices: 

xl'yl····· Xn+I'Yn+'· 

The set of its spanning trees can be written in the form 

where Al is the trees which do not contain 
A2 is the set of which do not contain the 
set of spanning contain [.l't, .\'2J, and 
trees which contain 1. YlJ, and [Yl' YlJ and 
It is clear that disjoint. If, for span-
ning tree in A! ("\ A2• then it would not contain the edges [x!, X2] and Lx I' y,]. 
The vertex X 1 would thus be isolated. which contradicts the definition of a 
spanning tree. It foHows that IA ,I = IA21 = IA31 = gln). [Using the vertices 
X 2. Y2 • ...• Xn-r' d'n.,., there are g(n) possible spanning trees.] Let IA41 = h(n + 1). 
Then 

Xn+ l , Yn-t. Its 
BI is the set or 
is the set of 
follows that 

g(n+ 1)=3g(n)+h(n+ 1). 

trees can be written in 
which do not contain the 

do contain [X2,}'2 
But IB11=g(n-l) and 
two sets defined as folIews: 

Y2] by a walk of length 
points: [X2' Xl. obtains a spanning tree 
this correspondence is a bijection and hence 

g(n)=g(n- 1)+ h(n+ 1). 

(1) 
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'om which it follows by using that 

g(n+ 1) 4g(n)- -1). 

The characteristic equation of relation (2) is 

r2-4r+ 1 =0, 

(2) 

'hich has the solutions rl =2+.j3 and r2=2-.j3. Thus the general solution 
f the recurrence relation is of the form 

gIn) = r1 + 1"1, 

'here and are determined the system 

C1{2+.j3)+C2(2 .j3)=1, 

+4.j3)+ 4.j3)=4, 

hich has the solution C1 = 1/2.j3, 1/2.j3. Thus 

g(n)= + 

J. pro matem., 94(2) (1969), 21 

6.19 Let D be the distance matrix of a connected graph G. Properties 
are precisely the expression of the fact that the distance function is a 

let ric on the set of vertices {I, ' .. ,p}. In order to prove (5), let 1", p, so 
\at d(i, j) > 1, and let L be a shortest walk from i to j, which contains at 
:ast two Let k be a vertex of difTerent from the endpoints i and j. It 
,!lows that both subwalks of L from i to k and from k to j are subwalks of 
linimal that is, dik + dkj • 

It will be shown, that a square matrix D of order p which satisfies 
roperties (1)-(5) is the distance matrix of a given graph. Let G be a graph with 
~rtex set X={l, ... , and with edge set V {[i,nldij=l}. It remains to 
lOW that for each two vertices i and j it is the case that dU. j) dij. 
If i then d(i, 0= du. If E U, one has d(i,j) = 1 = in view of the 

:::finition of the graph G. Thus suppose that i i= j, [i, j] ~ V, hence dlj;:: 2. 
y use of property one finds i p i 2 , ... , ik such that 

dij=dH, +di11 ,+ ... + 

.ch term on the right-hand side of this equation is to 1. Thus 
1, •.. , [ibn E V, which implies the existence of a walk of length 
ith endpoints i andj. In fact G also contains an elementary walk with 
mdj of at most equal to The G is and dU, 

there is an elementary walk , ... ,j/11 less than 
I' The of this walk implies that dij, = ' .. = d}m} = 1. In this 
.se (4) implies that dij + .. , + dlj' a contradiction. It has 
us been shown that d(i, for every i and j. 
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6.20 It will be shown that is equivalent to (2) and that (2) is equivalent 
to (3). 

Suppose that G is a tree, that is, G is connected and without cycles. If the 
obtained from G by [x, is then there is a walk 

between x and y in . It follows that in G I there exists an walk 
between x and y, which together with yJ generates a in G, and this is a 
contradiction. Hence (1) implies (2). Suppose G is a graph satisfying (2) and 
G has a cycle [x, Zl"'" Zb y, xl By deleting one edge [x, y] in this cycle one 
obtains a new graph which is connected; this is a contradiction. It follows 
that G is connected and without and hence is a tree. 

OJ implies If G is a tree, it follows that G does not contain a For 
any two vertices x, y of G there is an elementary walk between 
x and y. This walk together with the yJ generates a cycle in , and 
hence (3) holds. 

It remains to show that (l). To show this let G be a 
One must prove that G is connected. Suppose that G is not connected. There 

are therefore two vertices x and y belonging to difTerent connected components 
of G. By the one obtains a graph G1 which does not contain 
a which is a contradiction. 

6.21 If is a tree with n labeled vertices, one may choose a root a in n ways. 
F or any such selection a unique arborescence is obtained directing each 
so that any vertex x =f a to be reached from (I by a unique path. Hence the number 
of arborescences with n labeled vertices is to n'nn- 2 = nn-I by Cayley's 
formula. 

6.22 Choose a vertex of a labeled tree with vertex set {l.,." nJ (say 
the vertex and call it the root. There exists a unique walk from any other 
vertex i< n to the root. If [i, J1 is the first edge in this walk, let The 
function J is called the tree function of the label i to the [i, 
where JU), for i = 1, ' .. , n -1. This defines a mapping of the set of nn-
vertex-labeled trees TN onto the set of edge-labeled trees, 

When n ~ 3, each tree is the of n vertex-labeled trees, 
since the vertex n may be chosen in n ways and the labels of the other vertices 
are uniquely determined the labels of the It follows that the number of 
trees with n unlabeled vertices and n - 1 labeled to n" - = n" - 3 

by Cayley's formula, [E. M. Palmer, J. Combinatorial 6(1969),206-207.J 

6.23 Each column of an incidence matrix A contains one +- 1, one 1, 
and n - 2 zeros, and hence the sum of all n rows vanishes. The sum of any r 
rows of A must contain at least one nonzero entry if r<n, for otherwise G 
would not be connected. This implies that no r rows are if 
r < n. In if there exist r rows ai" ' . , ,ai, of A (r < n) whose sum equals the 
null vector wiLh rn components, then it follows that there is no which is 
directed away from or towards the vertex set {i1 ,., of G; this contradicts 
the hypothesis that G is connected, 
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By applying this result to the submatrices corresponding to the connected 
components of G it follows that if G has connected components then the 
rank of A is n-s. Kirchhoff, Anna/en der Physik und Chemie, 72 (1847), 
497-508.J 

6.24 If B is nonsingular, then each column of B must contain at least one 
nonzero entry, but not all col umns can contain two nonzero entries. Hence some 
column of B must contain exactly one nonzero entry. The desired result now 
follows by induction on the order r~ 1 of B by expanding the determinant of 
B along this column. Poincare, Pmc. London M mh. 32 (1901), 

6.25 Let F denote the spanning graph of G whose 1'1 - 1 correspond 
to the columns of B. It follows that B is the reduced incidence matrix of 
but B is nonsingular ifand = 1'1 -1. It has been seen that 
1'1 1 if and only if F is connected (Problem if C is the incidence 
matrix of then = rank(B), and if F is then rank( C) = 1'1 - L 
If F is not connected, then it has s ~ 2 connected components and rank( C) == 
rank(B) == 1'1 - S < 1'1 1. It remains to prove that an F which has 1'1 vertices and 
1'1 - J is connected if and only if it is a tree. If F is a tree with 1'1 vertices, it 
is connected and has 1'1 1 Problem 6.3. Conversely, since F is connected 
and has 1'1 vertices and 1'1 -1 it will be shown that F is a tree. 

Indeed, if F is it contains a tree T. To see this. suppose 
that for any [x, yJ of F the F! obtained from F by deleting 

yJ is not connected. In this case, by Problem 6.20, F is itself a tree and we 
define T F. Otherwise, the same argument can be applied to F j and so on by 
obtaining a spanning tree T of F. 

The tree T has 1'1 vertices and 1'1 -1 edges; hence T F, or F is a tree. [J. 
Chuard, Rend. Circolo Mat. Palermo, 46 (1922), 185-224.J 

6.26 The theorem states that if P and Q are matrices of size 
17 by q and q by P where p ~ q, then de! det B det C, where the sum 
taken is over the square submatrices Band C and Q of order p such that 
the columns of P in B are numbered the same as the rows of Q in C. Applying 
this to A and AT, assuming that m~n-l, and using Problem 6.24, one can 
show that 

det == L det B det BT = L (det B)2= L 1, 

Nhere the last sum is taken over all (1'1 -l)-by-(n -1) submatrices 
)f Ar . The desired result now follows from Problem 6.25. [R. L. Brooks, C. A. B. 
imith, A. H. Stone, W. T. Tutte, Duke Math. J., 7 (1940), 

6.27 Let B = , and let (Ii denote the ith row of the incidence matrix 
4 of G. It is clear that is equal to the scalar product alaj for I ~ i, 1'1-1. 

t follows that bi! is to the number of nonzero entries of ai' that is, to the 
lumber of vertices to i in G. If i then bi] is equal to -1 if [i,)] is 
ill of G and blj=O otherwise. It follows that 
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I 
-I -I 

=1 
-I n-I -I -1 n-I -1 0 n 0 

=11"- 2, 

-I n-J -1 -1 n-l 0 0 ' . n 

where all matrices are of order n - 1. 
This method for obtaining In was first pointed out by L. Weinberg [Pmc, 

IRE, 46(1958), 1954··19551 

6.28 For n= lone obtains three independent sets. namely 0. {t}. {2}, and 
hence 11 = In similar manner one can show that 12 8. For the graph 
let M. denote the family of all independent sets, and let An denote the family 
of independent sets containing vertex n + 1. Let Bn be the family of independent 
sets containing I, and Ie! C be the family of independent sets of R" which 
contain neither n+1 nor 1. It follows that Mn=A.uB.uC., where A., Bn. C. 
are p::urwise disjoint sets. It is clear that IAn\=ICni=Jn-1 and \B.I=21._ . 
since the independent sets containing 1 do not contain n + 1 and 2. but they 
may may nol eontain the vertex -l-2. Thus the numbers In satisry the recur­
rence relation 

1.= 21.-1 21. - 2 

,vith initial conditions and 12 8. The charaeteristic equation 
r2 - 2r - 2 = 0 with roots rl,2 = 1 ± J'i which implies that 

1.=C1(1 +J3)·+C2(1-J3)·. 

From the initial conditions one can conclude that C 1 =(3 + 2j3)j6 and C 2 = 
-2j3)/6. [H, Prodinger. R, F. Tichy. Fibonacci Quarterlv. 19821, 

16·21.] 

6.29 The proof is by induction on n. For n=2 this inequality becomes an 
equality and coincides with the Principle of Inclusion and Exclusion. 

Suppose that the inequality holds for any n - 1 subsets of X and any choice 
a Iree on vertices 1, ... n-l Without loss of generality one ean suppose 

that n is a terminal vertex of the tree T. Denote by T I th e tree obtained from T 
suppressing and its incident edge nJ. It follows from the induction 

hypothesis that 

i(Alu ... uA._1)uA"!=IA1u·" UAn-ll+IAnl-i(A1U , .. uA._ 1)IlA.1 

" 
~ L IA{i- L IAIIlAjl-IAkIlA.1 

i 1 [Lj]EE(Ttl 

" =2: 

since (AI U .. , uA._ dn 
297-302.J 

i= 1 
L iAi Ajl, 

[t.j]Et:{T) 

::cAkIlA •. [K. 1. Worsley, Biomwika 69(2) (1982), 
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6.30 It is clear that (1) is satisfied. In order to show suppose that the 
of I induce a spanning graph (X,1) with p components , ... , Cp and that 
these components contain respectively n1 , ••• , np vertices (nl + ... + np= n). 
Since (X, 1) does not contain a cycle, it follows that C I, ..• , Cp are trees having 
respectively n l -1, ... ,np-l edges. hypothesis (X, J) also has no 
which implies that J contains at most nj-l edges with both endpoints in the 
component Cil for i =: 1, ... , p. Because IJI III + 1, it follows that there is 
at least one e e whose lie in different components and 

(i:l= j). It follows that J v is an independent set, since (X, I v {e}) also 
contains no 

From Problem 6.20 one can deduce that the bases of the matroid M(G) 
coincide with the edge sets of spanning trees of G. If (X, S) has p components 
containing respectively m1 , ••• , mp vertices, then the fact that independent 
sets of edges contain no cycles implies that 

p(S)= (m/1)=n-p 

CHAPTER 7 

7.1 Suppose that the sign of a negative is changed so that it becomes 
positive. It follows that the signs of the n - 2 triangles which contain this 
are also changed. 

" ... ., .. "J"''' that r become and s negative 
become positive, so that r + s n - 2. In the thereby obtained the number 
of is equal to 

n(j) + r - S5 n(j) + r+ s = n(jl + n - 2, 

where the congruence is taken modulo 2. 
It follows that by changing, in turn, the of all the one 

obtains zero and hence 

n(j)+ p( n - 2) 0, 

that is, 

n(!)=np. 

7.2 Suppose that the three colors are a, b. c. Each triangular face for which 
the vertex set is colored with all three colors has an edge whose endpoints are 
colored a and b respectively. All the other faces contain 0 or 2 edges with this 
property. all the faces of the planar and count the number of 

with endpoints of colors a and b. It follows that 

1+1+"'+1 

!J 

.. , +0+2+2+'" +2=O(mod 
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Thus 13 the number of faces whose vertices are colored with all the 
colors a, b, and c, since each edge with colors a, b is counted twice (in both faces 

with it). Thus /3 == 0 
This is a 

which is to an 
The result remains valid for an 

7.3 The of the condition is since if a graph G without 
isolated vertices has an Eulerian then it is connected. In fact each two 

x and y, incident to an arc which belongs to an Eulerian 
are a walk. 

On the other hand, an Eulerian circuit uses all the arcs which at 
and terminate in every vertex x. The Eulerian circuit uses a unique arc which 
ends at x and a unique arc which starts at x each time the vertex x is traversed, 
and hence r(x)=d"'"(x). In order to show the sufficiency,let C be a circuit of 
the graph G which contains a maximal number of arcs. The graph G is con­
nected and d+(x) for every vertex x. If C does not contain all the arcs of 

then it follows from the fact that G is connected that there is an arc (x, y) 
which has a vertex in common with the circuit C Suppose, for that 
x e C One can make this because the circuit C uses the same 
number of and exit arcs in each vertex, but the of the vertex y 
is to the of the vertex y. Therefore if y e C there will exist an 
arc of the form (y, t). 

Let Gc denote the spanning subgraph of G induced the arcs which do not 
belong to the circuit C Since d-(x) for every vertex x. and since the 
circuit C uses the same number of entry and exit arcs at every vertex. it follows 
that all the vertices of have equal indegrees and outdegrees. 

Leave by the arc (x, y) of Gc, and move the arcs of Gc each arc 
once. Continue this process as as possible. One cannot end in a 

vertex z since the vertices of have and and 
each traversal of a vertex z + uses an entry arc and an exit arc. Thus if one has 
arrived at a vertex z + x, one can also leave this vertex on an exit arc. Since the 
number of vertices of Gc is finite, one must terminate at the vertex x, and this 
produces a circuit C 1 in 

The union of the arcs of the circuits C and C 1 is a circuit which is 
than C, which contradicts the assumption made. Thus C is an Eulerian circuit. 

7.4 One can suppose that the graph G has at least one Eulerian circuit C, 
since otherwise the property is evident. The Eulerian Cifcuit passes through 
every arc of G and hence passes the vertex x with d+ (xl ~ 3. 

Move the circuit C by from x and returning to x. At each 
traversal of x one obtains a circuit. Let these circuits be • C2l ••• , where 
m = d+ (xl. permutation of the circuits .... , Cm determines an order of 
passing the arcs of the graph G once, and hence an Eulerian circuit. 
Two Eulerian circuits obtained in this way are identical if and only if the per­
mutations of the cycles C I, .•• , Cm are identical as cyclic The 
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number of cyclic permutations of m objects is equal to m 11m =(m -1)!, since 
each cycle with m elements can be expressed in m different ways, by taking as 
first element each of the m elements. Thus one can obtain exactly (m -1) 1 
Eulerian circuits starting with the circuits C1 , .•• , Cm into which the circuit C 
is decomposed. 

If two families of circuits {C!, ... , Cm} and {C;, ... , C~) are different as 
sets, then the (m -1)! Eulerian circuits obtained in this way from the first family 
will be dilTerent from all the (m -1)! Eulerian circuits 0 btained rrom the second 
family. It follows that the total number of Eulerian circuits of the graph G is 
divisible by (m-1)!' which is an even number, since m~ 3. 

If G is a connected digraph with vertex set X = {x 1 , ... , xn} such that r (Xi) = 
d + (Xi) = ri for every i = 1, .... n, then the theorem of van Aardenne-Ehrenfest 
and deBruijn states that the number of Eulerian circuits of G is equal to 
III n:= I (rk -1)!, where /\1 is the number of spanning arborescences of G 
with the root Xl' [T. van Aardenne-Ehrenfest, N. G. deBruijn, Simon Stevin, 
28 (1951),203-217.] 

7.5 First we show that every graph without isolated vertices and whose 
vertices have even degree can be expressed as the union of cycles without com­
mon edges. The union of two graphs 

G1 =(X 1, U I ) and G2 =(X 2, U 2) 

is defined to be 

G1 UG 2 =(X 1 UX 2 , U j uU 2)· 

In the solution of Problem 6.3, it was shown that d(x)~2 for every vertex X 

implies the existence of an elementary cycle C I in G. By suppressing the edges 
of the cycle Clone obtains a spanning graph of G which may contain some 
isolated vertices. After suppressing the isolated vertices one obtains a spanning 
subgraph G! of G whose vertices have even degrees and which does not contain 
isolated vertices. In fact, by suppressing the edges of the cycle C 1 some vertices 
of G have their degree reduced by 2. One can write 

G=C 1 uG 1 , 

where G 1 has at least three edges less than G. G has all vertex degrees even and 
lacks isolated vertices. 

By continuing this procedure the edges of Glare eventually exhausted and 
one finally obtains a single cycle C k' that is, G = C 1 U ... U Ck such that C 1"'" C k 

do not have an edge pairwise in common. 
Now let G be a graph all of whose vertices have even degree. Excluding 

isolated vertices, it has been shown that G can be expressed as the union of 
elementary cycles C j , ••• , Ck which do not contain an edge pairwise in com· 
mono By selecting a sense for traversing each cycle C p' one directs the edges of 
the cycle in the sense of their traversal. Thus the in degree and the outdegree of 
every vertex on the cycle C p increase by one. Finally, after all the edges of the 
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cycles C p have been directed for p = 1,. .. k, one obtains a directed 
satisfies the given conditions. 

203 

which 

7.6 If the graph G has an Eulerian then it follows that G is connected 
and has vertices of even since each traversal of a vertex uses two 

if G is connected and has even then by the 
can be directed so as to obtain a directed graph which satisfies 

for every vertex x. It follows from Problem 7.3 that the 
so obtained has an Eulerian circuit, which corresponds to an Eulerian 
in the G. 

that G is connected and has 2k vertices of odd (k ~ I). Let 
G1 be the graph obtained from G by adding a new vertex which is joined by 

to all the 2k vertices of odd in G. It follows that is connected 
and has even and thus has an Eulerian After the 
additional vertex and the 2k incident with it. the Eulerian decom-
poses into k walks which are disjoint with respect to their do not use the 
same twice, and cover all the of G. 

It can be seen that the sum of the of the vertices of the graph is even. 
and hence the number of vertices of odd is also even. 

7.7 Let K: denote the complete directed graph with vertex set X of cardi­
nality n and arc set or the form {(x.y)lx.yeX and X:fy}.lt follows that the 
graph K: has n(n 1) arcs and the set of arcs of the G is the complement 
of the set of arcs of the G with respect to the set of arcs of The number 
of Hamiltonian of K: is equal to n!, since there is a bijection from the 
set of Hamiltonian paths of K onto the set of permutations of X. Let U j •••. , Urn 

denote the arcs of the and let Ai denote the set of Hamiltonian paths 
of K: which contain the arc Ui' 

One can use the Principle of Inclusion and Exclusion (Problem to obtain 

=n!+ iAr,n'" n 0) 

The term n ... n represents the number of Hamiltonian paths of K~ 
which contain the arcs Ui" ... , u'p' This term is nonzero only in the case of arcs 
Ui" .• , ui

p 
which form paths which are pairwise disjoint with 

respect to vertices. In this last case suppose that there exist r elementary paths 
which contain PI' P 2' •.. ,p, vertices respectively. The number of connected 
components of the spanning subgraph of K~ the arcs u'" . .. , u'p 
will be equal to 

I'+n- +·"+p,.)=:n-p, 

since the number of arcs satisfies p=tpI-l)+ ... +(p,.-l)=Pl+ ... +p,.-I'. 
Every Hamiltonian path which passes the arcs u" . ... , tllp defines a 

permutation of these n - p and conversely. and this correspondence 
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Thus if the arcs 1.11" ••• , ul• form elementary paths without common 
VI"f'f,f',""o then 

IA/,n ... nA,.I=(n-p)!. 

Finally, the numbers IA" n'" nAipl are equal 10 I if and if p=n 1 
and the arcs UI" ••. , Ul. form a Hamiltonian path in the graph Otherwise 
these numbers are even. 

By (1) one can conclude that h(G):=h(G) (mod 
Let G be a and consider the Kn which has (;) edg~s 

and n Hamiltonian walks. Denote U l , ••• , Um the edges of the graph G, 
and by the set of Hamiltonian walks of Kn which contain the edge 1.11' 

A formula analogous to (1) for h(G) can be obtained immediately by replacing 
nl with n which is even for every n;-:4. 

One can also show that 

n ... n 

if the 1.11" ••• , Ut. form q walks without common vertices. The 
right-hand side is equal to zero otherwise. In fact, if one considers the n - p 
connected components reduced to a single point, then one can form 

(n- ! 

Hamiltonian walks, but each walk L from among the q elementary walks of the 
form 

L= , ... ,xp ] 

can be inserted in each of the (n- Hamiltonian walks in two ways. One 
can choose the form , ... , xp] or [Xp,"" Xl]. This results in distinct Hamil­
tonian walks which belong to the set AI, n .. n Ai.' 

Thus lA/In'" nA/pl is equal to 1 if p=n-l and q=l (in other words 
1.1.\, ••• ,1.1/ form a Hamiltonian walk in the G) and is even otherwise. 

p -

In view of the fact that n;-: 4, one can conclude that h( G) h(G) (mod 

7.8 It can be shown that if the orientation of a unique arc 1.1 = la, b) of the 
tournament G is inverted, then a tournament G1 is obtained such that h(Gtl= 
h(G). Let G2 be the graph obtained from G by suppressing the arc u, and let G3 

be the obtained from G by adding the arc (b, a) with the same endpoints, 
but the opposite orientation to u. 

Since G 2 is obtained from the direction of all its arcs, it 
follows that 

h(G z)= h( G3) 

The results of the preceding problem then imply that 

h(G 2)=h{Gz) (mod 2). 
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Let h3(a, b), a), and h3 (O) denote respectively the number of Hamiltonian 
paths of G3 which use the arc (a, b), the arc (b, or neither of these two arcs. ThEm 

h(Gz)=h(G 3)==h3(O)+h 3(a,b)+ a), 

from which one can conclude that h3(a, b)=h3(b, a) modulo 2. Hence 

=h 3{O)+h 3(a, b)=h 3(O)+h 3(b, aj h(GJl. 

Now let G be an arbitrary tournament. According to Problem 9.5, G contains 
a Hamiltonian path; say (Xl' X2.' .. ,By the direction of some arcs, 
It IS to insure that the tournament contains only arcs of the 
form (XI. xJ) with i i.e., it becomes a transitive tournament with a unique 

path. 
It has been shown that if the direction of an arc is the parity of the 

number of Hamiltonian paths remains constant. This observation that 
h(G)=l(mod AClaLitt. 7(1934), 

7.9 Let L be a 
graph G: 

walk which 

L [xo, ... ,xkl 

at a vertex Xo of the 

It follows that the vertex Xk is to Xk _ I and to the other d(Xk) -1 vertices 
which belong to the walk L, since otherwise L could be extended to a walk. 

Suppose that Xk is to a vertex xJ such that 1 ~ k 2. The walk 

is likewise a elementary walk which at Xo. The walk will be 
called a transformation of L. If is a transformation of L, then L is also a 
transformation of L l' There are exactly d(Xk) -1 transformations if Xk is a ter­
minal vertex of L 

Let Y be the set of vertices of even in G, and let Xo be an arbitrary 
vertex in G. It will be shown that there exists an even number of longest el­
ementary walks L which begin at Xo and have their last vertex in Y. 

In order to prove this, let H be the graph defined as follows: The vertex set 
of H is the set of longest elementary walks which at Xo in the graph G. 
Two vertices of H which correspond to two walks are if and 
only if is a transformation of 

The of a vertex of H which corresponds to the walk L = [xo, ...• 
is - L It follows that the set of walks which originate 
at Xo and terminate at a vertex of Y to the set of vertices of odd 

of the H. The number of of odd is even for all 
This observation completes the proof of the property previously stated. 

One can now prove that there exist an even number of Hamiltonian cycles 
which use a [xo• y] in a graph G with all vertices of odd To 
this end, consider the graph obtained from G by suppressing the edge 
In only the vertices Xo and y have even Thus. by applying the pre-
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vious property, it is found that there exist an even number of elementary 
walks which have endpoints Xo and y. It follows that G has no Hamiltonian 
cycles which contain the [xo, (and thus an even number of such cycles) 
or else contains a even number of them. In fact, suppose that G contains 
a Hamiltonian cycle which passes through the edge [xo, y). One can then con­
clude that all maximal elementary walks with endpoints Xo and yare Hamilton­
ian walks. 

By the property just demonstrated, the number of these walks is even. But 
each of them generates, when taken together with the ,a H ami!­
tonian which satisfies the given condition. [A. G. Thomason, Annals of 
Discrete Math., 3 (1978), L"'-L."", 

7.10 First let graph of G of the form G! = V) which 
has all its vertices of even and let C be an of G with 
edge set W. It follows that the V ll. W) also has all of 
its vertices of even (A A B is the symmetric difference of A and B.) In 
fact, if the cycle C does not pass through the vertex x, then the degree of x in 

is even, 
Suppose that (1.1, x) E W, (x, !.') E W. If: 

(ll (1.1, x) e V, (x, v) ¢ V, then dG2(x) +2: 
(2) (1.1, x) E V, v) ¢ V or (1.1, x) ¢ V, v) E V, then dG2~X)=dGl(X); 
(3) (1.1, xl E V, v) E V, then dG1(x) dG,(x) - 2 for every x E V. 

The property will be established by induction on the number m. Since G is 
connected, it follows that m ~ n - 1. If m = n - 1, then G is a tree. The number of 
spanning trees of G of even degree is in this case equal to 2" - I -. - 1 = 1, since 
the graph with this property is (X, 0). 

In fact, suppose that there exists a spanning of G of the form (X, V) 
with V and all vertices of even It has been seen in the solution to 
Problem 7.5 that by the isolated vertices of G l the resulting graph 
can be expressed as a union of cycles without common vertices. This implies 
that G contains which contradicts the fact that G is a tree. 

now that the property is true for all connected graphs with n vertices 
and at most p (p ~ n -1). Let G be a connected graph with n and 
p + 1 If by an arbitrary of the graph G, it becomes dis-

then G is a tree and p + 1 = n-l, which contradicts the inequality 
p ~ n -1. It follows that G contains an edge 1.1 whose elimination 
connected graph with p The of even 
which do not contain the edge u coincide with the spanning graphs of even 
degree of Gu , and by the induction hypothesis their number is equal to 2P -"+!. 

It will now be shown that G contains the same number of spanning graphs 
of even which contain the edge u. Since Gu is connected, it follows that 
there exists an elementary walk which joins the endpoints of the u. This 
walk, with the edge u, forms an elementary cycle C in G which contains 
the u. Let :::: (X, U d be a spanning graph of G of even degree. It has been 
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seen that U 1 6, W) has even where W is the set of edges of the 
C. contains the u, then since U E W, it follows that G2 does 

not contain the edge u and hence is a tree of even degree of G". The 
COl're~;pc!naen(;e J which associates Since 

(A 6, B) 6, B A 

for every two sets A and it follows that J is also an involution, that is, 
=G1 · 

It folIows that for every of G" of even degree there exists a 
graph G1 = f{G 2) of even of G which contains u and is such 
f(G d. The mapping f is therefore and hence bijective. Thus 

the number of spanning of even ofG is equal to 2P -
n + 1 +2P-

nT
! = 

1)-"T I. This completes the proof by induction of the property. 

7.11 The property will be induction on the number n of vertices 
of the graph G. Forn=l let X! and andforn=2IetX I={xl} 
and Xl = {Xl}' Suppose that the is true for all graphs with at most n 
vertices, and let G be a graph with n + 1 vertices. 

If all the vertices of G have even then let X I = X and X 2 Other-
wise let a be a vertex of odd in G, and denote by A the set of vertices in 
G adjacent to a. Define the as having the vertex set Y = X The 
pair [x, yJ is an edge in if and only if x, yEA and [x, yJ is not an of the 
graph G, or at least one of the vertices x and y does not belong to the set A and 
[x, y] is an edge of the G. the induction hypothesis there is a 
Y = Y 1 U Y 2 such that Y I and both induce subgraphs of G 1 of even 
But 

so that one can suppose, for 
Let 

that ]A n Y II is even and IA n 

We show that Z 1 and induce of even degree of G. 

is odd. 

Let x be a vertex in . If x ~ A and x:pa, then its dz,(x) in the sub-
graph of G induced by Z I is even, by the definition of an in the 
If x = a, then its dz ((a) IA n Y d, which has been assumed to be an even 
number. Let x EA. denote by dl(x) the degree of x in the of in-
duced by r l' and by the degree of x in the subgraph of induced 
YIn A. Further suppose that d3{x) is the degree of x in the of G 
induced by YIn A. It follows from the definition of the 
is adjacent to y E Y 1 n A in the graph G if and only if x is not 
the graph G I, and hence 

(1) 



Problems in Combinatorics and Graph Theory 

On the other hand, it also follows from the definition of G1 that 

dz,(x)==d1(x)-d2(x)+d 3(x)+ 1. (2) 

The last term is 1 because x E A is adjacent to a E in the graph G. 
From (1) and (2) it follows that 

=d1(x)-d2(x)+{iY 1 nAI d2(x)J+l 

IYjn 

and in this sum each term is even. 
If x E ,it can be shown analogously that if x fE A then dZ2(x) is even. If 

x E A, then 

dZ2(x) -ds(x)+d 6(x) 

where d4(x) is the degree of x in the subgraph of G1 induced by Y 2 = The 
number ds(x) is the of x in the of G1 induced by nA, and 
d6(x) is the of x in the of G induced by Y 2 n A. A similar argu-
ment shows that 

d6(x) = I n AI- 1- ds(x), 

which the equation 

This number is always even, since d4(x) is even by the induction hypothesis and 
I Y 2 n AI is odd. The property is thus found to be true for every n. 

It will now be shown that there exists a partition 

X= u 

such that the degrees of the vertices of the subgraph generated by X 1 are even 
and the of the vertices of the subgraph induced by X 2 are odd. To this 
end add to the G a new vertex y, which is adjacent to all the vertices of X. 
Let Gibe the thus obtained. the previous resul t, there exists a 
Y 1 U Y 2 of the set of vertices X u where and induce 
even degree in G I' If, for example, y E Y 2, then by denoting Xl = Y! and 
X 2 == Y 2 "'-{y} one obtains the desired partition of the vertex set of G. [W. K. 
Chen, SIAM J. Appl. Math., 20 (1971),526-529.] 

7.12 It is clear that if C contains only nonempty then = Cu 
satisfies the and hence one can assume that E C. 

It follows that C 1= {X}, since otherwise there exists a proper subset Y c:: X 
which has elements in common with and hence with an odd number of sub­
sets from C. Thus there exists a subset A in C such that IAI =a is minimum and 
a ~ 1. Because a ,,;;; n - 1, it follows that X "'-A is a proper su bset of X, and X "'-A 
intersects all sets of C but does not intersect A. By the hypothesis Icl 1 is an 
even number, and hence C contains an odd number of subsets of X. 
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If x E X and ¢ C, it follows that X ""-{ x} intersects all sets in and hence 
an odd number of sets, which contradicts the It follows that. C 
contains all one-element subsets of X. that every subset BcX such 
that 1 ~ IBI < k < n has the BE C. Let A X be such that IAI k. If 
A ¢ C, one can conclude that intersects all but - 2 = IP(A) ""-{ A, I 
subsets from C. 

Since k ;:'1, it follows that 21AI - 2 - 2550 (mod 2), and hence X ""-A inter-
sects an odd number of subsets from C, which contradicts the hypothesis. This 
implies that A E C. It has thus been proved induction that every subset 
A c X satisfying 1 ~ ~ n -1 belongs to C. 

Suppose that X ~ Then Ici = 2" - 2 55 0 (mod 2), which is a contradiction. 
It follows that C = P(X) ""-{0} and C1 = P(X) are the solutions of the problem, 
since both the condition in the statement of the problem. 

In fact, if Y c X and I YI = k, 1 ~ k ~ n -1, then Y intersects 2" - subsets 
in both collections e and C1 , and this number is even. [A. Adelberg, Problem 
E 2887, American Mathematical Monthly, 88(5) 349.] 

CHAPTERS 

8.1 Suppose that G is not connected, and let C J be a component which 
does not contain the vertex Xn. Let Ie 11 = k, and let .... , Xi, be vertices which 
it contains, where 

I ~ i 1 < ... < ik < n. 

The component which contains x. also contains all vertices adjacent to x •• 
and therefore it contains at least d. + 1 vertices. It follows that 

k=lell~n-(d"+ 1). 

Since k ~ ib one can show that dk~dl, ~ k -I, so that the vertices adjacent to 
Xi. are all found in the component . This is a contradiction, since by hypothesis 
k~n-d"-l implies that dk;:.k, and the property is therefore established. 

8.2 It will first be shown that G contains a spanning A which is a 
tree. If G does not contain a then G itself is a tree and one can take A =G. 
Otherwise G contains at least one cycle 

Now suppress an UI of the cycle . The result is a spanning 
G I of G. If G 1 does not contain a one can take A = , since in this 

case G! is connected and does not contain a and is hence a tree. Otherwise 
an U2 of a e 2 of , and so on. This process cannot continue 

since G contains at most G) Finally one obtains a connected 
graph without cycles, and A is to be to 

I t has been seen that the tree A has at least one vertex X 1 of degree 1 the 
solution of Problem 6.3). If k n then choose H == G. Otherwise suppress the 
vertex Xl and the edge incident to Xl in the tree A. This produces a new tree A!, 
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nce it follows immediately that Al is connected and contains no cycles. Repeat 
lis process so that the vertices XI' X2,"" X.-k are eliminated. The result is a 
ee with k vertices. The subgraph H is defined to be the subgraph induced 
y the k vertices of the tree An- k • The graph H is connected, since it contains 
Ie connected spanning tree with the same vertex set. 

8.3 Denote the number of edges and vertices of the p components 
l' ... , mp and n l •...• np respectively. Since each component is in fact a con· 
~cted graph. it follows that 

(1) 

r i = 1, ... ,p. Equality holds only for components which are trees. 
By inequalities (1) for i == 1, ...• p, one finds that m ~ n - p, since no 

10 connected components have a common vertex and hence have no common 
1ge. 

8.4 Suppose that there exist two walks of maximal 
d which have no common vertex. Since G is connected, there are two 
rtices Xl ELI and X2 E which are joined by a walk Q which has in common 
th and L2 only the endpoints Xl and X2' The vertex XI divides the walk 
into two subwalks Lil and Li2 (one of which may possibly be empty) for 
1, 2. 
Let I(L) be the of the walk that is, the number of its One can 
;ume that l(Lil)~ I(Ld and I(Ll1)~ I(L 2d. It follows that 

I(L 11. ) > I(L 11)+ I(L2 d~ 2/(L2 d ~ I(L 2 d + = I(L 2). 

d hence the walk (Lll' Q, L2d is longer than ,which contradicts the 
pothesis. 
Suppose that G is a tree, and let Lt. be two walks of maximal length in G. 
ese walks have at least one vertex in common. In fact the common vertices 
1:..1 and form a walk Q lwhich may reduce to a vertex). Thus vertices 

u a of the following form: There exist two walks 
which originate at one terminal vertex of Q and two walks L'{ and 

ich at the other terminal vertex of Q. such that 

=(Lj,Q,L'{) and L2 • Q. L:;). 

'ollows that I(L'd = I(L2), since if, for example, I(L'! I(L'1), then the walk 
,Q, L~) would be longer than L 2 , which would contradict the 
In the same way it is seen that I(L r) = I(L'2). 
;;ince (L'l , is a its is at most to the of a maximal 
k, and hence 21(L~)~ I(Ld or I(L'J tl(Ld; analogously, l(L'i) ). Thus 
median point or the two median points of the walk belong to 
walk Q and hence to Since can be chosen arbitrarily, it follows that 
median point(s) of Ll on whether I(Ld is even or 
he intersection of all the maximal walks of the tree G. 
f the connected graph G contains cycles. this property does not hold. 
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8.5 In order to prove the let G be a which has a 
bipartition X = A u B. Every elementary cycle of G has the form 

where ai E A and bi E B for 1:;;;; i:;;;; k. The length of this cycle is 2k, and thus an 
even number. 

Now suppose that every ofG has an even number or vertices. 
Color the vertices of G with two colors so that each two vertices joined by an 

have different colors. The coloring is perrormed as follows: Start with a 
vertex Xl which is colored a. The vertices to Xl are colored b. Then the 
vertices adjacent to the vertices which are colored b will be colored a, and so 
on. In this way no vertex in the connected component which contains XI will be 
colored once with a and once with b, which would be a contradiction. 

In fact, suppose that the vertex z is colored a in a walk L I == [x l' .. 1'1 , ... , Ykt z] 
of even length and is colored b in a walk L2 = [Xl' t I, •.• , [s' z] of odd length. 
If Ll and have only endpoints in common. then the union ofthe of 
and forms an with an odd number of which contra-
dicts the Otherwise and L2 have a number of vertices in 
common, which implies that the union of the of and generates a 

0111".or<.nn of G of walks and cycles. It will be shown by 
induction on the number of LI that the fact that G does not contain odd 
elementary cycles implies that the lengths of Ll and must have the same 
parity. 

If I(Ld= 1 and I(L 2) is even. then the elementary cycle consisting of the edge 
of and the edges of is odd, which contradicts the hypothesis. It follows 
that I(L 2 ) is odd. Suppose that the property is true for every two walks LI and 
orthe indicated form such that /(LI t, and let and L2 be two walks with the 
same endpoints such that = t + 1. 

II has been assumed that and also have a vertex .r in common other 
than Xl and z. Let L~ and be subwalks of and L2 contained 
between Xl and Y, Similarly let be sub walks of and which are 
located between y and z, Since I(L'd:;;;; I, it follows from the induction 
that I(L'd and I(L2) have the same If Xl is replaced by y, then since 
/(L 1):;;;; t, one can conclude similarly that I(L'{) and I(L'2} have the same 
Since I(LII==I(L~)+I(L~) and I(L2)+/(L'2), it follows that I(Ld and I(L 2 ) 

have the same parity. Thus the vertices of the connected component which 
contains XI can be colored in this way by two colors. continuing this process 
for all connected components of G one obtains a two colors of the 
vertices of G such that each two vertices have different colors. It 
rollows that G is bipartite by the set A to be the set of vertices colored a 
and the set B to be the set of those vertices colored by b. 

It also follows that every graph G without odd which has at least one 
edge. is bichromatic, that x( G) = 2, 

8.6 The vertex of 9 must be adjacent to all the other vertices of the 



212 Problems in Combinalorics and Graph Theory 

and hence adjacent to the vertices of 1. It follows that the vertex 
7 can be to only 9 - 3 = 6 which establishes a con· 

tradiction. Thus there does not exist a with the desired property. 

8.7 The necessity of the condition is immediate. since d! + ... +dn is twice 
the number of edges and hence an even number. Also dn:( d l + ... + I' 

since every which is incident to Xn is also incident to one of the remaining 
vertices [dn = 

The sufficiency will be proven by induction on d 1 + ... + dn • If d 1 + ' , , + dn 
= 2, it follows that d 1 - 2 = 0 and 1 = dn = 1, and thus the desired 
graph contains one and n - 2 isolated vertices. 

Suppose the property is true for all sequences of numbers dt , •••• dn which 
satisfy (1) and (2) and also dl + ... +dn:(2d(d~2). Now suppose that 
d 1 + ... + dn = 2d + 2 and conditions (1) and (2) are satisfied. Two cases will be 
considered. 

(a) Suppose that dn- 2 < dn. It then follows that dn -1 is the largest number 
in the sequence dl , , • •• ,dn - 2 ,d.- 1 -l, 1 and it remains to show that: 

(3) dt +". +dn - 2 +(dn- 1 1)+(dn -l)=O(mod2); 

(4) dl +'''+dn- 2 + !-l~dn-1. 

These two properties follow from (1) and (2). 

(b) Now let 2 - It follows that 1 = Condition is 
and condition (2) becomes: 

(5) d 1 +'" + 3+(dn-l-l)+(dn-l)~dn-2' 

since 2 = max (d l , ••• , 2, 1 - I, 1). However, condition (5) also 
holds. In fact 1, condition (1) that the left-hand side of inequality 
(5) is odd and thus is at least equal to 1,sincein this case dn - 1 =dn = 1. Ifd._ 2 

then dn- 1 1 + dn -1 ~ d._ 2 because dn- 2 = d.- 1 = dn • 

It follows that the numbers d l , ... , 2' l-l,d.-1 whose sum is 2d 
satisfy conditions (1) and (2), and the induction there is a multi· 

with n vertices whose are equal to the 
the vertices of t -1 and dn - 1 by a new 
whose d l " •• , dn • 

8.8 Suppose that there exists a 
Then kn where m is the number of k cannot be 
greater than n - 1. Thus two necessary conditions have been found which the 
number n must 

(a) nk=O (mod 2); 

(b) n~k+1. 

It will be shown that if (a) and (b) are satisfied. tl1en there exists a regular graph 
of degree k with n vertices. 

Two cases will be considered: 
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(1) k is even. Consider a polygon with n vertices. Join by an 
vertices which are two apart, ... , vertices which are k/2 

apart. Since k < n, it follows that k/2 < nj2, and thus by construction each vertex 
has degree k and there are no mUltiple (see 8.2). 

(2) k is odd. It follows from condition (a) that n is even. The regular graph 
of k -1 with n vertices can be drawn as in case (1). Condition (b) assures 
that 

and thus the endpoints of the diagonals of the polygon are not joined 
by an Thus by joining diametrical vertices of the polygon by an each 
vertex will have k, and hence a regular of k with n vertices 
is obtained. 

8.9 Let x be a vertex of the graph G which 
Xl' ... , x'" in G. Since G does not contain a 

it follows that the vertices Xl" .. , X", are not pairwise It is 
also the case that every two vertices Xh x j with 1:t;;; i, j:t;;; m and i are adjacent 
to a vertex z -:/:: x. Hence z and x are not adjacent, since G does not contain a 
triangle. 

The mapping which associates with every pair {Xil Xj} the vertex z which is 
not adjacent to x is injective. In if such a z corresponds to two different 

then there are at least three vertices adjacent to both z and x, which con­
tradicts the hypothesis. Since the number of pairs {Xi> is equal to G), it 
follows that the number of vertices which are not to x is greater than or 

to (;). 
But the hypothesis implies that for each vertex z which is not adjacent to x 

there are two vertices from Xl' . , , 'Xm which are adjacent to z and to x. Call 

n '" 12 
k '" 6 

Fig. 8.2 

n '" 12 
k 7 
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these vertices Xr and XS' The mapping which associates to each vertex z which 
is nonadjacent to x the pair of vertices {xr' is also injective. 

Suppose that the same pair {x,., xs ) corresponds to two vertices Zl -I=Z2< It 
follows that there exist at least three vertices x, Z t. Z2 to x, and xs, 

which contradicts the 
Thus the number of vertices z which are not adjacent to x is at most equaJ to 

(~)< From the two opposite inequalities it follows that the number of vertices 
which are not adjacent to x is equal to G), and hence 

This implies that 

It follows that 8n - 7 = k2 and thus n = (k 2 + 
2 l)+ 1, and m=p. Thus G is a 

has 11=4 and G=K 2 • 2 < 

wh ich implies that k = 2p + 1, 
of p. For p =2 one 

A necessary condition for the existence of this graph is that lip is an even 
number, since it represents twice the number of in the graph. 

8.10 Carry out the following construction: Suppose that a regular graph 
G(r, g) of r and girth 9 has been constructed. Consider also a graph 
G(r', 9 -1), where r' is equal to the number of vertices of the G(r, g). 
Replace each vertex of the graph G(r', 9 -1) by r' vertices of degree 1 Figure 
8.2). 

Now identify these r' vertices with the vertices of a copy of the graph G(r, g}. 
In 8.3 the G(r, g) is which is obtained for r=2 and g=5. 
Denote by G 1 the graph obtained in this way. The G 1 is regular of 
r + 1 by construction. It will now be shown that g( G 1) = g. Consider an elemen­
tary of minimal length in a copy of the graph G(r, g). Such a cycle has 

Fig. 8.3 
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g, and hence g(Gd~ g. Since every other in a copy of 
G(r, g) has length greater than or equal to g, one can let C be an elementary cycle 
of minimal (= which is not contained in any copy of the 
Replace each copy of g) by a vertex while the mCI-

dent to the vertices in Glr, In this way the G 1 is transformed into the 
graph G(r', g 1). The C is transformed into a nonempty sub-
graph of G(r', g -1) with all its vertices of even degree. This is because the cycle 
C has a number of entries equal to the number of exits of each copy of G(r, g) if 
one fixes a sense of traversal for the cycle C. 

nonempty spanning subgraph all of whose vertices have even 
contains an elementary In if this were not the case, then a connected 
component of this would have the of its vertices even and 
would not contain a cycle. It would thus be a tree. But this contradicts the fact 
that every tree has at least two vertices one, that two vertices of odd 

Let be the elementary cycle contained in the of the cycle C obtained 
by contracting each copy of G(r, g) to a single vertex. It can also be seen that C 
contains at least one edge from a copy of G(r, g) by the construction of the graph 

. Thus C1 has at most s -1 One can deduce from this that 

s-l):I(Cd):g 1, 

since the Gfr'. g-l). which contains the cycle C1 , has to g-l. 
The fact that every of has at least equal to g implies that 

s):gor =G(r+l,g). 
The of the graph G(r, 3} for every r):2 is demonstrated con-

sidering the graph Kr+ l' Examples of graphs ofthe form G(2, g) where 
g): 2 are given by elementary cycles with g vertices. 

By the construction described one can prove the existence of the 
graphs G(3, 4), G(4, 4), G(5, 4), ... , G(r, 4) for every r): 2; G(4, G(5, 
G(r, 5) for every r): 2; and so on. Thus one can show by induction that there 
exists a G(r, g) for every r): 2 and 3. 

8.n Suppose that g is odd. Let x be an vertex of the graph G, 
and denote by Sj the set of vertices which are found at a distance i from x, for 

i=O, 1, .. " 
-1 

For each vertex z in the set Sj there is one which it to a 
vertex in Sj-l' In fact, there exists at least one by the definition of the sets 

The existence of two such would lead to the existence of two walks 
from z to x, each oflength i. But these form a cycle, and hence there is an elemen-

of less than g, and this contradicts the hypothesis. Since the 
of each vertex is equal to r. it can be seen that 

-3 
for i = 1, ... , . 
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lis then leads to the fact that 

n~ISol+ISti+'" +is(O-I)/21 

=l+r+r(r-l)+'" +r(r-l)(y-3)/2. 

Suppose now that 9 is even, and consider two adjacent vertices x and y. 
:t Si be the set of vertices at a distance i from the set {x, y} for i = 1, ... , g/2 -1. 
follows that iSII=2(r-lj and ISi+ll=(r-l)ISil for i=1. ... ,g/2-2. From 
IS one can conclude that 

n~ISol+ISI!+'" +ISg/2-11=2+2(r-l)+ .. · +2(r_l)9/ 2
-

1
• 

8.12 (a) Let Xl be a vertex of a regular graph G of degree 3 and girth 
::1) = 4. and suppose that X2, X3, X 4 are adjacent to XI' The vertices X2' X3' X4 

e not pairwise adjacent. since in that case one would have g(G) = 3. Denote 
Xs, X6 the vertices which, together with XI' are adjacent to X2' It follows that 

e number of vertices in G is at least equal to 6. Since G must be regular of 
gree 3, the vertices X3 and X 4 are adjacent to Xs and X 6 , that is, G = K 3. 3' 

(b) Let [x I, X2, ... , X5' XI J be a shortest elementary cycle of the graph G. 
!note by Yi the third vertex adjacent to Xi for i= 1, ... ,5. 
The vertices Yi are pairwise distinct, and are all different from the vertices 
. since otherwise one would have g(G)~ 4. It follows that the graph G has at 
Lst 10 vertices. If G has exactly 10 vertices then the only vertices at distance 4 
'm YI are Y3 and Y4 and hence YI must be adjacent to Y3 and Y4, in addition 
XI' because otherwise g(G)~4. Similarly. it is the case that Y2 is adjacent to 
and Ys, Y3 is adjacent to YI and Y5, Y4 is adjacent to YI and Y2' and Y5 is 

jacent to Y2 and Y3' In this way one obtains the Petersen graph (Figure 8.4). 

8.13 Suppose that for every vertex X the subgraph Gx is not connected. 
t L = [Xl' ... ,xmJ be an elementary walk of maximal length in the graph G. 
'hypothesis GX ! is not connected. Denote by C J a component of this subgraph 
lich does not contain the walk [X2, ..• , xm]. 

fig. 8.4 
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Since G is connected, there is an edge which joins a vertex Y E C 1 with the 
vertex x I' This can be seen because the vertices of cannot be joined to the 
vertices of the other connected components of the subgraph G Xl' It follows that 
Y ¢ , ... ,xm} and thus the walk 

[y, Xl"'" 

is an elementary walk which is longer than L, which contradicts the hypothesis 
that L is an elementary walk of maximal length. 

Thus there exists a vertex X for which the subgraph is connected. One can 
also see that X may be any terminal vertex of a spanning tree of G. 

If G is an circuit, then by suppressing an arbitrary vertex one 
obtains a which no longer is strongly G has this 
property. 

8.14 Suppose that G is strongly connected and has vertex set X. Let A 
a E A, and bE X "-..A. It follows that there is a path in G of the form (a, ... , b). 
Since a E A and b ¢ A, there will exist at least one arc of this path of the form 
(x, y) where X E A and y ¢ A. 

It will now be shown that if for every set A there is at least one arc 
of the form y) with X E A and y ¢ A, then G is strongly connected. 

Let a, b be two distinct vertices of and suppose that there is no path of the 
form (a, ... , b). Denote by A the set of vertices of G which are endpoints of 
paths which at a. It follows that b ¢ A and there does not exist an arc 
of the form lx, y) with X E A and y ¢ A. For otherwise every of the form 
(a, . .. , extended by the arc y) would a path from a to y. But in 
this case YEA, which contradicts the hypothesis. Thus there does not exist 
any arc of the form (x, and this contradicts the hypothesis. It follows 
that G is strongly connected. 

Denote by the obtained from G by the direction of all the 
arcs of G. It follows from the definition connectedness that G is 
connected if and only if G1 is connected. It follows that G is strongly 
connected if and if for each nonempty subset of vertices A there exists at 
least one arc of the form xl where y ~ A and x EA. 

8.15 that G contains a circuit, and hence an elementary circuit. 
Further assume that the following elementary circuit of G has a minimal number 
of arcs: 

C=(XI, X2,"" x., Xl)' 

where the vertices x J , ••• , x. are distinct. The property is clear for k = 3. 
Suppose now that k~4. Since G is and there exists 

an arc (Xl' x. _ d, and hence a circuit with three vertices (x I' X. _ I , x., x d, which 
contradicts the hypothesis k~4; or else there exists an arc 1, xd, in which 
case one obtains a circuit which is shorter than C: 
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which contradicts the that C contains a minimal number of arcs. 
The property is thus established by contradiction. 

8.16 There is a unique arc between each two vertices of a tournament T 
with n vertices. It follows from this that ri + '" == n -1 for i == 1, ...• n. Similarly 

1 SI == (;), since each sum represents the number of arcs of T and 
y) contributes exactly 1 to each sum. Thus 

n 

sr. 
8.17 Let x be a vertex of G with maximal outdegree, that is, 

d+(x) =max d'"(t), 
lEX 

(1) 

where X is the vertex set of the graph G. It will be shown that this vertex satisfies 
the conditions of the statement of the problem. 

Let y e X and y If G does not contain the arc (x, y), then it must contain 
(y, x). This follows from the fact that a tournament is complete. now 
that the vertex y cannot be reached by a path of length 2 which at x. 
Thus for every arc (x, z) there is an arc (y, z), since otherwise there would exist 
an arc (z, y) and hence a path of length 2 from x to z, namely (x, y, z), which is 
contrary to the hypothesis. 

for every arc which originates at x [of the form z)), there is an 
arc z) which originates at y and is also an arc (y, x) which at y 
and terminates at x. 

It follows that d+( y) > d+(x), and this contradicts (1). The vertex x which was 
defined in (1) therefore satisfies the given condition. 

8.18 The will be established by induction on the number of vertices 
of the graph G. If G consists of two isolated vertices, let S = y}. Otherwise 
there is an arc (y, xl and S = 

Suppose that the property is true for all graphs with at most n and 
take G to be a graph with n + 1 vertices. Let x be a vertex of and denote by A 
the set {z\ (x, z) is an arc of the G}. Denote by G1 the subgraph obtained 
from G by suppressing the vertices of the set A v {x}. It follows from the induc­
tion hypothesis that G 1 contains a set of pairwise nonadjacent vertices S I with 
the following property: vertex z ¢ S 1 can be reached by from a 
vertex yeS 1 and traversing a path of G 1 of length at most 2. Two cases will 
be studied. 

(a) The vertices of S I v are not Let S = S 1 v 
vertex z in G! such that z ¢ can be reached starting at a vertex y e 

and traversing a path of length at most 2. If z e A, then there exists a path (x, z) 
of length equal to L 
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(b) There is a vertex z E Sl which is adjacent to x. Since z ~ it follows 
that xl is an arc in the G. Now let S= . If y is a vertex of G1 and 
y ~ , then y can be reached by traversing a of length at most 2 which 

l/';"'U"~" at a vertex in S I' If YEA, there exists a path (z, x, y) of length two. 
lf y == x, it has been shown that there is an arc {z, xl where Z E = S. 

This completes the inductive proof of the property. Chvalal, L. Lovasz, 
Hypergraph Seminar, Lecture Notes in Math., 411, Springer-Verlag, 1974, 
p.l 

Since every tournament is complete, it follows that == 1. This provides 
another proof of the problem. 

8.19 The sequence of outdegrees of T written in order will be 
called the score sequence of T. It will first be shown that S: 0, 1, ... , n - 1 is the 
score sequence of a transitive tournament. Let T be a tournament with vertex 
setV(T)={Vl,'''' and arc set = {(v" 11~j<i~ It follows that 

i -1 for i == •.• , n: hence S is the score sequence of the transitive 
tournament T. Conversely, assume that T is a transitive tournament It follows 
that S :0,1, ... , n-l is the score sequence of T. To show this, it suffices to prove 
that no two vertices of T have the same outdegree. that u and v are 
distinct vertices of T such that d+(v). Since T a tournament, either 
(u, v) or (v, u) is an arc of T. say the former. Let W be the set of vertices of T 
adjacent from v; in this case d+{v)= IWI, Since w) E E(T) for each W E Wand 
(u, v) E E(T), it follows that (u, w) E E(T) for each WE W, since T is transitive. 
However, one then has d+(u)~ 1 + == 1 + d+(v), which is a contradiction. 

8.20 It is clear that C(2)=1. since the vertices Xl and X2 are joined an 
if the is connected. For n ~ 3 it must be shown that 

n = f k (n) 2("i')C(k). 
k= 1 k 

Observe that 2m represents the number with vertex set X = {Xl" ", xn }. 

In any such it is possible to label an arbitrary vertex in n ways. and hence 
n 2(~) is to the number of with vertex set X in which one vertex is 
labeled. 

It will now be shown that the side of the formula represents the 
same quantity. [n order to do this consider a G with vertex set X which 
contains a labeled vertex XI> where 1 ~ i~ n. The vertex Xi belongs to a con­
nected component C of G. Let k be the number of vertices in C. It follows that 
1 ~ k ~ n and the vertices of C are not joined by any edge to vertices in X "c. 
The component C can be chosen in (~) ways, the labeled vertex in C can be 
chosen in k ways, and the number of connected graphs with vertex set C is equal 
to C(k}. At the same time the number of graphs with vertex set X"C is equal 
to 2(";: ). 

Consider in turn k = 1, ... , n. One can see that in this way one generates all 
the n 2(;) with vertex set X which have a marked vertex, and this observa-
tion completes the 
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This recurrence relation the following values for C(n); 

n=l 2 3 4 5 6 7 

C(n)= 1 4 38 728 26,704 1,866,256 

8.21 Consider the 2/;) graphs with vertex set X == {Xl" .. , x n }. Let GIJ be 
the set of graphs among them which have the following properties: 

(1) XI and xJ are not 
(2) Let Xk be another vertex such that Xi and Xk are Then 

Xk and xJ are not adjacent. 

Thus for k f i, j there are three possible ways of joining the vertices Xi> Xi' and Xk' 

It follows that 

The set of 
hence 

for every 

with vertex set X and diameter at least 3 is Ui<J 

. 8 (n) 3" !T! () 2 4"=0. 

and 

Thus almost all graphs with n vertices have diameter equal to 1 or 2 as n ...... 00. 

But there exists a unique graph with diameter equal to 1, Thus 
almost all graphs with n vertices have diameter equal to 2 as n ...... cc. From this 
it follows that almost all graphs with n vertices are connected as n ...... 00. 

It can be shown similarly that almost all directed with n vertices have 
the that for each two vertices X and y there is a path of length 1 or 2 
from X to y as n ...... oo. 

8.22 It follows immediately from the definition that this binary relation is 
reflexive and symmetric on the set U. In order to prove the transitivity it will 
be shown that if the Ul and U2 are found in the same elementary cycle 
and if U2 and U3 are found on the same elementary cycle C 2, then there is an 
elementary which contains Ul and Uj. 

Traverse in both directions by at the endpoints of the edge U3; 

terminate at the first vertex which is found on the . Let X and y be these 
vertices on the (see Figure 8.5). It can happen that.\ or yare endpoints 
of 1.13' However x since the U2 is found on the part of the cycle 
delimited by X and y and which does not contain U!. The cycle (which 
indicated by the heavy line in 8.4) is obtained by taking the union of (1) 
the elementary walk on the cycle C 1 wh ich joins x and y and which contains the 
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Flg.8.S 

edge u 1, and (2) the elementary walk in which connects x and y and contains 
the U3' 

8.23 It will be shown that 
In order to show that (1)=:>(3), let G be a 2-connected graph, and u and r 

two edges which have the endpoint x in common. Let y and z be their endpoints, 
which are difTerent from x. Since it follows that there exists an 
elementary walk which y and z in This elementary walk, together with 
the u and v, forms an cycle in the G. The "",'\11('''< 

that every two with a common are equiv-
alent. Since G is it follows that this equivalence relation has a single 
equivalence class which consists of the edge set of the G. Thus every two 
edges of the graph G lie on an elementary cycle. the fact that G is con· 
nected implies that G has no isolated vertices. 

Let x, y be two distinct vertices of the hypothesis G 
has no isolated vertices, and thus there exist two distinct u and v which 
are incident with x and y For otherwise there exists an y], 
and the vertices x and yare no adjacent with other vertices of G. If 
n=3, this fact would imply that G has an isolated vertex, which contradicts the 
hypothesis. If n ~ 4, then since G has no isolated vertices. the set of remaining 
vertices contains at least one u. The edges and u do not to 
an elementary since d(x) = d(y) 1, and this contradicts the hypothesis. 
Thus there exist two distinct edges u and v which are incident with x and y 
"I><,.,Pr'""·"I,, J n view of there is an cycle C which contains u and 
v and hence x and y. 

(2}=:>(1): Since every two vertices of G to an it follows 
that there is an walk which connects and thus G is connected. 

now that G is not 2-connected and hence that there is a vertex x such 
is not connected. Let a, b be two vertices which lie in difTerent components 

Since each walk between a and b in the 
G passes through x, it follows that there does not exist an elementary cycle in 
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G which contains the vertices a and b, This contradicts (2) and 
that G is 2-connected, 

the 

8.24 Let A= ,al.""a,-I' and B=[bo, bl ,.". 1. bo] be two 
elementary cycles of maximal length in the graph G. Suppose that these 
have at most one vertex in common, and let ao == bo be that common vertex, 
Since G is 2-connected, it follows that there also exists an elementary walk 
which does not pass through ao and which has one endpoint in the set of vertices 
{al"",a,-d and the other endpoint in the set {bJ.""br-d, Let 
[aID Xl' , , , , Xb bq] be such a walk where k~ 0, p, q and XI does not to 
the cycles A or B for 1 :( i:( k. that q. One has therefore obtained an 
elementary cycle [ao. ' , . , ap • Xl" , , , Xk, ' •• , br - 1 , ao] which is longer than 
A. which contradicts the hypothesis. 

Now let A and B be cycles which have no vertex in common. Since G is 2-
connected, there exist two elementary walks without common vertices which 

a vertex of A and a vertex of B. There will be an elementary walk of length 
than or equal to r/2 which is of the cycle A and has as its endpoints 

the endpoints of the two walks. An result can be obtained for the 
cycle B. The two parts of cycles A and B, together with the two elementary 
walks which join a vertex in A and a vertex in B, form an elementary cycle 
which is longer than A, and this again contradicts the hypothesis. 

8.25 Let m(G) denote the number of in the graph G. It follows that 

x m(G{-x- y)=(n~2) m(G t ), (1) 

since on the left-hand side each edge u contributes 1 for each pair {x, of 
vertices which are different from the endpoints of u. The fact that there exist 
(n; 2) such pairs of vertices implies (1) for i = 1,2. 

By for x the G1 -x - Y is isomorphic to - x - y. 
Thus have the same number of and hence (1) that m(Gd:=: 
m(G 2). Now consider the sum 

(2) 

where Xo is a fixed vertex. If u is an edge incident with Xo, then its contribution 
to the sum (2) is zero. Otherwise its contribution to this sum is equal to n - 3. 
This corresponds to the case in which y is different from Xo and from the end­
points of the edge u. Thus it follows that 

(n - 3)m(G,) - m(Gt - Xo - y)=(n -3)do,(xo)· 

Since the left-hand side of this 
dGj(xo) = dG1(xo) for every vertex Xo' 

In the same way one can show that 

is independent of i, one can see that 

m(G j)- m( G1- x - y) =doj(x) +dGiY) - :x;(x, y). (3) 
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Here (X/(x, y)=O if the vertices x and yare not adjacent in the graph and 
(X/(x, y) = 1 if x and yare adjacent in It follows from (3) that for every vertex 

one has (X\(x, (X2(X, y), that is, the graphs and coincide. 

8.26 LeI G be the graph with n2 vertices which correspond to the squares 
of a chessboard. Two vertices are considered to be adjacent if one can be 
reached from the other by a Since a knight always moves from a 
black square to a white square or vice versa, it follows that this graph is bipartite. 
One can conclude from Problem 8.5 that this graph does not contain an elemen­
tary cycle with an odd number of vertices and hence there does not exist an 
elementary cycle with n2 vertices. It is therefore impossible for a knight to visit 
all the squares of the chessboard in the manner described. 

8.27 The set M of perfect of may be written as the union of 
two disjoint sets: 

M =M)'UvMU5' 

where M}'u is the set of the perfect matchings of Gn that contain [y, and Mus 
is the set of containing [u, s] (see 8.6). If a perfect 
matching of contains then it follows that it also contains s], t], 
and [v, and hence 1M},.! == K(n Thus this is to the number of 
perfect matchings of the graph obtained from Gn by deleting both 
(X and p. If a matching belongs to MuS' then one can show that it contains the 
edge [t, and hence 1M "5\ = K(n -1). This is the number of perfect matchings 
of the graph obtained from Gn by deleting the hexagon p. Since K(l)= 2, K(2)= 3, 
and K(n) = K(n -1) + K(n - 2) for n ~ 3, it follows that K(n)... 1 for any n ~ L 
[M. Gordon, W. H. T. Davison, J. Chern. 20 428-435.] 

fig. 8.6 

8.28 As in Problem 6.9, one can show that for any three vertices x, y, z of a 
tree d(x, y) + dry, z) + d(x, z) 0 (mod 2) and for any four vertices x, y. z, t 
of a tree the numbers d(x, d(z, l), d(x, dry, n. t)+d(y, z) are not all 
distinct. 

(a) Suppose that G satisfies the hypothesis and contains an odd cycle with 
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2k + 1 vertices. Let x, y, z be three distinct vertices on this cycle such that d(x, y) "" 
d(x, z) and z) 1. In this case 

d(x, y)+d(y, z)+d(x, z)=2k+ 1 1 (mod 2), 

which is a contradiction. 
On the other hand, if G contains an even with 2k vertices (k> 2), let 

x, y, z, t be four vertices on the such that 

d(x, y) t)=l and d(x,z)=d(y,t)=k-1. 

Then 

y)+d(z, t)=2, d(x, z)+d(y. t)=2k 2, 

d(x, t)+ dey, 2k, 

which is a contradiction. It is also clear that a cycle with four vertices is not 
itself embeddable in a tree. 

(b) Let K 1 • 3 be a star with vertex set {a, b, e, d} and set {[a, 
[e, d]}. Define the S(p) to be the graph obtained from K 1. 3 inserting 
new vertices on the of Kl,3 such that ds(p)(a, d)= ds(plb, d) =ds(p)(e, d) = p. 

G is bipartite. Let S = {x, y, z} be any set of three vertices of G. It will be 
shown that S is embeddable in the tree S(d(G)-l), where d(G) is 
the diameter of G. Consider the identity 

d(x, y)+d(y, z)+ (mod 2). 

First note that if there exists a subgraph spanned by shortest paths between the 
vertices x, y, z which tS a tree, then the equation follows from a previous result. 
Otherwise, one can assume that the vertices are distributed as in Figure 8.7 and 

It follows that 

d(x, y) u)+d(u, v)+d(v, y), 

d(x, z)=d(x, u)+d(u, w)+d(w, z), 

dey, z) v)+d(v, w)+d(w, z). 

d(x, y)+d(y, z)+d(x, z) 

u)+2d(y, v)+2d(z, w)+d(u, 

:ed(u, w)+d(w. v)+d(v, u) (mod 2), 

dew, v)+d(v, u) 

But this last sum is even, since it is the of a cycle m a bipartite 
To complete the proof one must find vertices x', y', z' in S(d(G)-l) such that if 
d(x', d)=a, d(y', d) d(z', d)=e. then a+b= y), a+c z), b+e= 
dory, z), Let a == a(x, y, z) -do( y, z), b = a(x, y, z) do(x, e = a(x. y, z) y), 
where a(x, y, z) = {ddx, y)+ do(x, z) + dory, z)}/2. This is the solution of the 
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z 

y 

Fig. 8.7 

and, for example, a= {do (x, y)+ do(x, z)- do( y, z)}/2~ {2d(G)-1}/2, 
which implies that a~d(G)- L 

(c) Suppose that G is not bipartite. Then G contains an odd with 
2k + 1 vertices and, as in the proof of (a), one can choose three vertices x, y, z 
such that 

d(x, z)+ z):a 1 (mod 

which contradicts (b). 

One can also show that three vertices x, y. z of a graph G are ,<",mp, .. , 
embeddable in a tree ifand only if y)+d(y, z)+d(x, z):aO(mod 2). [R. A. 
Melter and 1. Ars Combinatoria, 12 (1981), 111-1 

8.29 There is a round trip by at least one Ai which contains an odd number 
of stops. For n::::: 1 the statement is obvious, since one airline serves at least three 
cities C l' and hence [C 1, , C 3' C 1] is a cycle with three landings. Use 
induction on n, and suppose that n~2. One may assume that all round trips by 
A. consist of an even number of stops, since otherwise there is nothing more to 
prove. Because the of service by An has no odd it follows from 
Problem 8.5 that this is Then one can find a of the 
cities into two non empty classes {Q 1, ••. , Qr} and , ... , R.} where r + s == N, 
such that each flight by An runs between a Q-city and an R-city. Since r + s = 
N~2n+ l,atleast oneofr,sisgreaterthan 2n-l,sayr~2n-l + 1. But {Ql, ... ,Q,} 
are only served by AI' ... , An-I, and hence the induction hypothesis at least 
one of these flies a round trip with an odd num ber of landings. If there 
are N = 2" there is a schedule with n airlines which contain no odd round 
trip on any of them. Let the cities be k 1, ... ,N-l=2"-1. Write k 
as an number in the binary system (possibly starting with one or more 

Link C1 and Cj by Al if the first of i andj are distinct, by if the 
first digits are the same but the second are ... , under A" if the 
first n -1 are the same but the nth are different. 

All round under Aj are even, since the ith digit alternates for the vertices 
of such a Equivalently, the graph of service by Ai is bipartite for every 
1 ~ i~ n. [Problem to the jury of the 24th International Mathematical 
Olympiad, 1983.] 
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APTER 9 

U Let V be a set consisting of p(G) which cover all the vertices of 
graph G. Since V is a minimal system of with this property, it follows 
t after suppressing an arbitrary edge u of V one vertex x will remain un­
ered, and thus x is an endpoint only for u. Hence V induces a spanning 
ph of G whose components are stars of the form K 1./1 with 1 :( n -1. The 
aber of these components is equal to n - = n - p( G), since each com-
ent K l,P contains p from V and p + 1 vertices . 
• elect an edge from each component of the graph induced by V. 
: obtains a matching with n p(G) and it follows that 

v(G) ~ n - p(G), or v(G) + n. 

n order to prove the opposite incquality let W be a matching consisting of 
I edges which do not have an endpoint pairwise in common. These v(G) 
~s thus cover 2v(G) vertices. 
~elect an which is incident with each of the n - 2v(G) vertices which are 
covered by W. This is because G does not contain isolated 
ices. It is also the case that the vertices uncovered Ware non­
.cent, because this would contradict the maximality of W. The n - 2v(G) 
:s are thus distinct. These with the set of W, 
:r all the vertices of and their number is equal to 

v(G)+ n - 2v(G)=n - v(G). 

us follows that 

p(G):(n v(G), 

Ann. Univ. Sci. R. 

or +p(G):(n. 

Sectio Math .• 2 (1959), 1 

2 Let X be the vertex set of the G. There are d(x}{n-l d(x)} 
~s {x, y, which are not triangles in G or {; and which have a unique 
with x E as an 
ach {x, y, z I which is not a in G or {; contains one or two 
s of G. Suppose that [x, y] is an edge of G and that z] and [y, z] are 
s of G. In the sum 

d(x){n-l-d(xl} 

riple y, z} is counted twice: once with to x, and onc.: with respect 
If y] and z] are of G and z] is an of G, then in the 
nation the triple y, z} is also counted twice: once with to x and 
with respect to z. It follows that the number of in G and in G 

ual to 

(n) 1 - -- L 
3 2 x.x 

-1-
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(a) If G is regular of k, this formula becomes 

nk 
(n k-l). 

227 

(b) Thus d(x){n I-d(x)}~{(n-l 
in G and G is bounded below by 

and hence the number of 

G) ~(n;ly=_n(_n-:---_5) 

This bound is for n;;;;' 6 and vanishes for n = 5. The with five 
vertices is such that neither nor eontains a triangle. It can be shown that 
the lower bound is attained if n + 1 where p is a natural number. [A. W. 
Goodman, Amer. Math. Momhly, 66 (1959), 778-783.] 

9.3 Let G=(X, U) where IXI=n and IUI=m. Let x. y E X, and denote by 
A(x) the set of vertices which are adjacent to x. In similar fashion A(y) will 
denote the set of vertices which are adjacent to y. ]t follows that 

IA(x)"A(y)\ = IA(x)1 + IA(y)I-IA(x)u A(y)\;;;;' d(x)+d(y)- n. 

If y] E U, then there are at least d(x)+d( y) - n vertices which are adjacent 
to x and to y. Hence at least d(y)-n triangles in the graph G contain the 
edge y]. From this one can conclude that G contains at least 

~ L 
3 [x,y]eU 

d(y)-n} 

triangles, since each triangle is counted relative to each of its sides, ]n this sum 
d(x) occurs exactly d(x) times for every x E X, It follows that the sum is to 

By the inequality and that d(x)=2m, 
one can see that the last sum is bounded below by 

~ n C~x d(X)Y -mn}= 4m (m- n:). 
9.4 Consider a set of three vertices {x, y, z} in the graph. Either the is 

a circuit or there are two arcs of the form (x, y) and (x, z), In the latter case each 
would be the direction of the arc between y and z, the three vertices induce a 
transitive subgraph of the tournament. Let Sj denote the number of arcs which 
originate at the vertex Xi of the graph for i = 1, .. , , n. It follows that the number 
of transitive is to 
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To see this one uses Jensen's inequality and the fact that 
number of circuits with three vertices is bounded above 

The upper bound is attained if n is since there exists a tournament with n 
vertices such that Si =(n 1 )/2 for i = 1, ... , n. This will be established by in­
duction on n. 

For n = 3 one has only to consider a circuit with three vertices. that 
the property holds for a tournament with n vertices (n odd) and vertex set X. 
Orient the arcs so that (n 1)/2 arcs originate at each vertex of X. 

Let y and z be two new vertices, and construct the arc (y, z). Let X = Y u Z 
be a of the set X such that 1 YI 1)/2, IZI = (n + 1)/2. Now construct 
all the arcs of the form (y, x) and z) for x E Y and all the arcs of the form 
(z, xl and Ix. y) for x E Z. One has thus obtained a tournament with n + 2 
vertices for which 51=(n+ 1)/2 for i=1, ... , n+2. 

9.5 A tournament is a complete and antisymmetric graph. One can show 
that in general every complete directed graph has a Hamiltonian path. 

The proof of this property uses induction on the number n of vertices in the 
For n = 2 the graph has two vertices x and y. Since it is complete, there 

is an arc between these two for (x, y). This arc is the desired 
Hamiltonian path. 

that the property is true for all complete with n -1 vertices. 
It will be shown that it is also true for complete graphs with n vertices. 

If G has vertices Xl' X 2, ... , X n , then the su bgraph with vertices Xl' ...• Xn- 1 

is complete, and hence by the induction hypothesis it contains a Hamiltonian 
path. Denote this path (Xl, •.. ,Xn - d. Since the graph is complete, there 
exists at least one arc between xl and Xn. If this arc is (xm then x! , ... , Xn- d 
is a Hamiltonian path. In the opposite case arc \X l' xn) exists. 

By this argument for a of vertices Xo and X n-!. it is seen that 
if there exists an arc [ ,xnJ, then one can form a Hamiltonian 
(x I" .• ,Xn-I' and otherwise one has the arc (xn , Xn- d. Suppose only 
the arcs (XI' xn) and (xn, xn-d exist. In view of the fact that Xn is connected by 
arcs to all vertices X2,"" X n-2, there will exist among them two adjacent 
vertices Xk and Xk+ I for which there exist arcs xnJ and (x., Xk" d. In fact 
there is an arc from x, to x., and there is an arc from Xn to X n -!, the last vertex 
on the path. Thus at a moment, by leaving from x I towards xn- l' the 
direction of the arc towards Xn must be changed. 

In this way one constructs a Hamiltonian for G, , ... , Xb X.' 

X k ... 1 , ... , X. - d. 
I n order to obtain the upper bound, consider m = arcs Q 1, a2' ... , am 

which have no vertices in common and are selected from a tournament 
with n vertices. that there exists a Hamiltonian path whose - 1)5t arc 
is ai for i = 1, ... , m. In this case the Hamiltonian path is uniquely determined. 
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Thus the number of Hamiltonian paths is at most to the number of 
ways in which one can choose m arcs without common vertices. The arc al 

can be chosen in (~) ways, a2 in 22) ways, and so on. It follows that the number 
of ways of choosing the sequence of arcs ai' ... ,am is equal to 

n1 

Let t(n) denote the maximum number of Hamiltonian paths in the class of 
tournaments with n vertices. The following values are known: ((3) == 3, t(4) == 5, 
c(5) t(6) =45, and t(7) 189.If 

_. (t(n))lm 
a-lim , , 

tt-CC: n! 

then '1 exists and satisfies the inequalities 0.5 == 2 - I ~ 11. ~ 2 - 3,4 <0.6. Szele's 
conjecture states that 11. = 0.5, bu t a proof of this has not yet been given. Szele, 
Mat. Fiz. 50 (1943), .... ..l-.. .jv. 

9.6 Suppose that the graph G has n vertices and m and does not 
contain an elementary cycle with four vertices. Count the number of of 
vertices {x, in which both members are adjacent to a third vertex z. If the 
vertex z is fixed, then there are such pairs. Each pair y} is counted at 
most once, since if it was with to z 1 and =2 with z I ::/= Z2, then 
[x, Z I, y, Z2' x] would form a cycle with four contrary to hypothesis. 

Hence it follows that 

where X is the vertex set of the G. Since the function -1 )/2 is convex, 
it follows from Jensen's that 

(~)~ (d;»)~ n Cin) = m(2:-~}, 

and thus 

From this one can see that 

n 
m~ -

4 

which contradicts the 
with four vertices. 

nm 

n 
-(1+ 
4 

Thus G must contain an 

If n = + q + 1 and q is a power of 2, then the maximum number of 
of a G with n vertices which contains no C 4 is (q/2)(q + 1)2 [Z. 

cycle 

J. Combinatorial Theory, B. 34(2) (1983), 187-190], and this result also holds 
if q is a prime power. 
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9.7 Let n -l)q+r with 0::;;;r::;;;k-2 and 2)/1 l)p+s, where 
0::;;; s::;;; k - 2 and r, s are integers. It follows that if r == 0 then s == 0 and if r;;::: 1 then 
s k-r-l. 

that the number of vertices x of d(x) is smaller than m, 
that is, the other vertices Y have degree p + 1. Thus one can assume that 
there exists a partition Xu Y of the set of vertices such that d(x)::;;; p for every 
vertex x EX, d(y);;::: p+ 1 for every vertex Y E Y, and also IXI <m, I YI > n - m. 

Let Yl be a vertex in Y, and denote by A(yd the set of vertices which 
are adjacent to Yl' In the set A(y,)n Y choose another vertex Y2' It follows 
that n will contain at least IA(ydnA(Y2)1=IA(Ydl+ 
IA(yduA(Y2)1;;:::2(p+ 1)-n vertices. 

Suppose that the vertex sets A(yd,··., A(Yk- 2) with YJ e nt<jA(y;)n Y have 
been constructed for 1, ... ,k-2. Let B=n~:~ A(y;). It will be shown that 
B n Y is nonempty. This property will demonstrate the possibility of choosing 
the vertices Y2 •... ' Yk-j. In fact it can easily be shown by induction that 
!BI;;:::(k-2)(p+ 1)-(k- 3)/1. 

Consider two cases: 

(1) r=s =0. In this case (k - 2)(p + l)-(k- 3)n 
(k- 3)(k-l)q =q + k- 2;;::: q. 

(2) r;;::: 1. It follows that 

(k +1)-(k-3)n=(k-l)p-p+k 2 

- (k - 1)p - s + n 

=n-p+k-s-2 

2)q+1}-

-p+k-s 2 

r 
==q+ p 

s 
p+k-s 2 

r+s 
k-s-2 =q+ 

;;:::q+ 1, 

since r+s=k-l and k-s- O. 

Thus in both cases B contains at least m -I)} vertices. 
If BnY then BeX, which is impossible. since IXi<m and IBI;;:::m. 

Thus there exists a vertex Yk _ 1 E B n Y which has d;;::: p + 1. In 
this way one can see that 
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I A(Yi+;l: (k-l)(p+ l)-(k - 2)n = k-l s > 0, 

which implies the existence of a vertex .l'k E t A(yJ 
It follows from the method of construction that the vertices Yl' .1'2"'" J'k 

form a complete subgraph with k vertices and this contradicts the hypothesis. 
Thus there exist at least m vertices of degree less than or equal to p. [I. Tomescu, 
Studii si Cercet. Mal., 31(3) (1979),353-358, which extends K. Zarankiewicz's 
lemma, Colloquium Math., 1 (1947), 10-1 

9.8 Define a with 1001 vertices XI, ..• , XIOOI as follows: The vertices 
XI and Xj are joined by an edge if person i and person) of the set M do not know 
each other. Since each subset of 11 persons contains at least two persons who 
know each other. it follows that G does not contain a complete with 
11 vertices. 

Now apply the result of the problem with n = 1001 and k = 11. It 
follows that G contains at least m = 101 vertices with less than or equal 
to p=900. Thus in the complementary G there are at least 101 vertices 
with degree greater than or equal to 1000 - 900 = 100. This establishes the 
desired result, since in G the vertices X, and Xj are adjacent if and only if persons 
i and) know each other. 

9.9 The theorem will be proven by induction on n. For n= 1, ... , k-l the 
with n vertices which has a maximal number and does not contain 

a complete subgraph with k vertices is the complete and it has the 
indicated form, that is, each class contains a single vertex. Suppose that the 
theorem is true for n' :s;; n -1. If the graph G has n vertices and does not contain a 
complete subgraph with k vertices, then Problem 9.7 implies the existence of a 
vertex X with d(x)S:;p=[(k-2)n/(k-l)]. 

Consider the sub graph obtained from G by the vertex X and 
all the edges which have X as an endpoint. The subgraph has n -1 vertices, 
does not contain a complete subgraph with k and mayor may not 
contain a maximal number of with to this property. 

If does not contain a maximal number of then it by a 
with n - 1 vertices which does not contain a with k vertices 
and has a maximal number of edges. By the induction hypothesis, this 
contains k - I classes of vertices. There are r' classes which each contain t' + 1 
vertices. The remaining classes each contain t' vertices, where n 1 = (k 1)t' + r' 
and O:S;; r':S;; k - 2. Each vertex y is joined by an to all the vertices which do 
not belong to the same class as y. 

Add the vertex x to a class which contains t' and join it to all the 
vertices which do not belong to the same class as x. One thus obtains a graph 
with n which does not contain a sub graph with k vertices. 
and which is unique up to isomorphism. The degree of the vertex x in the 
thus 0 btained is equal to n - 1 - t' ::::. n - 1 - [(n - 1 )/(k - 1)]. But a simple calcula-
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tion shows that n - 1 [(n -] )/(k - 1)] = [(k 2)nj(k - 1)]. It follows that a 
with n vertices and without complete subgraphs with k vertices and which 

contains a maximal number of must have the desired structure. Thus 

M(n'k)=(;)-rC~l) (k l-r)(;) 
- n - rt( t + 1) (k 1 - r ll(1 -

where c=(n r)j(k-l). One can further show that 

M(n, k)=t{n 2 - n - t(2r+ t(k -l)-k + I)} 

1 (n2 -n- n-r (2r+n-r-k+ n) 
k-l . 

= ~ ( n 2 - n _ ("n ___ -'--'--:--:--'--__ 

k-2. n2_r2 (r) 
k 2 + 2 . 

9.10 First we show that for every choice of four points A, B, C, D from M, 
there exist at least two points which are at a distance less than or equal to 
1/J2. If three of the are collinear, then one of the distances is less than 
or equal to t< I/J2 and the property is seen to hold. Otherwise it will be shown 
that the configuration formed from the four points contains a triangle with an 

of at least 900. There are two possible cases: 

Three points, say B, form a with the point D in its 
interior. The sum of the angles from D is to 360°, and thus 
at least one angle is greater than or equal to 120°. 

(2) The four points form a convex quadrilateraL The sum of the 
angles of the quadrilateral is 3600

• and hence at least one angle is 
greater than or to 90'. 

Let ABC be the triangle with A): 90'. It follows that 

): b2 + (2
): 2 min (b 2

, el ). 

If b):c. it can be seen that ): or C2~ and hence c~l/J2. 
which has as its vertices the 3n points; two vertices are 

joined by an if the distance between them is greater than 1IJ2. From the 
property just one can conclude that this graph does not contain a 

subgraph with four vertices. Thus it follows from the 
that the number of is at most equal to M(3n, 4)= . The 

distances which are than 1/J2 can be chosen in the interval (1-1:,1) for 
every e > 0, by grouping each n points sufficiently close to the vertices of an 
equilateral triangle of side 1. 
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9.11 The proof follows directly from Turan's theorem, since M(2n, 3)=n2. 
The graph which realizes this maximum number and does not contain a 
triangle is the complete bipartite 

9.12 It will be shown that for every n ~ 2 the maximum number f(n) of 
maximal (cliques) in the class of with n vertices 
takes on the following values: f(n) == 3"13 for n == 0 (mod 3); f(n) 4 X 3("-1)13 1 

for n == 1 (mod 3), and f(nJ == 2 X 3(n- 2)13 for n == 2 (mod 3). 
For 2~n~4 the expression for f(n) can be obtained by a simple counting 

argument. In fact, if n == 2 or n = 3, the maximal number of cliques is obtained for 
graphs consisting of isolated vertices. In the case of n=4 one must consider 
both a graph which only has isolated vertices and the complete 

2 ' 

Let G be a with n ~ 5 vertices which contains f(n) cliques. G contains at 
least two nonadjacent vertices x, y, since otherwise G would be the complete 
graph on n vertices K n , which contains a unique clique; this would contradict 
the maximality of G. 

Let V(x) be the set of vertices adjacent to x in G. Denote by y) the graph 
obtained from G by all the incident with x and replacing them 
with from the vertex x to each vertex in the set V(yJ. 

The symbol will the obtained from G by 
the vertex x, and a(x) will denote the number of contained 
in V(x) and which are maximal with to the subgraph Gx . Finally, c(x) 
is the number of cliques of G which contain x. 

By suppressing the edges incident with x, one causes c(x) a(x) cliques to 
But joining x an to all the vertices of V(y) creates c(y) 

Thus if c(G) denotes the number of in G, one has 

c(G(x, y» = c(G) + c(y) - c(x)+ a(x). 

It can be assumed that c(y);;l: because otherwise one only has to consider 
the graph G(y, x). 

Since dG) is maximal, it follows that c(G(x, y»~c(G) or c(y)=c(x) and 
This implies that c(G(x, y» = c(G), and the graph G(x, y) contains the 

same maximal number of cliques f(n) as the graph G. It can be similarly 
that 

c(G(y, x})=c(G)+c(x)-c(y)+a(y). 

Thus, in view of the fael that c(x)=c(y), it follows that a(y)=O, and hence 
c(G(x, =dG(y, c{G). 

Let x be an arbitrary vertex of the and let )'1, ...• Yp be vertices 
which are not adjacent to x. Transform the G into the graph G t := )'1' x), 
followed by the transformation of G 1 into G 2 == G 1 ()' 2, Xl, and so on, until one 
finally transforms Gp - 1 into Gp=Gp_I(YP' x), in every case the 
number f(n) of cliques. The graph Gp has the property that the vertices 
x, Yl"'" yp. are not joined to each other by an edge, and V(x)= V(yd= ... 
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V( yp)' If V(x) the process terminates. Otherwise consider a vertex in V(x) 
and repeat the construction for the subgraph obtained from G by suppressing 
the vertices x, Yl," . ,yp' 

Finally a multipartite complete G'" is obtained with the property 
that its vertices can be partitioned into k classes which contain n I'" ,nk 
vertices Two vertices are if and only if they do not 
to the same class. It is also the case that c(G"')= I(n). But c(G"') =nl ... nk> from 
which it follows that 

f(n) =max max n l n2 , •• nk' 
k nt+"'+nk=" 

Suppose that f(n)=mlm2 .. mp. where ml + '" +mp=n. It is clear that 
max (ml"'" 4, since if, for example, ml;) 5, then 3(ml - 3» mj or 2ml >9, 
and thus the product ml ' .. mp would not be a maximum. There cannot exist 
two factors to 4, since 4 x 4 < 3 x 3 x 2; also one cannot have three factors 
equal to 2, since 2 x 2 x 2 < 3 x 3, 

Similarly, it follows that -1 ~ mj - 1 for every i, 1, ... , p, for ex-
mj+2, then mimj«mj l)(mJ+l)= mj-mj-L Thus all the 

factors m!"", mp are equal to 3 if n=O (mod 3), If n= 1 (mod 3), then a single 
factor is equal to 4 (or two factors are equal to 2), and the rest are to 3. 
When n=2(mod3j, one factor is equal to 2 and the rest are to 3. [J. W. 
Moon, L. Moser, Israel J. Mathematics, 3(1) (1965), 

9.13 First we show that after the final application of the algorithm (when 
one obtains a set of n -1 which does not contain a cycle) there is in fact a 
tree with n vertices, For suppose that the obtained is not connected and 
has p;) 2 connected which contain n1 , " ., np vertices, respectively. 
Since these connected components do not contain cycles, each is a tree. It 
'ollows that the number or edges in each component is equal to nl -1, .. " np -1, 

and hence 

nl-1+ '" +np-1=n-p=n-1. 

rom which it follows that p = 1. Thus the graph is connected and without cycles, 
hat is, a tree. 

now that the spanning tree A obtained in the final application of the 
llgorithm is not minimal, and thus there is another tree A I such that c(A d < erA), 
vhere c(A) denotes the sum of the costs of the of A. 

Let U!, U2,' • , , Un- 1 denote the of A. The indices are to correspond to 
he order in which the are obtained in the algorithm. Suppose that the 
.rst edge of the tree A (in this sequence) which is not an edge of A I is the edge 
'k' Add the Uk to the tree AI' 

Let G! be the graph which is thus formed. It will have a unique con-
isting of Uk and the unique walk in the tree AI, which the endpoints of 
k' This cycle contains at least one v( which does not belong to the tree A, 
lnce otherwise A would contain a cycle, By suppressing the v" a tree A2 
esults, since the graph obtained from Gt by suppressing the edge Vj does not 
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contain cycles and has n -1 By the preceding argument it is therefore a 
tree. The cost of this tree is equal to 

It follows from the definition of the algorithm that Uk is an of minimal 
cost which does not form a cycle with the U 1, U1, .•. , Uk _\. But no 
v! forms a cycle with these since AI is a tree. Thus e(uk) and hence 
e(A1) ~ c(A JJ. By one all the of the 
tree At by of A and obtains a sequence of trees A 2 , A 3 , • •. ,Ar 
by construction satisfy 

e(Ad;;:' ... ;;:'c(A,)=e(A), 

and thus e(AI);;:' This is a because it has been assumed 
that < etA) and thus A is a minimal tree in C. This observation 
the 

9.14 Suppose that there are two trees of minimal cost. A and A I' It follows 
that one can find an edge u in A which is not an edge in AI' Consider the walk in 
Al which joins the endpoints of the edge u. There is an edge v of this walk which 

two vertices located in the two components of the graph obtained from A 
the u. It follows that the graph A2 obtained from A by 

the u and inserting the edge v is a tree, This is also true for the 
graph obtained from AJ by suppressing the v and inserting the u. 
Since e(u) one can conclude that 

min (e(A 2 ), e(A 3)<c(A), 

since e(A2l e(u)+e(v) and e(A 3)=e(A)+e(u)-c(v). These observations 
contradict the hypothesis that erA) is a minimum. 

Hence the minimal tree is unique. 

9.15 Let C be a of C of maximal cardinality, and choose 
x! = l/k for i E C and Xi =0 for i ¢ where X = {l, ...• n}. [t follows that 

1 G) 1 (1 - ~). 
and thus max I[I,)1EU X;xj;;:.t(l-l/k). 

In order to prove the opposite inequality we use induction on n. If n 1, 
then k = 1 and f( C) which implies that equality holds. Suppose that 

t(1 Ilk) for all with at most n -1 vertices, and let C be a 
with n vertices. If the maximum. is attained for Xi = 0 where 1 ~ i ~ n, then 
ftC) = f(G'), Here C' is the graph obtained from C by the vertex i 
and the incident with it. By using the induction hypothesis with to 
C' one can conclude that 

f(C)=f(C') 1 (1- ~)~~(l- D. 
since k'~k. 
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Suppose now that f(G) is attained for all variables x, > O.1f G is not complete. 
then there exist two nonadjacen t say] and 2. Let F (G) = F(x 1, ... , Xn) == 
L[i.n<ux,Xj, and O<C~Xl' Then 

where A represents the set of vertices in G which are adjacent to vertex 2, but 
to vertex 1. Similarly, B denotes the set of vertices in G which are 

to vertex 1, but not to vertex 2. It remains to show that 
Xi' For if Lj<AXj> then F(XI-C,x 2+C,X3,""xn» 
which is a if the inequality then 

+C,X2-C,X), ... ,xnj> for every O<C~X2' which con-
tradicts the maximality of 

If C=X1, then 

F(O, Xl +X2, X3,"" F(x), 

and hence the maximum is attained for the subgraph G' obtained from G by 
the vertex 1. This reduces to the previous case if one of the variables 

takes the value zero. It thus follows from the induction 
to G' that 

IfG= it can be seen that 

= ~ (1 _ n xi ) ~ ~ (1 _ ~). 
and hence the inequality is also established in this case. 

Canadian J. Mathematics, 17(4) (1965),533-540.] 
S. Motzkin, E. G. 

9.16 Suppose that the arcs U 1, ... ,Urn of G are numbered so that 
dull;;<l: C(U2);;<l: •.. ;;<l: c(um ). Let k be the smallest index with the property that the 
set of arcs {Ul,"" uo} contains the arcs of a path Do ... , b). Since 

, •.. , Uk -I} does not contain all the arcs of any path from a to b, it follows 
Co = {Uk, Uk" I, .•• , Urn} is an (a. with n A(Dol = [Here A{Do) 

denotes the set of arcs of the path Do.] It follows that 

min c(uJ C(Uk) and max c(u) OJ 
.<Do "ECO 

Let C be an arbitrary (a, b)-cut. Then C n A(Dol Now let Ui E A(Do)n C. 
Since AWol c , ... , Uk}, one can conclude that i ~ k and hence 

max c(u)~ 
UtC 

(2) 



If D = ... ,b) is any path from a to b, then A(D) (\ Co Now let 
Uj E A(D) (\ In view of the definition of Co it follows that i~ k and hence 

min cluj ~ C(Uk)' 
"ED 

It follows from (1) and (3) that maxD minUED C(U) = C(Uk)' From (1) and 
one can conclude that maxUEC c(U) = C(Uk), which establishes the property 
in question. [1. D. R. J. Combinatorial Theory, 8(1970). 
299.J 

9.17 Let 9 be a function which satisfies the two conditions in the statement 
of the problem, and let D = Xl.", Xb b) be a in the G. It follows 
that 

which implies that c(D)~ [f there is a path D =(a, .... b) and a 
function 9 which satisfies the two conditions such that dD) = gib). then the 
opposite inequality also holds and hence the equality is shown to be valid. 

An inductive procedure will now be for constructing a function 9 on 
the vertices of the graph G. Let g(a) 0. that 9 has been defined on a 
set of vertices SeX with a E S, and for every vertex XES there is a path D", = 
(a, ... , x) in the subgraph generated by S such that c(Dx)=g(x). 

Consider all the arcs of the form (x, y) with XES and y ~ S. Choose one for 
which the sum g(x) + c(x, y) is a minimum. Let g(y) + c(x, y); the function 
9 is now defined on the set of vertices Su y}. It will be shown that every arc 
(z, u) in the subgraph generated by Su { satisfies the 

g(u)-g(z)~c(z, u). 

Ifu, Z E S, the validity of the follows from the induction hypothesis. 
If Z E Sand U ==,1', then the method of the arc (x, yJ that 

g(y)=g(x)+ + 
and (1) is satisfied. 

Let UES and z=y.1t will be shown that in this case g(u) and hence 
~O~qy. u), and thus is satisfied. 

In order to prove this it will be shown by induction that the function (J 

increases with an increase in the number of vertices chosen in G. This property 
holds for the vertex c selected after a, since gee) g(a) + c(a, c) du, c)~ 0, 

g(a). 
that this property holds for every set of vertices of cardinality less 

than or equal to lSI constructed by the indicated procedure. Suppose further 
that there exists a vertex U E S such that g( y) < g(u). 

Since g(y) = g(x) + c(x, y) ~ g(x), it follows that g(y) The induc-
tion hypothesis now implies that the vertex x was selected in the set S before 
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the vertex u. Let Me S be the set (with to inclusion) which 
contains x and not u constructed the indicated nrl11f'PCIH At the next 
one adds the vertex u to M. Thus there exists v E M such that 

g(u) + c(v, u). 

Since x, v E the inequality 

=g(x)+c(x, y)<g(v)+ u)=g(u) 

contradicts the choice of u as the next vertex for which the function 9 is defined 
by this Thus it has been shown that the function 9 takes increasing 

and therefore (1) is valid and the function f satisfies both of the 
conditions. By the induction hypothesis there exists a path Dx ... , x) with 

g(x) in the by S. It follows that adding the arc 
y) to the path one obtains a path D). . .. ,x, y), whose value is equal to 

y)=o(x)+ y)=g(y). 

Thus 9 has been defined on S u and satisfies the two conditions on this 
set. for every XES U {y} there exists a path ... ,xl which satisfies 
c(DxJ = in the by Su {y}. This completes the inductive 

It follows that 9 can be defined on the set of X in only one 
way. in particular, 9 is defined at b, and a path D ... , b) and a function 
9 which satisfies c(D) = g(b) have been constructed. 

Let cluj be the length of the arc u E U. Then minD c(D) is the minimum 
distance between vertices a and b in the graph G, where D ... , b) runs over 
the set of paths from a to b. The described procedure provides a construction 
for a unique function g: X -91 with the property that g(x) ~ O. This is because 
g(a) = 0 and because it has been seen that 9 takes on only values. 
Also, for every vertex b one has 

min c(D)= 
D 

Thus the indicated procedure is also an for finding the minimal 
distances from a fixed vertex a to all vertices b 'f a in the G. 

9.18 The sum will be calculated in two different ways: 

(*) 

In view of the condition (C) for the conservation of the flow for every vertex 
x =1= a, b, it follows that the term corresponding to x =1= a, b in the sum (*) is zero. 
Thus (*) reduces to IUEW-Ib) f(u)- I"Ew+la) f(u), since w-(a)= (b) 

But since every arc (x. y) E U belongs to both of the sets wand 
it follows that by terms one can express (*) in the form 

{J(u)- flu)} =0. 

From this (a) follows 
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In order to prove (b) consider the summation: 

C,~(X) u.~(X) flU)) . 
{**} 

It can be seen that for every vertex x i= b, the term in (* *) is zero 
and hence summation (**) reduces to I .. ",-(b) f(uj= fb' since w"'(b) and 
a ~ A. By regrouping terms one can write (**) in the form 

I {J(u) - f(u)} + I f(u) f(u)= f(u)- flu), 
.VA _w-~) 

where is the set of arcs u which have both endpoints in the set A. On the 
other hand, jfthe arcu Ew-(A), then the flow f(u) appears in (**) with a plus 
sign, and if 14 € w + (A) then the flow f(u) appears in (**l with a minus sign, 
since there will exist vertices Xl' X 2 € A such that u € w d and u E w + (x 2)' 

Comparing the two expressions for the sum (**), one sees that 

f(u)-.,w 
This is because condition 
the flow takes on 

f(u)~ I f(u)~ L c(u)==c(w-(A)) u,,,, -(AI .,w -(AI 

bounds the flow on each arc of the network and 
values. 

9.19 Let v be a walk which joins the source a and the sink b. Denote by 
the set of arcs of v directed in the same sense as the direction determined in 

traversing the walk v from a to b. Similarly v- is the set of arcs oriented in the 
opposite direction. 

Let 

c=min (min {cluJ- f(u)}, mi!l f(Ul). 
UEV+ UEU 

For e>O one can increase the flow fb as follows: [ncrease the flow on each arc 
U E by i:, and diminish the flow by <: on each arc u E v -. It follows from the 
method of defining e that one obtains a new flow j', which satisfies 

O~ j"(u) ~ c(u) 

for each arc u € U. The conservation condition is also satisfied at each vertex 
x b. The flow at the sink since f{, = fb + <: > fb, and the last arc 
of the walk r which terminates in b belongs to the set t.: oj-. 

A walk for which I: = 0 is said to be saturated. Thus if a flow f realizes max 1'0. 
there will not exist a nonsaturated walk from a to h. Otherwise the flow could be 
increased at b. 

Let f be a maximal flow in the network and consider all the 
walks from a to b. all the arcs u for which there exists an elementary 
walk v such that 14 € V and flu) = c(u) or U E v- and Here u is the first 
arc encountered with this property in the walk v from a to b. 

The spanning graph thus obtained has at least two connected components, 
since otherwise there would exist a nonsaturated walk from a to b, which con-
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tradicts the maximality of the flow f. One of these components consists of a 
subset of vertices A which contains the sink b and does not contain the source a. 

Thus A defines a cut w-(A). All the arcs U E w-(A) have the same orientation 
as the walks from a to b, so that f(u) = c(u). It is also the case that all the arcs 
u E w +(A) are directed to the direction of the walks from 
a to b which use these arcs. Thus f(u) =0 for every u E w -(A). 

The arcs from w -(A) and w + (Al must have been suppressed 
from the network, since otherwise the connected component A would not be 
maximal with to inclusion, which contradicts the definition of a con­
nected component. 

It follows from the preceding problem that 

fb= f(u)= =c(w-(A)). 

But it has been seen that for every flow f and every cut induced 
A c X with a ~ A and b E A one has the inequality 

fb:::;; c(w - (A)). 

This also follows from the preceding problem. 

the set 

Thus a maximal flow f and a cut have been found for which the 
inequality becomes an Hence the cut (jJ has a minimal capacity 
which is equal to the maximal at the sink. 

9.20 It is clear that the has a finite number of steps, which 
is bounded above, for by In fact, it follows from Problem 
9.18 that max f fb:::;; c(w -(A)), where is any cut of the network. If A {b}, 
then w-(A)=w-(b). From this one can deduce that max! c(w-(A)) 
L.,"qb) cluj. Start with a zero flow on each arc, so that fb=O. At each step the 
flow fb increases e. Recall that the of an arc is a UVI1-UIOl'."'" 

Thus the values of the flow and of e itself are and e > 0 that 
e ~ 1. Therefore, at each step the flow increases by at least 1, and hence the 
number of steps of the algorithm is bounded above by the capacity of a cut. 

It will now be shown that when one can no longer mark the sink b, then the 
flow obtained has the maximal value at the sink. The set of arcs which join a 
marked vertex to an unmarked vertex constitutes a cut with minimal --~'--"J 

To show this let A be the set of vertices which cannot be labeled by the 
algorithm. It follows that a ~ A and b E since it has been assumed that the 
sink of the network cannot be labeled. Thus w - (A) is a cut of the network. One 
has flu) == for every arc u E (j) - (A), since if u = (x, y) then x ~ A and yEA. 
rr f(u) < c(u). the vertex y could have been labeled, which contradicts the fact 
that YEA. Also one has flu) = 0 for every arc u E w + (A), since if u = xl then 
yEA and x f. A. If flu) > O. the vertex y could have been labeled starting from 
the labeled vertex x, which contradicts the fact that J' EA. 

By applying (b) of Problem 9.18 one can write 

fb= L f(u)- flu) 
UEw-(A) 
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But it has been shown that for every flow f and every cut w-(A) one has 
fb~ -(A)). For the flow and cut this inequality becomes an equality. 
Thus the flow is maximal, and the cut w - (A) has minimal capacity. 

This reasoning also provides a new proof of the F ord-Fulkerson theorem of 
the problem in the case when the capacities of the arcs are 

Observe that this algorithm allows one to find the maximal flow after a finite 
number of steps in every network G whose capacities are rational numbers. 

Let the arcs of the network be U I, ..• , Urn with c(ull pdq; where Pi' q/ are 
integers and 1 for every 1 ~ i ~ m. Multiply the capacity of all 

the arcs by the least common multiple , .. " qmJ of the denominators of these 
fractions. One th us obtains a transport network G I which has the same 
and whose are Let f be a flow in the network G I , and 
the flow g by 

(1) 

for every u e U. The conservation condition at every vertex x =/= a, b and the 
boundedness on each arc will be satisfied for the network G. 

In from f(u) = +(x) f(u) it follows that 
IUEOJ+(X) , ••• , qmJc(u) that O~ 
every arc u E U. If fv is then go= fb/[ql"'" is maximal in the 
network G. 

In the case, there is a flow h in the network G such that hb > gb' 
Define the flow with components to, ... , qmJh(u) for each arc U E U 
of the network . One obtains a flow with value at the sink equal to 

, ...• qmJhb> .... , qmJgb= fb, which contradicts the maximality of the 
flow f. 

It follows that the flow g defined by (1) is maximal in the network G if and 
only if the f is maximal in the network G I' This maximal flow can be 
determined the algorithm in a finite number of steps, since in the 
network all the are 

The problem shows that the Ford-Fulkerson algorithm may not 
have a finite number of if the of the arcs are 

9.21 Let v=[a, ... , bJ be a walk in the network from the source to the 
sink, and let the arc u E r +. The reserve of flow on this arc will be the quantity 

f(u) by which the flow can be increased without becoming larger than 
the capacity of the arc. 

It will be shown by induction that there exists a for determining a 
walk from a to b on which one can increase the flow according to the algorithm 
of the preceding problem so that at n the flow fv increases by an' at 
step 0 with a zero flow on each arc, and consider the walk [a, Xl' YI' One 
finds that Co min ao, c)=ao. Define a new flow equal to ao<c on the arcs 
(a. x I)' (x! , , b). On the other arcs the flow will be to zero. 

Let 11 1. Let ,A~, A~, A~ be a permutation of the arcs AI' ,A 3 , 
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so that A'I has flow reserve 0, A2 has reserve an' A) has reserve an + I, and 
has reserve an + I' Notice that for 11 = lone can take Ai = AI for 1 ~ i ~ 4, 

at 11, choose a walk from a to b which includes among the 
arcs Ai only the arcs and A); for example. 

[a, Y), b], 

It follows that 1:1 =min (e an' e-f(Y2. an+l. e-f(Y3. b)). Thus by 
the induction hypothesis the amount of flow sent to b up to the present on the 
arcs of the network is to ; Qh and thus f(a, : ai' This implies 
that c f(a, n ai > an > an+ l' Similarly one can deduce that 
c - fCV2' x)) > an C - f(y3. b) > an and hence £) = Qn+ l' Increase the flow 
on the arcs x~), ,y~), (y2. (X'J' Y3), and ( • b) an+ I' The flow at b 
then increases by an+ I' The arcs A'I' , , A~ have reserves of flow equal to 
0, an- an+ I = an+ 2, ° and an+ 1 respectively. 

Now choose a walk v from a to b on which one can increase the flow at b 
so that A~ E v+ and v- = {A'!. For example. 

v= ~.~.~, ,~, .~,~ 

with Ez=min(c-f(a, an+2, c- e(A'd, e f(x'I' Y3), C(A'3)' 
e- fIx). y~), c- f(y4. b)). The arcs Al and have their reserve of flow equal 
to 0, and thus on these arcs the flow is equal to the capacity of the arc. 

One first sees that c- f{a. I~ .... z + an+z. since the amount of 
flow transmitted to b up to now is equal to 1 at + a .... !. All the differences 
which appear in the for i!z are by same than 
an+ 2' Similarly min (c(AD. e(A;));;:: a2 > an+ 2 ror 11;;:: 1. It follows that £2 = an+ 2. 

and thus one increases by an+2 the flow on the arcs X2), (X2. (Y2' y'd. 
(X'I' (X'3' y~), and LV4. b). Decrease the flow by an ",2 on the arcs A'l and 
The flow at b is still increased by an + 2' 

The reserves offlow on the arcs A'! , A2• A'). A4 are now equal toan+2,O,an+2' 
an+ I, and the flow fb has increased following step 11 

an+! +an+ 2 = an and thus has the value 

Observe that now one has a situation to that 
n, The reserve offlow of the arcs A; leads to the following 

arcs Ai: 

(
A'l A'2 A3 A4). 
A2 A~ A3 

Now redefine A'l I' A~-A3. n-n+ 1. and return to step n. 
One can now see that the algorithm of the preceding problem wiil not 

but after n steps one has 

1 
1 

1 

I 



Solutions 243 

max f = 4c, and the maximal flow can therefore be obtained as 
follows: 

f(a,xd= ,Y2)= 

f(Yl. f(a, 

=f(a, 

f(a, x21= f(xz, l'll 

== f(X3 \ Y4) = f(Y4. b) 

, b)=c. 

and on the other arcs the flow wil1 be equal to zero. [L R. D. R. 
Flows in Princeton University 1962.] 

9.22 Let G == (A, B, be a bipartite graph where U is the set of edges. 
Each has one of its endpoints in A and the other in B. Now construct a 
network in the following manner. 

Consider two new a source a and a sink b. Associate with all the 
arcs (a, x) where x E A a equal to 1. The arcs (y, b) with Y E B also have a 
capacity to 1. For each edge [x, y] with x E A and y E one will consider 
the arc (x, y) as existing in the associated network. 

All of the arcs of the form (x. y) with x E A and Y E B have a equal 
to C== IAI + 1. 

Thus to the bipartite graph of Figure 9.2 corresponds the network of 
9.3 for which C=5. It follows from the method of defining this network that 

Fig. 9.2 

a 

Fig. 9.3 
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no flow ~ith integral components can have values other than 0 and 1 on the 
arcs of the network. The arcs of the form y) with x E A and y e B which have 
flow equal to 1 determine a of the 
[x, yJ of the graph C. In fact the arcs with flow equal to 1 cannot have a 
common endpoint. since the entry arcs and the exit arcs of the network both 
have equal to 1. Thus they can have a maximal flow equal to 1. The 
num ber of arcs u y) which have a flow feu) == 1 is thus to the number 
of in the associated matching, which is, in turn, equal to the flow fb 
at the sink. 

The maximal flow in the associated network to a maximal 
matching in the graph C obtained by the arcs between 
A and B which have a flow equal to 1. It follows that fb' The Ford-
Fulkerson theorem implies that max fb minT c(w-(T)), where T is a set of 
vertices such that a f; T and beT. Note that for T = A v B v {b} one has 
c(w-(T)) IAI and C IAI + 1. It follows that the minimal capacity of a cut in 
the network is attained for a cut which does not contain an arc of the form 
(x, y) with x e A and y e B. Thus c(w-(T)) c(w-(To)), where 

w ={(a,x)lxeAo}v bllyeBo}, Ao AandBocB. 

Now we show that AovBo is a support for the G. To do 
consider an arbitrary edge [x, yJ e U to which corresponds the path (a, X, y, b) 
in the network associated with C. Since every path from a to b contains at least 
one arc of a cut in the network, it follows that either (a, xl e w- (ToJ and hence 
x eA o• or b) ew-(To) and hence y e Bo. Thus one has shown that AovBo 
is a support ofC of cardinality IAovBol=IAol+IBol=lw-(Toll= == 
vIC), since each arc in w-(Tol has a capacity to 1. It follows that 
rIG) ~ IAov Bol = v(C). 

On the other if V is a set of which form a and S is a 
set of vertices which form a of it follows that IVI ~ lSI. (This is because 
the in V do not have an endpoint pairwise in common, but each one has 
at least one vertex from S.) This implies that v( C) ~ '1:( C), which, together with 
the previously established opposite inequality, establishes the equality of the 
two numbers for the 

9.23 The matrix A can be considered to be the matrix of a 
C Y, U), where X = ... ,xnL y = {YI'" . , and U = {(Xi. 
The maximum number of elements to 1 which are found on diITerent 
rows and columns corresponds to the of a maximal matching of C, 
which contains v( C) If the rows i l , .• ,. i, and the columns j l' .. , 

together contain all the elements equal to 1 in the matrix A. then , . , ., 
Xi" Yit" ..• Yj,} is a support of the graph G. 

The minimal number of rows and columns with this property is thus equal 
to ,(C). By the preceding problem, v( Cl = r( C), which completes the proof. 

9.24 Let E(n) = n:(n _1)2]. The proof is by induction on n. For n ~ 3 the 
result follows by all cases. Suppose that the property is 
valid for all graphs with at most n and let C be a graph with n + 1 
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vertices. Let G., denote the subgraph obtained from G by deleting x and all 
incident to it. It follows from the induction hypothesis that D 2( G.,)::;; E(n). 

Hence by using at most (!Xj and (fJ), G can be transformed into 
K v wherenj:;;;'O,n2:;;;'O,andnl+n2=n.Ifxis tOPl vertices of n, 
Kn, and to P2 vertices of then G can be transformed into Knl v 1 or 

.,.jvK 2 either PI operations and n2 P2 operations ({3) or P2 
operations (:x) and nl-PI Let zl=Pl+n 2 - and 
P2 + nl - Pl' It follows that Zl +Z2 = n, and hence min , Z2) 
and min 1) for odd n. one has D 2( G x) + 
min . z2)~E(n+ 1), since E(n) =E(n+ 1) for even nand E(n)+t(n-l)= 
E(n+ 1) for odd n. 

In order to characterize the extremal G with n vertices with this 
property, observe that if D leG) = E(n), then for any vertex x of G one has Dl(G x) = 

E(n -1). The characterization of all G such that r5 2(G} E(n) can now be 
obtained induction on n. For n~3 it can be shown that all extremal 

are complete bipartite that this property is true for all 
with at most n and let G be a graph with n + 1 vertices such that 

D2( G) = E(n + 1). If the subgraph with n vertices is composed only of isolated 
vertices, then x is also isolated or it is adjacent to all vertices of , since other­
wise there would exist a vertex y such that Gy is not a complete bipartite 
graph, and hence D2(Gy) <E(n) by the induction hypothesis. But this would imply 
that < E(n + which is a contradiction. 

Thus G contains only isolated vertices G=K o.n+ tl or G= .n' 

A similar proof can be used when Kp.q where p, q> 0 
and p+q=n. It remains to show that =E(n) when p, q:;;;,O and 
p+q=n. For one may obtain a of x vertices from 
the set with p and y vertices from the set with q vertices of . the 
remaining vertices constitute the second clique. Hence the number opera-
tions (!Xl and ({3) is equal to(~)+ 2 +(i)+(q?)+x(q- Y)+ YlP-X) (x­
(p-q)(x- Y)-tn+t(p2 +qf). This expression has a minimum equal 10 

O~x~p, O::;;y~q, p+q=n. and this minimum is reached only if x- r 
for even n and x Y=f(p q-l) [or t(p q+ l)J for odd n. For the 
Ko,n with n isolated vertices one finds that Gl+ E(n) if x = n, and equality 
holds only for x=y for even n and x-I), +1) for odd n. 
[M. Petersdorf. Wiss. Z. Techn. Hochsch. Ilmenau 12 (1966), and 
1. Math. et Sci. Humaines, 42 (1973), 

Let maxG where (}.(G) represents the minimum number of opera-
tions (~) andior ({3) which transform G into the union of k disjoint cliques (some 
of them may be empty). It is known that ()I =(~) and Dk [;t(n -1)2J for any 
2~k~n. [I. Tomescu, Discrete Math., 10 (1974), 173--179.J 

CHAPTER 10 

10.1 The property will be established by induction on the number of 
vertices of the G. 



246 Problems in Combinatorics and Graph Theory 

If G has at most k + 1 then it is evident that x( G) ~ k + 1. Suppose 
that the property is true for all graphs with at most n vertices, let G be a graph 
with n + 1 vertices such that the degrees of the vertices are bounded above by k, 
and let x be a vertex of G. Each vertex of the graph obtained from G by 
suppressing the vertex x and the edges incident with x has degree at most 
equal to k. 

It follows from the induction hypothesis that 

X(G,,) ~k+ 1. 

Since x is adjacent to at most k vertices from , one can color the vertex x 
with a color which does not appear among the colors of the vertices 
to x. Thus the total number of colors used to color G is not than k + 1. 
h follows that X( G) ~ k + 1 

10.2 It will first be shown by induction on n that X(G)+ x(G)~n+ 1. For 
n = 1 and n = 2 there is in fact an now that the inequality 
holds for all with at most n 1 vertices. and let G be a with n 
vertices, x a vertex of and Gx the obtained from G the 
vertex x and all the edges incident with x. It is clear that: 

X(G)~X(G,,)+ 1, X(G)~X(G,<)+ 1. 

If at least one of these inequalities is strict, then the desired inequality follows, 
since by the induction hypothesis one has x(Gxl+ ~n. However, if ;((G) = 
X(G,,) + 1 and X{G) = X( Gx)+ 1, then it follows that the vertex x is 
least one vertex colored with each of the X(G,,,) colors of Gx ; thus 
and analogously X(G,,). It can thus be seen that 

=n-1 and hencex(G)+x(G)~n+1. 
Let a(G) denote the maximal number of vertices of G which induce a sub­

graph consisting of isolated vertices. It follows that x(G)a(G)~n, since each 
class of a coloring with X(G) colors induces a which consists of 
wise nonadjacent vertices. 

On the other hand, it is also the case that X( G) ~ tx( G) since each vertex in a 
set M of pairwise nonadjacent vertices in G must receive a color different from 
the other colors of M, for every coloring of the vertices of Thus n. 
The other two now follow from the inequality 
(a+W~4ab for a, be~. A. Nordhaus, 1. W. Gaddum, American Math. 
M Onlhly, 63 (1956), 176-

10.3 Consider a of the G. It will be shown that 
the faces in the interior of the Hamiltonian cycle C can be colored with two 
colors so that each two faces which have a common edge are colored differently. 

Now construct the dual graph GT of the faces which are found in the interior 
of the C as follows: Each face is represented as a new vertex located in the 
interior of this face. Two vertices are if the corresponding faces have 
at least one in common. Thus it must be shown that the vertices of 
can be colored with two colors so that each two adjacent vertices have different 
colors. 
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Fig. 10.1 

The graph Gj does not contain For otherwise an elementary cycle of 
GT would contain in its interior a vertex x of the G. But x is found on the 
Hamiltonian cycle C, whose incident with x are represented by heavy 
lines in Figure 10.1. This is a contradiction, since the vertices of GT and hence 
the faces of G under consideration are not contained in the interior of the 

C. Since GT does not contain it follows that it does not contain 
cycles. One can therefore conclude from Problem 8.5 that GT is 

coloring the vertices of each part A and B of with the same color one 
obtains a coloring of the vertices with two colors. Since all the edges of GT 
are of the form [a, bJ with a E A and b E B, it follows that each two adjacent 
vertices have difTerent colors. 

In the same way, consider the dual graph of the faces in the exterior of C. 
It can be seen that one can also color the faces outside of C with two other 
colors. One has thus found a with four colors of the faces in a planar 

of the graph G, with the desired property. 

10.4 Denote (x!. . .. , Yn) the coordinates of the points of inter-
section with to a pair of perpendicular axes. One can assume that the 
directions of the axes are chosen so that the abscissas Xl' .••• X M are pairwise 

for Xl <X2 < ... <Xn • Color the vertices of the graph in this 
order with three colors. If one has colored with three colors the vertices with 
abscissas x I •... , Xi _ 1 , then the vertex (x i, JI) has at most two vertices 
which have already been colored, since there do not exist three concurrent lines. 
Thus there is a third color usable for the vertex Yi) for i 2, ... ,n. The 

under consideration is therefore satisfied. 

10.5 The property will be established by induction on the number j of 
faces of the graph G. If f = 1, it can easily be seen that G is connected and 
does not contain cycles; it is thus a tree whose only face is the infinite face. In 
this case, the formula is satisfied, since m = n - 1. Suppose now that f> 1 and 
that the is true for all planar connected graphs with at most f -1 faces. 
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Let b] be an of a [a, b] is located on the boundary 
between two faces Sand T. By the edge b] one obtains a new 
planar connected G! with n1 m! and faces, in which the 
faces Sand T are to form a new while the other faces of G remain 
unchanged. Thus nj n, ml =m -1, and II == 1 - I. By the induction hypothesis 
one has II =ml -nl +2 and hence 1 11 + 1 =ml - nl +3=m-n+2. 

10.6 Since G is a graph with m there will exist ml ~ m 
on the boundary between two faces. If G has no vertices of 1, 
then m! =m. Cut out all the faces of the and count in two different ways 
the 2ml edges which are found on the boundary of all the faces. Since each face 
has at least three edges on its boundary, it follows from Euler's formula that 

or 

or 

2m~ ~31=3(m-n 

m~ 3n-6. 

If G does not contain triangles, then one can show similarly that 

2m! ~41 =4(m n+ 

m~2n-4. 

10.7 Suppose that the complete graph with five vertices is planar. Then 

l=m n+2=10-5+2=7. 

It follows from the """un,/', problem that 

20=2m~31= 

which is a contradiction. If the complete bipartite graph K 3.3 were planar, 
then one would have 1 =m-n+2=9 6+2=5. 

In the planar representation of the graph 3' no face can be 
since the bipartite do not contain odd (Problem 8.5). Thus each 
face has a boundary of at least four It follows analogously that 

18 =2m~41 =20, 

which is a contradiction. 
Thus K 5 and K 3.3 are not 

10.8 Let G be a which is not a triangulation of the face 
a cycle with three will be added so that each face of the resulting 
graph is triangular. If the graph obtained contains a vertex x with 
d(x) ~ 5, then it will follow that the graph G contains a vertex of degree at most 5, 
since by adding edges the degrees of the vertices increase. 

Suppose therefore that G is a triangulation. Tn view of Euler's formula 
(Problem 10.5) one can write 
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v+ 1 m=2, (1) 

where [' is the number of f is the number of faces (including the infinite 
face), and m is the number of edges of the G. Since each face has three 

and each edge to two faces, it follows that 

312m. (2) 

Suppose now that each vertex has degree d(x)?':: 6. In any graph one has the 
relation 

L =2m. 

since every edge [x, is counted twice, both in d(x) and 
that 

2m?':: 
m 

or }?':: 1:. 

Euler's formula and (2) lead to the conclusion that 

2m m 
2=1'+ 1 -m=v+ -m=1:- 0, 

It is also the case 

which is a contradiction. It follows that every G contains at least 
one vertex x such that d(x) ~ 5. 

This upper bound for the minimum of a planar cannot be 
improved. as can be seen from Figure 10.2, which represents a planar graph 
with 12 vertices which is regular of 5 (the graph of an icosahedron). 

Fig. 10.2 

10.9 It is sufficient to suppose that G is since otherwise one 
could add between vertices located in different connected components 
in a planar representation of G. A new connected planar G 1 would be 
obtained such that = g. 

It is also the case that the number of of G 1 is than the number 
of of G. 
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Thus let C be a planar connected graph with n vertices, m edges. and g( C) = g. 
The desired property will be established by induction on the number of vertices. 
If n=g, then C is a cycle with n vertices, and hence m=n and the inequality 
becomes an equality. Suppose now the inequality true for all 

with at 1 vertices. C be a with n 
gIC)=g. 

Suppose that contains an cdge [a, b] whose removal disconnects the 
graph C. Denote by H the spanning graph obtained from C by suppressing the 
edge [a, b]. H consists of two disjoint planar graphs C I and C2 which have n l 

vertices and nil edges (n2 vertices and m2 edges) respectively. At least one of the 
graphs C I has girth . say g( Cd The other 
tree or has qIC2)=g2~ property from the fae! 
the edge [a. not belong cycle in C. it can 

eluded that g(H)=g(GI. 
If the graph C2 is a tree. then 

Otherwise. by induction it follows 

and similarly 

-2). 

since nl + we can conclude that 

<-g­
g-2 

2g 
-4)+­

g-2 
in-2). 

if C contains edge whose causes C hecome disconnected, 
then the inequality is proven and it has been seen that the inequality is in 
fact strict. 

It remains to consider the case in which C does not contain an edge [a. b] 
elimination transforms C into disconnected Let Jibe the number 

faces which edges for i let j' be the number of 
representation of C. It follows 

since in this case each edge [a. h] lies on the boundary between two faces. Thus 

2m= 



Solutions 

By applying Euler's formula (Problem 10.5) one can conclude that 

2 
m+2=n+ j';;'n+- m, 

g 

and hence 

m,;;. (n 2). 
g-

251 

Observe that holds only for 1 = jg+ 2 = . 0, and thus when all 
with g vertices. This case can be realized for certain 

values of n. for ""<HHI"''', for n = g. 

10.10 The property will be proven by induction on the number of vertices 
of the G. 

If G has at most five vertices, the property is immediate. 
that every graph with at most n vertices has chromatic 

number less than or to 5. and let G be a with n + 1 vertices. 
It follows from Problem 10.8 that there is a vertex x in G with d(x)~5. 

Denote by Gx the obtained from G the vertex x 
and the incident with x. the induction the vertices of 
can be colored by at most colors so that each two adjacent vertices 
have different colors. If d(x)';;' 4 then one can 
color, difTerent from the colors of the vertices to x. Thus the vertices 
of G can be colored with at most five colors, that is, X(G)';;'S. 

that d(x) 5 and that the vertices YI' 1'2' Y3' .1'4, Ys to x 
are colored with at most four colors in the coloring with at most five colors of 

One can find an available color for x, and the property is established. The 
only case is that in which d(x) = S and the vertices Yl, . .. , Ys are 
colored with exactly five colors, say A. B, C. D. E, in the of Gx 

10.3). Consider the connected component M which contains YI of the subgraph 
of consisting of vertices colored with either color A or color C. If the vertex 
Y3 does not belong to this component, one can interchange the colors A and C 
in M to obtain a coloring with five colors of the graph Gx in which YI has the 
color C. 

Thus the color A has become available, and the vertex x can be colored with 
A to obtain a coloring with five colors of the vertices of the graph G. Otherwise, 
If .h and Y3 belong to M, it follows that there exists a walk which )'1 and 
)'3 and which contains alternatingly the colors A and C. 

Consider the connected component N which contains Y2 in the subgraph 
consisting of vertices colored B or D. In this case Y4 ¢ N. In fact, there would 

otherwise be a walk with endpoints Y2 and Y4 whose vertices are colored alter-
Band D. Since the is it would turn out that this walk 

must have a vertex in common with the walk which YI and Y3 (see 
lO.3). But this is since these two walks consist of sets of vertices for 
which the sets of colors are disjoint. Thus Y4 " N. By the colors 



252 Problems in Combinalortcs and Graph Theory 

o 

o 
o 0 

Fig. to.3 

Band D in the component one obtains a of the subgraph with 
five colors in which the vertex Yz has color D. Thus the color B becomes avail­
able. One can color x with B, and this produces a coloring with five colors of 
the vertices of the G. 

In 1976 K. Appel and W. Haken proved the Four-Color Theorem. It states 
that for every planar graph G one has the inequality X(G)~4. used an 
electronic computer to study more than 1900 configurations which occurred 
in the proof. 

10.11 The graphs with the smallest number of vertices which do not contain 
and which have chromatic numbers x(Gd=3 and X(G 2)=4 respec-

tively are illustrated in 10.4 and 10.5. 
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Fig. 10.5 

suppose the G has vertices x \' ... ,Xn• does not contain 
and has X( G) == k. Associate a new vertex Yi with each vertex x, of G 

for i = 1, ... , n. Join the vertex YI to all the vertices adjacent to XI for i 1. ... , n. 
Also add a new vertex z which is joined by an edge to all the vertices Yl, ... , Yn' 
lt will be shown that t he graph G 1 which is thereby obtained does not contain 

and has x( G d = k + 1. Since G does not contain triangles and the 
vertices Y I •.•• , Yo are pairwise nonadjacent, it follows that every triangle in G 1 

must have three vertices of the form X" Xj' h. This is a contradiction, since 
Xi and Xj are to Xk and thus G contains a Xi' Xj, x., which con­
tradicts the hypothesis. 

It will also be shown that X( G 1) k + 1. Suppose the vertices Xl' ... , Xn have 
been colored with k colors so that each two adjacent vertices have different 
colors. The vertices Y 1, ... ,.I'n can be colored with k colors by the 
vertex Ylwith the same color as the vertex XI for i= 1, ... , n. This is the minimum 
number of colors with which one can color the vertices Yr," . ,Y., since if 
p < k colors were sufficient to color the vertices YI'" . ,Y., it would follow 
that x( G) < k by the vertex with the color of the vertex yJor i = 1, ... , n. 

Since the vertex z is to all the vertices YI. it follows that d = k + 1. 
By this from the cycle with five vertices (C 5) of 

10.4, one obtains the graph III 10.5. It has no and 
its chromatic number is to 4. By repeating the construction one finds that 
for every natural number k ~ 3 there exists a G with XlG)= k which does 
not contain 

10.12 Suppose that G contains three mutually adjacent vertices (a I' hi), 
(a2,h 2 ). and ,b3) such that al=a l +b l ,a3=a1+b1, and a3=a2+b2< This 
would imply that a3 = a 1 + bl + > a\ + bl , which is a contradiction. 

Let x = L'l and x == C2 be lines with C2 < [I' It follows that the point (Cil C2 cd 
on the line with equation x = [I is to all the points with 
coordinates on the line with equation X = C2' Thus the set of colors of the points 
of G located on the line X = CI is different from the set of colors of the points of 
G located on the line x =C2 . that the chromatic number X(G)= m < %. 

It follows that the number of lines with equation x = c, C > 0, and c e!!l is at 
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most equal to the number of nonempty subsets of the set of colors, that is, 
2'" 1. This is a contradiction, and hence X(G) = IJ". [A. Gyarfas, Discrete Math., 
30(2) (1980), 185.J 

10.13 One can assume that all the faces in a planar representation of G 
are triangles, that is, G is a triangulation of the plane. In fact, if G is not a triangu­
lation, one can add new to the graph G until one obtains a triangulation 
G I If the desired inequality is satisfied by G I, it will be satisfied further for G, 
since the degrees of the vertices of G I are larger than the of the vertices 
of G. Thus let G be a planar graph with all faces for which the sum of 
the squares of the is maximal. Let x be a vertex of minimal degree. 
It will be shown that = 3. 

In fact, if d(x)~ 2 it follows that d(x) = 2 and the 
which contradicts the that n~4. 
Xl' X 2' ... ,x, be vertices adjacent to x such that d(x 
where r=d(x)~4 (Figure 10.6). 

G reduces to 
that d(x) ~ 4, and let 

d(x;J for i=2, ... , r, 

Suppress the edge [x, x 1] and add the edge 
graph G l without multiple edges for r~4. 

, x,.] to produce a new planar 

Let S denote the sum of the squares of the of and S 1 the sum of the 
squares of the of. It follows that 

d2 

= 2d(x,l + 2d(x 2) - 2d(x) - 2d(x 1) + 4> 0, 

since ~ d(x d~ d(xtl for i = 2, ... ,r. However, this inequality contradicts 
the maximality of the graph G, and thus every graph G for which S is maximal 
contains a vertex x of d(x) = 3. 

The proof of the property will now be completed 
n =4, and consider a of the 
sides of the inequality are other 
sum of squares of its 

the 

induction on n. Let 
K 4' In this case both 

with four vertices has a 
of some vertices 

now that the with at most n 
vertices, and let G be a planar with n + 1 vertices for which the sum of the 
squares of the is maximal and which has all of its faces triangular. By 

fig. 10.6 
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the previous observation, there is a vertex x with = 3. Let a, h, c be 
vertices to x. Denote by G1 the subgraph obtained from G by sup-

the vertex x and the three incident with x. Using the earlier 
notation, one sees that 

S=SI +9+ {d(a)+ 1}2 + {d(b)+ 1 F + {d(e)+ 1}2 

-{d(a)}2 {d(bJP-{d(c)}2 

+ d(b) + die)) + 12. 

Consider three vertices a, b, c which induce a with three 
vertices in a planar graph with n vertices. It will now be shown that 

d(a)+ +d(c)~2n+ 1. (1) 

In fact, if another vertex d is adjacent to all three vertices a, b, e, then an addi­
tional vertex e can be adjacent to at most two of the vertices a, b, or e, say with 
a and with b. This follows from Problem 10.7 and the of the graph G 

10.7). Thus the number of which join vertices a, b, c to the other 
n 3 vertices of the G is bounded above by 2{n - 3) + 1 = 2n - 5. Recalling 
the contribution of the b], [b, e], and e] to the dial, d(b), 

one obtains 

d(a)+ d(b)+ 2n - 5 + 6 ::::: 2n + 1 

and thus (1) is verified. 
By the induction hypothesis SI ~2(n+3)2-62 and thus S~ +3)2_62+ 

1) + 12 = 2(n + 4)2 - 62 which the inductive proof of the in-
For n =4 it has been seen that the inequality becomes an for 

with sequence 3, 3, 3, 3. It will now be shown induction 
on n that there exists a with n vertices and such that 
the of the vertices which border the infinite face are equal to 3, n -1, 
and n - 1 respectively. For this graph the inequality also become an equality. 

In fact it is easily seen that this assertion is true for n=4. Suppose that it is 
true for n, and let G be a planar graph with the desired property. 

Suppose that the infinite face of G is bounded by the cycle [a, b, e, 
d(a)=3, d(b)=n-l, and =n-l. Proceed to define a planar 
with the desired property as follows: Consider a new vertex Xn+ 1 (on the infinite 

II a d 

Fig. 10.7 
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b 

c 

Fig. 10.8 

face of the graph G) which is joined by edges to a, b, c as in Figure 10.8. The new 
infinite face of the graph is bounded by the cycle [b, c, X n+ 1, b). Also d(xn+ == 
3, deal 4, deb) = n, and = n. G 1 is a triangulation, and = S + 9 + 
2(n - 1)2 + 16 - 9 = S + 4n + 14. the induction hypothesis S = 

+3)2_ and thus SI= +3)2-62+4n+14=2(n+4)2 62 and the 
property is established. 

the fact that the function x" I :[0, is convex for IY. ~ 2, it can 
be shown analogously that 

• I df~2(n-1)~+(n-4)4" +2 x 3" (2) 
j= 1 

G with n ~ 4 vertices and IY. ~ 2. Equality holds for the 
constructed for 1Y.=2. It has d1 =n-l, -

d.- z dn - t =dn =3. 
For IY. 1 inequality (2) becomes an for every triangulation of the 

plane and expresses the fact that the number of edges of a triangulation is 
to 3n- 6 (by Problem 10.6). 

, ... ,urn} the set of of the and let 
= fey) where Uj = y]}. The number of functions 

condition is to 

PG(A)=i."-IA 1 U U'" U 

One can evaluate the of the set Al U ... U Am by using the 
of Inclusion and Exclusion (Problem 

v, 

where p{V, ic) represents the number of functions f:X ...... p, ... , A} which take 
on the same value for the of every in V. It follows that these 
functions have the same value from Lhe set {1, ... , for each connected com-
ponent of the graph (X, V) of G. Thus p(V, = ),r(V). This the 

nrpccu,n for the chromatic of the graph G in view of the fact that 
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the term ;.n is obtained for V when the graph (X, V) consists 
of isolated vertices and thus has 11 connected components. 

Observe that a term of degree n is obtained for V =0, ),", 
but terms of degree 11 t are obtained for = I. In this case there are (7) = m 
terms equal to - )."-1, and hence 

PG().)=}."-m)," 1+ "', 

where m is the number of edges of the graph G. 
If P G().} =).» + 1 + 2 + ... + an, then one can show similarly that 

a2 - C3(G), where the number of triangles of the G. 
Terms of degree n - 2 are obtained for = n 2, when IVI = 2 and the span-

graph (X. V) of G contains only two or noL This also 
occurs if IVI = 3, when the spanning contains three which a 
triangle. 

Since two can be chosen in (~) ways. one has indeed obtained the 
for the coefficient a2' 

10.15 If a f of the graph G 
where e= [x, then f is also a 

-e(A)-Pd),) is the number of those 
that f(x) = f( y). 

e has the property that fix) 't' flY), 
for G and vice versa. It follows that 

f of G - e with the property 

A A-coloring f of G e of this kind a A-coloring g of G I e 
g(z)=f(x)=f(,l') and g(t)=f{l) for every I+Z. Conversely, every },-coloring g 
of the graph G I e induces a }.-coloring f of G e with the fix) = 

defining fly) and fit) g(t) for 1,* x, y. Since both corre-
spondences are it follows that 

for every natural number A. 
Since the equality holds for polynomials of a given 

chromatic polynomials are equal for every;" 

10.16 Let have vertex set {Xl'" .. xn }. A . 
defined at X 1 in ). ways, at x 2 in i. 1 ways, ... at x" in ), 
there are 

ll" ().-n+ 1) 

it follows that the 

f can be 
n + 1 ways, so that 

possible ways of defining the function f so that it takes on different 
values for all the vertices X I' .. ,xn' 

(b) Let x be a vertex of degree 1 of and denote by x the tree which is 
obtained from suppressing the vertex x and the incident with x. 
A of -x can be extended in ),-1 ways to a I.-coloring of Tn. 
and thus 
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in this manner one sees that 

=Je(),-

since the chromatic polynomial of the tree with a vertex is i .. 
Let e be an edge of the cycle Cn' Apply the property of Problem 10.15 

to obtain 

pcPJ= 

where Cn-e is a walk with n vertices. Thus from (b) it follows that 
i.f;. - 1)" - I and I e is a cycle with n - 1 vertices. Thus 

PcP,) _1).-1 -PCH(Je), 

and a .. "' ... "'''',,'" of this yields 

1 _ i.(/. - 1)" - 2. + .. . + l - 1 r 1 ), PdJeJ= 
since PcP,) ),(;. _1)2 - One can thus write 
).(i. - l)r 1 p. (Je-1)P+(A-l)P-l for 2:;:;;p:;:;;n, and hence 

pcPJ=p,-l)n+o, l)n-!-(}.-I)" 1 V lJ"-Z+'" 

+( 2(Je-1)2+( 1 20.-1) 

(Je-l)"+( -1)n().-I), 

10.17 Both properties will be proven by induction on the number of 
of the G, For the graph with n isolated vertices one has PG(x)=x". which 
has the desired form. 

now that the property of of the coefficients of the 
chromatic polynomial is true for all 
It will be established for an arbitrary G with n vertices and p~(;) edges, 

Let e be an of G. It follows from the result of Problem 10.15 that 

(1) 

Since the graphs G - e and G I e have at most pledges. one can use the in­
duction hypothesis to show that 

x" - bn _ 1 xn - 1 + bn- 2. ... +( 1 

=xn-1-c
n

_ -2+ c._ 

where Substituting in one finds that 

which completes the proof of the first 'wr' .... "',.nl 

The graph which has one more than G - e, has the coefficient Qn-I == 
bn - 1 + 1. But Qn- 1 = 0 for the graph with n vertices and no It follows that 
Qn-l is the of edges in the G. 

Now let G be a connected graph with n vertices. It will be shown that 
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a/~ i- ~) by induction on the number of edges ofG. IfG has the minimal number 
of edges, equal to 1'1-1, then it is a tree, and by Problem 10.16 its chromatic 
polynomial is equal to 

PG(x)=xlx _1),,-1 =xn_(n~ 1) xM-I + (11; 1) X,,-2 

+( _1),,-1 (1'1-1) x. 
\1'1-1 

This establishes the inequality G, ~ i_I) for 1 ~ i ~ 1'1 -1. 
Suppose that the property is true every connected with n vertices 

and m such that 

n-l~m -1. 

The property will be proved for a connected graph G with n vertices and p ~ (;) 

"lr\rt()·(P that G is not a tree. Then there exists an edge e such that G - e 
is a connected graph. The graph G I e obtained by identifying the endpoints of e 
is also connected, and. using the previous notation and the induction hypothesis, 
one can see that G,=b,+c, for i= 1, .. , n-1 and Cn - 1 = 1, and hence ai~ il. 

Since the chromatic polynomial of a graph is to the product the 
chromatic polynomials of its components, it follows that the smallest number s 
such that x' has a nonzero coefficient in P G(x) is equal to the number of com­
ponents in G. 

10.18 If the G has components then a can bc 
defined on a component of its definition on the other components. 
It follows that 

PG(;·)=PGP)··· 

Thus P GP') has no roots in the interval (0. 1) if and only if each polynomial 
P Gp.) has this property for i = 1, ... ,m. 

Finally, one can suppose that G is connected and proceed to show that 
( _1),,-1 P G()') > 0 if the graph G has 1'1 vertices and 0 <;. < 1. This property will 
be established by induction on the number of edges of the graph G. If G has a 
minimal number n lof then it is a tree, Pv().) _1)"-1, and the 
property is satisfied. 

Suppose now that the property is true for all connected graphs G with 
m ~ 1'1 1 It will be shown that the property also holds for a graph G 
with n vertices and m + 1 

Since G has a number of which is than n -1, it follows that 
there is an edge e in G with the that G - e is connected. The graph 
G I e obtained by identify ing the endpoints of e is also connected; it has n - 1 
vertices and at most m by the induction 

(_l)"-lPG _.(X»O and (_l),,-2PG1 eV»0 for 0<).<1. 
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Furthermore, it follows from Problem 10.15 that 

1)"-1 PG(l) _1)"-1 {PG-.{A)- PG1e(J.}} 

-1)"- -eVl+( 1)n- 2PG1e().j 

>0 for every 0<).< L 

Thus one can concl ude that P d).) has no root in the interval (0, 1). 
The fact that (3 - J5)/2 e (0, 1) implies that (3 - J5)f2 is not a root of any 

chromatic polynomial the chromatic polynomials have rational 
it follows that (3 + = '!' + 1 is not a root of any chromatic 

polynomial P G()') for any graph G. 

10.19 If x is a vertex of maximum then there are D incident 
with x, which thus have a common endpoint. It follows that 

q(G)~D. 

The proof of q(G}:;;; D + 1 will use induction on the number m of of the 
If m = 1 then q( G) = 1 and D"", 1, so that the inequality is satisfied. 

pose that q(G):;;; D + 1 for all graphs with at most m -1 edges, and let G be a 
with m and maximum D. 

T"ow suppose that all the of G. with the 1:'1 =: 

[r, "'1], have been colored with D + 1 colors so that every two with a 
common endpoint have different colors. It will be shown that under these 
circumstances there exists a coloring of the edges of G with D + 1 colors, that is, 

D+1. 
the induction there is a with D' + 1 colors of 

the of the obtained from G by the [v, \\'1]. 
But D' =D or D' D -1, and hence D' :;;;D. There also exists a coloring of the 
edges of G I with at most D + 1 colors which satisfies the given condition. 

It will be shown that this can be extended to the el' Since the 
maximum in G is D, it follows that for the incident with v and 
with WI' at least one color from among the D + 1 colors is 

If the same color is at v and WI, then one can use it to color the 
e! and the proof is finished. Otherwise, let !J. be the color from among 
the edges incident with v, and let PI -:flY. be the color missing from among the 

incident with WI' 

(a) Let e2 = wJ be the edge incident with v which is colored Pl' There 
~xists such an edge, because otherwise this color would be from among 
the incident to D and to WI' contrary to hypothesis. Delete the color of the 

e2' and color e1 with f31' Suppose that the vertices r, WI' W2 to the 
;ame connected of the f311 of G of 
.he vertices of G and the colored with !J. or . If this were not possible, 
)ne could the colors !J. and f31 in the component which contains 
he vertex W2' without the color of £II' Since the el is colored 
1!. it follows that W 2 is not incident with another colored PI' By inter-
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(J. and PI at W2 it turns out that the color (J. becomes available and it is 
from among the colors of the incident with 1), it follows that 

e2 = \\'2J can be colored with IX and this yields a coloring of the 
the graph G with at most D + 1 colors, 

It remains to consider the case in which the vertices v, \1'1' W2 belong to the 
same component of the H{IX, 

(b) Let P 2 of PI be a color which is from the edges incident with "'2' 

One can suppose that is the color of an edge incident with r, for otherwise 
the proof could be finished coloring the e2 with P 2' Let e3 == [v, tV,J be 
the edge colored P2 which is incident with /J, Delete the color from the 
e3, and color e2 with P2, since P2 does not occur at W2' Following the same 
reasoning as in (a), one can consider only the case in which v, 1\'2' W3 belong to 
the same component of the spanning graph H(IX, P2)' 

(c) The num ber of colors is and the colors themselves PI' P 2' P3' ' , . 
are distinct. It follows that either one can color all the incident 
with (and obtain a of the of G with at most D + 1 colors) 
or else one arrives at the following situation: One can no use 
of type or (b) to recolor the last WkJ which has color Pk -1' This is 
because every color from Wk is a color Pi where i < k 1. 

Similarly one can suppose that v, 11'" "',+ 1 belong to the same component C 
of the spanning graph H(Ct., Pi)' and thus there is a walk with endpoints Wi and 
\\if+ 1 which consists only of colored alternately IX and Pi' The color Ct. does 
not occur in the incident with v, and PI does not occur in the incident 
with 11','+ l' It follows that C is a walk from v to Wi + 1 which passes through Wi 

and which contains only edges colored Ct. and Pi alternately (Figure 10.9). 
This walk does not contain the vertex Wk, since Pi does not occur among the 

colors of the edges which have an endpoint at Wk' If is the of 
Hlr1., which contains Irk, then C and Clare disjoint. This roJlows because 

Fig, 10,9 
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otherwise they would form a single component, contrary to the definition of C 
and the fact that the color /3i is missing at Wk' Thus in the component one 
can the colors Ct. and /31 without causing the color Ct. to occur at v 
for the w,] of color 

The color Pi is at Wk' It follows that after the colors 
in C 1 , the color Ct. will be at Wk and in v. Thus one can color the 
[v, with color Ct.. This a coloring of the set of G with D + 1 colors. 

for q(G) D + 1 for an odd l' for which d = 3 
and D=2. 

10.20 The number of edges without a common endpoint which can be 
colored with the same color is less than or to Thus for n even there 
exist at most n/2 which can be colored with the same color, and for n odd 
there exist at most (n-1)/2 which can be colored with the same color. 
Since the complete has (~) it follows that ;;. n -1 for n 
even and n for n odd. 

The inequality will be established by means of a construction which 
provides a coloring of the edges of Kn with n colors for n odd and with n-1 
colors for n even. 

Represent the vertices of the graph by the vertices of a pentagon 
ABeDE. Color the sides of the pentagon with the colors I. 2 •... , 5. and all the 
diagonals to a side with the same color as the respective side (Figure 
10.10). One thus obtains a coloring of the of K5 with five colors which 
satisfies the condition that two which have a common endpoint have 
different colors. 

Observe that in this way one color becomes available at each vertex. For 
no incident with A has color 4. The set of colors which are avail-

able at alJ the vertices is the set of five colors used to color the of K 5 . 

A 

E~----+-:---\-----~B 

4 
Fig. 10.10 
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E~--------------------~ 

Fig. 1O.l! 

It follows that by taking a new vertex F and joining it to all the vertices of the 
pentagon, the coloring of the of is uniqucly extended to a coloring 
of the edges of with five colors. For example, the AF is given color 4, 
which is available at vertex A, and so on (Figure 10.11). This construction can 
be to any two graphs and 1 with 11 odd. 

10.21 Represent the chess by the vertices of a complete graph 
The matches in one day can be by a set of which do 
not have an in common. It follows that the minimum number 
of in which the tournament can end is equal to the minimum number of 
colors needed to color the of so that each two edges with a common 
endpoint have different colors. In fact. one can use the same color to color 
which correspond to matches which are played in the same Thus the 
minimum number of days is q(Kn), which the previous problem) is to 
11 1 for even ,. and to 11 for odd n. 

10.22 The property will be proven by induction on the number 11 of vertices 
of the graph. For n = 1 or 2 the result is immediate for 1 ~ k n. Suppose that 
the property is true for all graphs with at most 11 1 vertices. 

Let G be a graph with n vertices and chromatic number X(G)=k (l ~k~n). 

Let x be a vertex of the graph. and let be the sub graph obtained by suppressing 
the vertex x and the incident with x. The number of minimal colorings 
of the graph G with X(G) colors will be denoted C",(G). 

If X(Gx)=k, it follows that 

Cm(G)~kC",(Gx)~k' 1 =k" k 
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The inequality becomes an equality only when x is an isolated vertex and the 
subgraph has a maximum number of minimal This follows from 
the fact that the vertex x can be added to a minimal of with k 
classes in at most k different ways. 

If X(Gx)=k 1. then a minimal coloring of G is given as follows: 
, ... , l' where the sets 1 consist of pairwise nonadjacent 

vertices and there exist k 1 vertices Xl E , ... , Xk _ 1 E Ck _ 1 which are 
to x. Otherwise one would have X(G):S;; k-1. 

Let X be the vertex set of G. It follows that every of G has a class 
which contains the vertex x and a subset of the set X "{ Xl' ••. , Xk - d. Since 

x I, ... , Xk _ I} contains n k it follows from the induction 
hypothesis that the number of of X which contain in the same class 
the vertex x and r vertices of the set X Xl' ••. , is bounded above 

r - 1)" -k-, for O~ r:S;; n k. In fact the r vertices can be chosen from the 
II - k vertices in ." ) distinct ways. The maximal num ber of (k - 1 )-colorings 
ofagraphGwithn k-r vertices and X(G) k-lisequalto(k l)n-k-r.Thus 

n-k ( k) 
Cm(G):S;;r= n~ (k 

holds only when Xl'" "xk-d induces a subgraph and 
n - k vertices are isolated. Thus it has been established in-

duction that ~kn-k for every graph G with n vertices and chromatic 
number equal to k. The upper bound is attained only when G consists of a 

k-subgraph and n - k isolated vertices. Observe that this is the 
unique graph G with X(G) = k and the minimal number of [I. 
C. R. Acad. Sci. Paris, A272 (1971), 1301-1303.] 

10.23 Let C(n, k) be the desired number of colorings. It is clear that n) = 
C(n, 2) = 1 for every n ~ 2, and C( n, for k> n. It will be shown by induction 
on n that C(n, k) == S(n - I, k - 1) for every tree with n vertices. For n == 2 the 
property is obviously true. that the property is true for every tree with 
at most n -1 vertices. It follows that C(n, k) = S(n - 2, k- 2) + (k - l)S(n - 2. k-l). 

In fact every tree A with n vertices contains a vertex x of L such that 
the Ax obtained from A by the vertex x is a tree with 
n - 1 vertices. The set of C(n, k) colorings of A can be as the union 
of the set of for which the vertex is alone in a class of the partition 
[there are Sen 2, k - 2) such colorings, the number of (k - 1 )-colorings of 
the tree Ax] and of the set of in which the vertex x occurs in a class 

with other vertices of the tree. Since x is to a unique vertex 
of the tree, it follows that x can be added to k -J classes of a k-coloring 
of a tree with n -1 vertices. by the induction hypothesis this set of color-

has cardinality (k -1)S(n - 2, k I). It follows from the recurrence relation 
for numbers of the second kind (Problem 3.4) that C(n, k)=S(n 1, k -1) 
for every tree with n vertices. 

10.24 The property will be proven by induction on k. For k = 1 the graph G 
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does not contain an edge. and it is sufficient to let H = G. In this case dH(x) = 
ddx) = 0 for every x EX, and the graph H is monochromatic. since it consists 
of isolated vertices. 

Suppose that the property is true for all graphs which do not contain a 
complete subgraph with k + 1 vertices. and let G be a graph which does not 

adjacent to x, 
Since G1 

from the induction 
which is k-chromatic 

k + 2 vertices. 
degree in G. Denote 

subgraph induced by 
complete subgraph with 
that there exists a graph 

for every Z E : . 

Let H be a graph with vertex set X. In H all the vertices of X ",",X 1 are joined 
to all the vertices of X l' Also adjacent are all pairs of vertices in X 1 which were 
adjacent in H l' The graph H is (k + I)-chromatic by construction, since X(H 1) = k. 
If Y f' X 1 then 

dH(y) = Ix II =ddx)~dd.\'), 
and if Y EX 1, it follows that 

which establishes 
Now let G 

-Ix 11 +dH,(Y) 

I-IXII +dG,(y)~dd 

vertices and without a 
k + 1 vertices, monochromatic subsets 

Denote IAI . , . + Qk = n, and let 
the graphs G and H respectively. It follows that 

1 1 
IUI="2 L ddx)::;;"2 I dH(x)=IVI::;; L aiaj, 

.>:EX x,X I.; i<j<;k 

with 

since there are edges in H only between vertices from distinct sets Ai and A j' 
The last sum is maximal if and only if lai-ak.::;l. Thus aJ = ,., =a,.= 

m + 1 and ar + 1 = ' . , = ak = m, where m = [11/kJ and 11 == r (mod k), Observe that 
this limit is attained only if the last inequality becomes an equality and hence 
in the class of graphs. (See Turim's 9.9.) 
[Po Erdos. Mat, 249 - 251.J 

10.25 possesses the maximum numher 
of graphs with chromatic number equal k, 
of vertices WIth to 11, for 1::;; i::;; k (111 

that any two colors are adjacent. 

class 
number 

clear 

multipartite nl ~ n2 + 2, then vertex 
from the class with nl vertices into the class with n 2 vertices, thus obtaining a 
new multipartite complete graph G1 with 11 vertices and mJ edges, It follows that 
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ml -m=n 1 -1-n2;;;:; I, 

which is a contradiction. Hence jn;-nr:(1 for any l:(i.j:(k, and G is iso-
morphic with the Tunin defined in Problem 9.9. 

10.26 LetGbea with n vertices. and let =;'"-Un 1+, .. + 
( 1)"- la It follows that an _ 1 is the number of of G, and X(G) = r if and 

if PG(l)=PG(2) = ... =PG(r 1)=0 and >0. If PG().) = PT(n.kP·), it 
follows that ZIG) x(T(n, kJ) = k -\ and that G and k) have the same 
number M(n, k) of From Problem 10.25 one can conclude that G is 
isomorphic to T(n, k). [c.-Y. Chao, G. A. Novacky, Discrete M a/h., 41 (1982). 
139 143.J 

10.27 One can show that Pdk) = i!(~)Ci(G) holds, where Ci(G) stands 
for the number of of G, are partitions of the vertex set of G. 
In fact, i colors can be chosen from the set of k colors in (~) different ways, and a 
partition into i classes generates i! into account the order of 
the classes. The formula for results from the inverse binomial formulas 
(Problem 2.17) if ak = P G(k) and 

bk=k!Ck(G)= k ( I)k-i e) PG(i) 

~ (-ljiG)PG(k-i). 

10.28 The set of points having coordinates (0.0), (t, i), H, - and (I. 0) is a 
4-c1ique for G4 • and the points (0,0), (0, I), (1, 0), and (1,1) induce a 4-c1ique for 

,which that X(G4 );;;:;4 and X(G 8);;;:;4.1t remains to define a 4-coloring 
for G4 and . In the case of G4 consider all Jines with slope 1 or -I passing 
through the of E 2 having coordinates (digital The inter-
section points of these lines are points M( p, q) where p, q E:!l and points 
N(r/2, .>/2) where r, S E :!l and r, s 1 Let S denote the set of all such 

Color M(p, q) E S with color r:J. if p=q (mod 2) and with color fl if 
p = q + 1 (mod Color E S with the color y if r = s (mod 4) and with 
the color () if r = s + 2 (mod 4). For P( u, vJ E S consider the points Q = 1, v 
and R If P is colored with the color a E p, Y, o}, then all interior 
points of the segments PQ and PR will also be colored with the color a. In this 
way any square ABCD having vertices in S and length of a side equal to Ji/2 
will have its four vertices colored with 0:, (3, i', 0, and the colors of the sides will 
be a, a, b, c, where u, b, c E fl, y, In this case color all interior points of 
ABCD with the color a. Thus all points of will be colored with four colors. 
I t is easy to see that if d4(E, F):.: 1 then E and F have different colors. 

A 4-coloring of Gs may be defined in a similar manner. Let S denote the set 
of digital points of E2, and color the points of S in the following way: the point 
M(p. q) with p, q E :!l will be colored with the color ct. if p = 1 (mod 2) and 
q=l (mod 2): fJ if (mod 2) and q=O(mod 2); ')' if p=l 2) and 
q == 0 (mod /3 if p = 0 (mod 2) and q == 1 (mod 2). If Mlp, q) E S is colored with 
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the color a, then all interior of the segments M Q and M R, where Q = 
(p - 1, q) and R = (p, q - 1) will also be colored with the color u. Any unit sq uare 
ABC D with its vertices in S has its four vertices colored with IX, 13. Y. 15, and the 
colors of the sides are a, a, b, C E p, y, Color all interior points of ABC D 
with the color a. Now if F) = 1, then points E, F E will have different 
colors. Let G be the graph for Euclidean distance in . Thc 

of detcrmining X(G) is an open problem in Euclidean Ramsey theory, 
It follows from Problem 14.1 that X(G);;;'4. The existence ora 7-coloring of the 
plane covered by congruent regular hexagons of side S E (I , ~) implies that 
X(G)::;;7, 

10.29 If G has no isomorphic to it is clear that G has at least 
p+ 1 vertices, Suppose that G has p+ 1 vertices. X(G) il follows that 
there exists a partition of its vertex set of the form}. I}, 

XP .. l} where , .. " I} spans a complete subgraph K p - 1 and xp and 
xp+ 1 are not adjacent. Since has no p-c1ique, it follows that xp is nonadjacent 
to at least one vertex Xi> and 1 is nonadjacent to at least one vertex Xi' 

where 1::;; i, p 1. But in case {xd .... , xp" d, " ., 
d(fori:fj)or }, ... , xP' d, ... ,{xp - l (fori isa(p-l)-

of which contradicts the hypothesis, Thus contains at least p+2 
vertices. 

Now consider a (p - I )-clique two vertices a, b E C, and three new vcrtices 
x, y, z ~ C. By definition x is to all vertices C E C such that c 'f' a; y is 
adjacent to all vertices C E C such that c:f b; z is adjacent to x, )' and to all 
vertices C E C such that c:f a, b. The graph G defined in this way satisfies all 
the conditions in the statement of the problem, and it reduces to the five-vertex 

for p=3. 

CHAPTER 11 

11.1 Denote the two vertex sets of Kn•n by X = and Y = 
[Yl' ... , ; the of the graph are of the form [x/o with 1::;; i, j::;; n. 

Since every Hamiltonian cycle passes through Xl' one can determine the 
number of ways of constructing a Hamiltonian cycle which and 
terminates at Xl' One can leave from Xl towards one of the vertices in Y in n 
ways. From here one can return to a vertex of X. other than Xl' in n - 1 ways. 
Now a continuation to a vertex in Y, other than the vertex which has 
been in n -1 ways, and so on. When one arrives at the last nonvisited 
vertex in X, there will still exist a nonvisited vertex in Y which one can leave for 
and return to x I' The number of cycles thus obtained is equal to 

n(n-1J{n-l){n-2)(n-21'··(l){l) -l)! nl. 

The family of cycles thus obtained contains every cycle exactly twice, corre­
sponding to the two directions in which the cycle can be traversed. Thus Kn,n 
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contains exactly tIn 1) 1 n! cycles which pass through each vertex exactly once. 

11.2 For h=O there are (n-l) Hamiltonian cycles in the complete 
graph and the formula is seen to be satisfied. In fact, every Hamiltonian 

determines a permutation of the vertices of Kn; the number of 
cyclic on n elements is equal to (n-l)!. It is to obtain 
two distinct circular from the same Hamiltonian 

the cycle in both directions. Thus the number of Hamiltonian in Kn is 
equal to tIn - I)!. This formula can also be established by induction, since for 
n=3 the graph Kn is a Hamiltonian Suppose the formula holds for n~m, 
and let "'I be the complete graph with m + 1 vertices: Xl, ... , Xm.,.j' Every 
Hamiltonian cycle in Km+ 1 can be obtained from a Hamiltonian cycle of 
by the vertex Xm ... 1 between two adjacent vertices of the Each 
Hamiltonian of generates in this way m different of K m+!. and 

the induction hypothesis K", has -1) !/2 Hamiltonian It follows 
that the number of Hamiltonian in 1 is equal to ((m-l)!/2}m=m!/2, 
and hence the property holds for every m~3. 

Let h~ 1, and suppose that h are each a new vertex. One 
thereby obtains a complete graph with n - h vertices which has (n - h -1}!j2 
Hamiltonian cycles. Let z be a vertex which has replaced the edge in one 
of the (n - h 1) !/2 Hamiltonian cycles, and let u, L' be to z in this 
cycle. The can the vertex z in this Hamiltonian cycle in 
exactly two distinct ways' The walk z, t] is Cu. X, y. t] or by 

y, x, After out this for all the vertices which represent 
theh one obtains {(n-h 1) h-lJ! 1 distinct 
Hamiltonian cycles which pass through the h 

Observe that every Hamiltonian which passes through the h can 
be obtained without repetition in this way. The h have no vertices in 
common, and hence it follows that 2h ~ n. 

11.3 Let the vertices ofK n be numbered 0. 1.2, ... 
lowing Hamiltonian 

and consider the fol-

C1 [0, 1,2, 2k, 3, 2k- L 4. 2k 2.5 .... , k+3, k, k+2, k+ 1, 0], 

which is represented in 11.1. 
Now add 1 modulo 2k a total of k 1 times to all the nonzero numbers in 

this sequence. with the exception that 2k is not replaced by its residue. One 
thereby obtains a total of k Hamiltonian cycles. In order to show that 
these Hamiltonian cycles are disjoint with respect to edges it is necessary to 
consider the sum modulo 2k of each two consecutive nonzero numbers in the 
sequence. For these sums form the set and adding 2 modulo 2k yields 

{4, 5}, {6, 7 ... , {2k-2, 2k-l}, {O, I}. 

It can be seen that these k Hamiltonian cycles are disjoint with respect to 
edges. This implies that they cover all the of K", since K" contains n(n 1)/2 
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k + 1 
Fig. 11.1 
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and the (11 1)/2 Hamiltonian thus constructed each contain 11 

edges. 

11.4 (a) Suppose that G does not contain a Hamiltonian Add edges 
as long as under the condition that G does not contain a Hamiltonian 
cycle. It that the degrees of the vertices increase and thus conditions 
(a), (b). and are satisfied. One can therefore suppose that Gis 
that is, the addition of a new a new graph which contains a 
Hamiltonian If is not an then the addition of this to 
G Thus G contains a Hamiltonian walk 

which x and y. 
Denote by Zlt"'" Zi, the vertices ~~,,~~ ..... with x, where 2 = il < i2 < .. < ik ~ n. 

It follows that y is not adjacent to 1 for s = 1, ... ,k, since otherwise G 
would contain a Hamiltonian cycle 

Thus 
dition d1 :;?; 

tonian cycle. 

,.,., Zit-a, Zn' Zn-l"" ",Zis' 

k=I1-1-d(x)~n-l < which contradicts the con-
It follows that if min (d 1 , • • , do) ~ n/2, then G contains a Hamil-

tcl Now suppose that condition (c) holds and G is not Hamiltonian, but that 
joining each two vertices by an one does obtain a Hamiltonian 
cycle. Consider two nonadjacent vertices Xk and X, such that k < I and the sum 
k + I is maximum. It can be seen that Xk is adjacent to all the vertices X,+ 1,' .. , Xn ' 

and hence 

(1) 

In this case one finds that Xl is adjacent to the vertices XH 1, ... ,X,- l' Xl+ l' .. 

Xn. which implies that 
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Using the same reasoning as for it follows that 

dk+dl~n-1. (3) 

From the last two it can be concluded that 

n-l-(n-k- l)=k. 

Let m=dk • It follows that m~k and the hypothesis drn~dk=m. Since k<l, 
one concludes that dk ~ and by (3) one has 

Hypothesis (c) implies that 

from which one has 

n dk=n-m>l. 

Otherwise it would be the case that 

n-m~l, 

which contradicts (4). From (5) it follows that 

dk < n-/, 

which contradicts inequality (1). This completes the proof. 

(4) 

(5) 

(b) If (b) holds, let dk ~ k < n/2 and 1= n - k. If d1 ~ I, then condition is 
satisfied. Otherwise dl < I, and condition (b) and the fact that k < n - k or k < 
would imply that dk+d"-k~n and thus ~n dk~n-k. Again (c) holds, 
which has been the existence of a Hamiltonian in the 
graph G. 

If (c) holds, it has been shown that either n is even and G=KnI2.nI2 or G is 
pancyclic, that is, it has elementary of every k for 3 ~ k~ n. 

L. Hakimi, E. F. Schmeichel, J. Combinatorial Theory, Bt7 (1974), 

11.5 Let x, y be any two vertices of the graph G. It will be shown that G 
contains a Hamiltonian walk which joins x and y. 

If x and yare not joined by an edge, then add the [x. to G. The 
of each vertex remains greater than and no Hamiltonian walk with endpoints 
x and y uses this edge. 

Insert a new vertex z on the yJ to a new G l' The 
has a Hamiltonian if and only if G contains a Hamiltonian walk with 

endpoints x and y. The sequence of of the vertices of the graph G1 is 

whered2~ ... ~ 1 are the degrees of the vertices of G. 
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hypothesis d2~(n+ 1)/2, and since GI has n+ 1 vertices, condition 
of Problem 11.4 is because there does not exist an index k such that 

k < {n + In fact d1 = 2 and dk ~ (n + for every k ~ 2, 1 t follows that 
has a Hamiltonian cycle or G has a Hamiltonian walk with endpomts 

x and y, 

11.6 Add to the graph G a new vertex y which is 
other vertices of G, The thus obtained has 2n + 2 
are at least to n + 1; thus by Dirac's condition 
contains a Hamiltonian 

an 
and its 

of Problem 11.4, it 

Suppressing the vertex y and the incident with y yields a Hamiltonian 
walk [xo, XI. ' .. , in the G, 

Suppose that G does not contain a Hamiltonian cycle. It follows that if 
Xo is adjacent to a vertex Xi' then X2n is not to XI-I, since otherwise a 
Hamiltonian would be formed. 

The vertices Xo and X2. have n, It is also the case that if Xo is not 
to x" then Xl" is to Xi-I' In fact Xo is adjacent to n vertices 

Xi and thus X 2. is to n vertices of the form x, _ I' It follows that X2. 

is to all of the n vertices, 
Suppose first that Xo is to the vertices Xl' ... , Xn and x 2. is 

to . , , , X 2n l' There exists an index i with 1 ::;;; i::;;; n such that Xi is not adjacent 
to Xn: this results from the fact that d(xn)=n and Xn is adjacent to Xo. Xn I' 
Xn+ 1, and X2.' The vertex Xi is in turn to a vertex Xj for n + 1 2n -1, 
since by hypothesis d(Xi) = n. In this case the graph G contains a Hamiltonian 
cycle 

Figure 1 Otherwise there would exist an index i such that 1::;;; i::;;; 2n - 1 
and the vertex Xi+ 1 is to Xo, but Xi is not adjacent to Xo. It follows from 
an earlier observation that the vertex Xi 1 is adjacent to X2", and one thus 
obtains an elementary cycle with 2n vertices in the graph G. namely 

Let C = . , ",\'2", be an elementary with 2n vertices in the G, 
and Yo the vertex of G which does not belong to the C. Since G does not 
contain a Hamiltonian cycle, it follows that Yo cannot be to two neigh· 

X} _ 1 X} 

Fig. 11.2 
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vertices of for in this case C could be extended to a Hamiltonian 
cycle. In view of the fact that devol n, this would imply that Yo is adjacent to 
al! the vertices of the cycle C whose indices diffcr by 2 (mod 2n), for 
to YI' Y3, ... , )'2"-1' By replacing Y2i with Yo for 1 ~ i ~ n one obtains another 
elementary of length 2n. Repctition of this argument shows that Y2i is 
adjacent to .\'1. )'3."" )'2"-1 for i=l, ... , n. YI IS to Y2, 
... , Y2m and hence 

n+ 1, 

which contradicts the that Gis n and hence dev!l == n. 
(c. St. J. A. 

An extension of this result is the following: If G is an n-regular graph of order 
2n, n ~ 3, and G =F or G is an n-regular graph of order 2n + 1, n ~ 4, then Gis 
Hamiltonian-connected (every two distinct vertices of G are the endpoints of 
a Hamiltonian walk in G). [1. Tomescu, J. Graph 7(983),429-436]. 

It can be shown analogously that there is a non-Hamiltonian 
graph of n with 2n + 2 vertices. It consists of two disjoint copies of the 
complete 

11.7 Let C be an cycle of maximum 
and suppose that C is not a Hamiltonian Denote 
component of the obtained from G by 
the cycle C. Let Xl, .•• , be vertices of C which are 

in the graph G, 
Gl a connected 

the vertices of 

No two ofthese are in the cycle C. If, for Xi and Xj are adjacent, 
one can the of the cycle C a walk with endpoints Xi and Xj 

which passes intermediate vertices of In this way a cycle longer 
than C is obtained, which contradicts the hypothesis. 

Now traverse the C in either sense. and let h, .... .vs be vertices which 
are adjacent to Xl> ..• , Xs. It follows from the observation 
that.vi 1£ {Xl' . . .• for every 1 ~ i~s. It can be shown .vl>"" Ys are 
wise nonadjacent. if .vi and Yj were adjacent one could suppress the 

[XI,.VJ and of the and replace them the Lv" Yj] and 
a walk with Xi and Xj which passes through vertices of the graph Gj • 

longer than whose existence contradicts 

Fig. 11.3 
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Recall that x I. . , x, are all the vertices of C which are adjacent 10 vertices 
of G1 It follows that if Yo is a vertex in G 1> then the set S {)'o, )'1' .. , , is an 
independent set of vertices. By from G the vertices x 1> ••. , x, one 
obtains at least two connected one of which is G l' Since the 
G is it must contain, definition, disconnecting sets with at least k 
vertices and hence s:;;;: k. But this implies that 

ISI=s+l:;;;:k+l, 

which contradicts the hypothesis. Thus G is Hamiltonian. [V. Chvatal, P. 
Discrele M Gill .. 2 (1972), 111-11 

11.8 The property wi!! be established by induction on n. If n 3 then m:;;;: 3 
and hence G is the K 3, which is a Hamiltonian Suppose thai the 

with at most n - 1 vertices, and let G be a graph 
with n:;;;:4 vertices and m:;;;: 2. I) + 2 

It will be shown that G contains a vertex x of degree = n - 1 or = n - 2. 
Otherwise one would have d(x) ~ n 3 for every vertex x, and since d(x) 2m. 
it would follow that 

n(n - 3) 
m~ , 

which contradicts the hypothesis that m ~ (n 2 - 3n + 6}j2. 
In the two cases will be considered: 

(a) There exists a vertex x with n 2. Suppress the vertex x and the 
n - 2 incident with it. The result is a G 1 with n - 1 vertice~ and 
ml edges such that 

ml n
2

-3n+6 _(n_2)=(n 22)+2. 

the induction hypothesis G1 contains a Hamiltonian cycle which passes 
through all of the n - 1 vertices of exactly once: 

If there exisl two adjacent vertices of the cycle, Xi and Xi+ 1 (where the sum is 
taken modulo n 1), which are also adjacent to x, then it is to insert x 
between Xi and XI+ 1 so as to obtain a Hamiltonian C in the graph G. 

Otherwise, for every i =0, .. "n - 2, if x were to XI it would follow 
that x is not to XI';' 1 and hence ~ (n - I )/2. It can thus be seen that 
n-2:::;;(n 1)/2, which contradicts the hypothesis that n:;;;:4. One can now con­
clude that G contains a Hamiltonian 

(b) There does not exist a vertex x with d(xJ == n - 2. It follows that there are 
at least two vertices YI and Y2 with == =n-1. If not, one would have 
a unique vertex of n -1 and the other n -1 vertices of less than 
or eq ual to n - 3, and hence 
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(n-l)(n-2) (n-l)+(n-l)(n-3) (n-l)(n-21 
2 +2~m~ 2 2 

which is a contradiction. 
Now suppress the vertices Yl and Y2 and the 2(n - 1) -1 = 2n - 3 edges 

incident with them. The result is a subgraph G2 with n - 2 vertices and m2 
edges such that 

n
2
-3n+6 (n-3) 

m2:;;' 2 -(2n-3)= 2 . 

If the graph G2 contains a Hamiltonian cycle C 2 then it is evident that G also 
contains a Hamiltonian cycle C obtained from C 2 by inserting the vertices 
Yl and Y2 in an arbitrary fashion in the cycle C 2' For otherwise G2 would not 
contain a Hamiltonian cycle, and thus G2 is obtained from Kn- 2 by suppressing 
at least two edges. In fact, if G2 has vertices Xo • ... , Xn- 3, a single pair of which 
(say {X O' x d) are nonadjacent, then there is a Hamiltonian cycle in G2, namely 

for every n:;;' 6. By adding two edges U l and U2 to the graph G2 between two pairs 
of nonadjacent vertices one obtains a graph G3 with m3=m2+2:;;,(n;3)+2 
edges, which by the induction hypothesis must then contain a Hamiltonian 
cycle C3 . 

If C 3 does not contain the edges U 1 and U2, then it has been shown that one 
can insert vertices Yl and Y2 to obtain a Hamiltonian cycle in the graph G. 
Let C 3 =[xo •... , XI- Xi+l •. ,·, X n -3, xoJ, Ul = Xi+l], and suppose that C3 
does not contain the edge U2 . Jt follows that there is a Hamiltonian cycle C for G: 

C=[Xo,···, X;, Yl' )'2, Xi+ I"'" X n -3. XO]. 

A similar result holds when C 3 contains U2 and does not contain U l' Suppose 
that C 3 contains UI and U2. and let U 1 =[Xi-l, xa and U2=[Xj' Xj+1J with i~j. 
In this case let 

Thus G is seen always to contain a Hamiltonian cycle. 
If n = 4 or n = 5 it can be shown directly that in case (b) G contains a 

Hamiltonian cycle. It has already been shown that under these circumstances 
there are two vertices)'1 and)'2 such that d(yt\=d(Y2)=3 for n=4 and d(Yl)= 
d(Y2)=4 for n=5. For n=5 it follows that m:;;'(~)+2=8, and thus there also 
exists at least one edge connecting the vertices Xl> X2' X 3, for example [XI' X2]. 

One has thus found Hamiltonian cycles [XI' .\'1' Xl, Y2' xlJ and [XI' Xl. Y2. 

X3' Yl' X 1J respectively (Figure 11.4), and the property is established by induction. 
Consider the complete graph K n - I , and a vertex z different from the vertices of 
K n - 1 and joined by an edge to a single vertex of K n - 1• The graph thereby 
obtained has (n~ I) + 1 edges and does not contain a Hamiltonian cycle, since 
d(z) = 1. 
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;"1 

Yl Y2 Yl Y2 

Fig. 11.4 

11.9 Let L=[xo, Xl'" ., x"'] be a elementary walk in the 
G. It follows from the of L that all the vertices which are adjacent to 
Xo belong to L Since ;;: k, there exists a vertex Xj which is adjacent to xo, 
and such that k~i~m. Thus C= ... , X;, is an elementary cycle of 

i+l;;:k+l. 

Let L be a G. Suppose first that 
there are vertices Xi and xl such that i x, is adjacent to x'" and IS to 
Xo' suppose that j i is a minimum in the set of pairs indices with 
this property. Let C [xo, ... , Xb X"" X", 1,.·., Xj' be the elementary cycle 
whieh is formed in this way. If j i + 1, then the cycle C has length m + 1 and 
must be a Hamiltonian cycle, since otherwise there would exist a vertex which 
does not belong to C, but is to a vertex of the C. In this case one 
obtains an walk longer than L, which contradicts the 
of the walk L Consider the case in wh ich j;;: i + 2. The vertices X/_ I' ... , x} 1 

are not adjacent to Xo or x"" and th us the cycle C like the walk L, 
the vertex x'" and all vertices with x"" and hence k + 1 vertices. 

i + 2, it also contains at least k - 1 other vertices, 
vertices xp with the property that x p+ I is to Xo and xp* 
these vertices are distinct, and thus the cycle C contains at 
vertices. 

Now consider the case when Xj is the vertex of maximum index 
which is adjacent to xo, Xj is the vertex of minimum index to X m, and 

In this way one obtains cycles C 1= .. , • Xj, xoJ and C 2 = 
... , X"" The maximality of the walk L implies that they contain, 

respectively. the vertices adjacent to Xo and x"'. Since the graph G is 2-
connected, there must exist two walks L 1 and which have no vertex in com­
mon and both of which have one which belongs to and the other 
to C 2' one can assume that one of these walks has Xi as 
If not. one could consider an walk L3 with endpoints and Xj' 

Traverse this walk from Xi towards Xj' One will first encounter a vertex belonging 
to the cycle or a vertex to the walk Li (I ~i~ In the first case 

one of L I or L 2 by a su bwalk I n the second case replace a subwalk 
of Li by corresponding subwalk of which at Xi' Now suppose that the 
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walk L 1 has an endpoint in Xi, and that L2 does not have a vertex in common 
with L!. If L I also has an endpoint in xi' the procedure terminates. Otherwise 
consider an walk with endpoints at Xi and Xj' Traverse L3 from Xj 

towards Xi' Suppose that one first encounters a vertex of the walk L 2 • In this case 
a subwalk of by the subwalk of which terminates at Xj' This pro-

duces the two walks with the desired property. On the other if one first 
meets a vertex of the C I' then instead consider a subwalk of L 3 con-
tained between xJ and the first intersection of with the cycle One again 
obtains the two walks with the property. Suppose there exists a walk Li 
with endpoints Xi and Xj or different walks with these endpoints. In both cases, 
one obtains an elementary cycle which contains the vertices Xo and x'" and all 
vertices adjacent with them II The C I and C 2 which contain 
the vertices adjacent to x 0 and x'" respectively have at most one vertex in com­
mon (when i= j). It follows that the cycle which is formed has a length 

than or equal to 2k+ 1. A. Proc. London Math. Soc., 2 (1952), 
69-81.] 

Xl Xm - 1 

xo XO "";:"-_-.1. 

Fig. 11.5 

11.10 The property will be established by induction on n. If n ~ k then 
(n-1Jk/2~(;), and thus there does not exist a graph with n vertices which has 
more than Kn. The assertion of the problem is. therefore, satisfied in this 
case. 

now that n > k and that the property is true for every graph with at 
most n I vertices. Let G be a with n vertices and m > (n-
and suppose that G contains a vertex x with less than or to 
Denote by the subgraph obtained by the vertex x and the 
incident with x. It follows that the number of in Gx is greater than 
(n - 1 )k/2 - k/2 == (n 2)k/2. the induction hypothesis the subgraph con­
tains an elementary cycle of length at least equal to k + 1. 

There is one remaining case: when each vertex x of the graph G has 
(k+ 1)/2. If Gis 2-connected. then property (b) of Problem 11.9 implies 

the existence of an elementary of length at least equal to k+ 1. If G is not 
then it has at least one cut point z, and hence there exist two sub-

and G2 of G with vertex sets X I and such that Xl (') = {z}. 
The and also do not have a common If ml' m2 denote the 
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number of edges of G I and G2 , respectively. then 

and hence there exists an index i. 1 ~ i ~ 2, such that 

One can therefore apply the induction hypothesis to the subgraph G;, 
which also contains fewer than n vertices. It follows that and hence the graph 
G contains an elementary of length greater than or equal to k + 1. Erdos, 
T. Gallai, Acta Math. Acad. Sci. Hung .. 10 (1959j, 

11.11 Let C=(x l , •.. , X m , Xl) bc a elementary circuit of the graph 
G. The num ber of vertices of C satisfies the m> n/2. Inlet Q = 

bea ofG,andletz", ... , (il<"'< 
be the vertices of G such that (Zi s ' is an arc. It follows from maximality 
of this path that z", ... , z" belong to the path Q. Since n/2, it follows 
that k:;: n/2. and hence the circuit ZI," ., Zj" has length greater 
than n/2, which implies that m> n/2. 

Suppose that the circuit C is not Hamiltonian, and let D == be a 
longest elementary path in the subgraph obtained from G by suppressing the 
vertices Xl" .. , Xm of the circuit C. Since it follows that there exist 
at least - r arcs of the form (u. where u ¢; D, since there are at most r 
arcs of the form (u, with U ED. 

All of the arcs of the form (u. Yo) with u ~ D have their initial vertex u in C. 
Denote these vertices by Xi, • .••• Xi, with t:;: - rand i l < ... < i,. Similarly 
one can find vertices Xh"'" Xl,. S:;: n/2- r such that (Y", Xl.) is an arc of the 
graph G for p= 1, .... sand h < ... Suppose that the vertices Xl, and 
are different. It follows that the path consisting of arcs of the 
C must have (number equal to r+ 2. Otherwise one would 
have a circuit of greater than that of C, which is seen to con-
tradict the hypothesis if the path (Xi" ••. , Xjq) is replaced by the path 
(Xl., Yo, ... ,y" X jq) of length equal to r + 2. 

Now consider an elementary path Dp consisting of arcs of the circuit C 
which originates at x,,+ I Xm+ 1 =Xl) and length equal to r for 
p = 1. .... t. The following two cases are 

(a) Xjq=x,. and thus X j ,,. V(Dp), where V(Dp) denotes the set of 
vertices of the path Dp. In fact r ~ n - m -1 ~ nl2 -1, and the length of the 
circu it C is m> n12. 

that the 
xl,f and hence Xjq" V(Dpl. since otherwise it would follow 

has length equal to r + 1. But it has been shown that 
C must have length at least equal to r+ 2. 



278 Problems in Comblnatorics and Graph Theory 

It is now clear that 

Xjq (: V(Dp) for l~q~s. (1) 
p= 

On the other hand it is also the case that 

IpVl V(Dp)i ~ I + r. 

since the union of the sets VWp) contains distinct vertices XI, + 1.' •. ! 

XI, + l' Also there exist two vertices. say and such that the 
(Xi, + l' ... 'Xi,) formed from arcs of the circuit C a vertex x j .' In this 
case it has been seen that the path DI of r does not contain the vertex 
Xj" nor therefore the vertex XI,. It follows that the r vertices of the path DI 
which are diITerent from XiI + I, .•• , to the union of the sets V(Dp) 
for p = I, ... , t. This observation of (2). 

Observe that and imply that s ~ m (t + r), so that 

n 
r+,i -r+r n-r. 

Since the path D has r + 1 vertices in a sub graph with n - m vertices, it follows 
that 

r+l~n-m, or m~n r 1. 

But (3) and (4) are contradictory, which (",)lTI1"IIpl,'" the prool that C is a Hamil-
toni an circuit. 

It remains an open problem to show that under the condition of the present 
problem and for n ~ 5 the graph G contains at least two Hamiltonian circuits 
without common arcs. St. J. A. N ash-Williams, The Many F aeets of Graph 
Theory. Lecture Notes in Mathematics, 110 (1969),237-243.] 

11.12 If the tournament G contains a Hamiltonian then it is strongly 
llI<O"L<O'U, since every two vertices of a circuit are by a Now sup-

pose that G is connected. Since for every two vertices x, y of G there 
is a path from X to y and from y to x, it follows that G contains a circuit. 

Let C == (y 1, ... ,Yk' YI) be an elementary circuit of G with a maximal number 
of vertices. that C is not a Hamiltonian and let X be a vertex 
which does not to C. Since the graph is 
there exists an arc (y 1, If there also exists an arc , x, Yz, . , . , 
Yb yd is a circuit than which contradicts the It follows 
that the arc between x and yz has the form (Yz. x). In fact there exist arcs (,Vj, x) 
for i = 1, ... , k. Let A be the set of vertices X for which there is an arc (Yl' x). 
One can conclude that x) is an arc for x E A and i= 1, ... , k. Since G is 
strongly there exists an arc (x, z) with x E A and z (: A. It follows that 
z (: C, and since G is and z (: A, one can find an arc of the form Yt), 
This yields a circuit (x, z, YI" .. , Yk, x) which contains more vertices than C, 
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and this contradicts the hypothesis. [Po Camion, C. R. Acad. Sci. Paris, 249 
(1959),2151-2152.J 

11.13 Let P= ,X2,'" and let S be a selection of k of P 
which components. There are four possible cases: 

(I) 

(2) 

(3) 

(4) 

e Sand 

eSand j,xnJeS; 

!E Sand [xn - I' xn] ~ S; 
!E Sand [xn - j , xn] e S. 

It is clear that the number of 
of solutions of the system 

sets S which satisfy (1) is 

al+"'+aJ=k, 

hj + ". + n-k I, 

where ai' hi are and aj, hi): 1; this number is j_1 

In a similar manner, in case (2) one finds a system 

a j + ... +aj=k, 

hI + .,. + I=n-k 

with j- 2 :) solutions for aj, 1. In case the 

al + '" +aj 

bj +'" +bj+l=n-k-L 

to the number 

Problem 

system is 

(n-~- 2)(~=:) solutions, and for the last case the system is the same as 
for the first case. Hence 

as 

11.14 Let H [XI' Xl'"'' be a fixed Hamiltonian walk of Kn , and 
denote its edges by ej Xi + 1] for 1 ~ i ~ n 1. Let Ai be the set of all H ami 1-
tonian walks of Kn which contain the edge ej of H for 1 ~ i ~ n - L Thus H(n, k) 
is the number of Hamiltonian walks of which belong to precisely k sets Ai' 
By using C Jordan's sieve formula (Problem we can show that 

H(n, k):= 0-1 (_l)/-k (~) L 
K ell, .. 

IKI 
I 

I 
nAp. 

Il pEK I (1) 

Let Kc{1, ... ,n-l} and iKj=i, and suppose that the set of edges =: 
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j components HI • ... , HJ on H. In this case 

inApi= -1)12) (2) 
pEK 

for any 1 ~i~n-2. 

In let m t , m2,"" mj be the numbers of in each of the components 
induced by on H. Contract each component H l' ... , which is a subwalk 
of toauniquevertexYt,.·.,)'j.Theresulting hasn (mt+ ... +mJ)= 

n - i vertices. Observe that Kn _j has (n 0!/2 Hamiltonian and that any 
such walk may be expanded to a Hamiltonian walk of Kn by every 
vertex Yq by the subwalk Hq of H for 1 in 2) ways [and (2) follows]. There­
fore from (1) one obtains 

H(n, k) = "- 2 ( _1)/-k G) PAn, i)21 

+ (-1)" 1 -k (n k 1), 
where Pj(n, i) is Problem 1 since I (\.K 
To obtain an for DH(n, k) in the case of a path DH of 
K:, denote its arcs by at , .... Gn-l and let Ai be the set of all Hamiltonian 
of K: arc a, of D H for 1 ~ i:( n 1. The rest of the is similar to 
that for the numbers H(n, k). since K:- i has (n- il! Hamiltonian and 
each such path may be expanded to a Hamiltonian of K: in a unique way. 
One also uses the identity 

Problem l.S(a)]. 

11.15 Since G is connected. it has a spanning tree T. It is sufficient to prove 
that 1'3 possesses the property of the statement, which says that G3 is 
Hamiltonian-connected. Now prove by induction on n that for any tree T with 
n is Hamiltonian-connected. For n~4 it follows that the diameter 
of T is at most three, and hence is the graph which is Hamiltonian-
connected. that all trees at most n -1 vertices have as their 
cube a Hamiltonian-connected and let T be a tree with n vertices. If x 
and yare two distinct vertices of T, one now considers two cases: 

(a) x and yare joined in T an edge u == [x. y]. Denote by Tx and the 
two subtrees obtained from T by deleting [x. y] such that contains x and 
Ty contains y. By the induction hypothesis n and are Hamiltonian-con­
nected. Let x 1 be a vertex of which is adjacent to x, and let Yt be a vertex of 
T), which is adjacent to y. If one of the trees or reduces to a single vertex, 
then let Xl =x or Yl = Y respectively. The vertices x 1 and Yt are adjacent in T3 
because dtxt, yd:(3 in 1'. Let be a Hamiltonian walk with endpoints x and 
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X 1 in (which may reduce to a single vertex), and let P, be a Hamiltonian walk 
with endpoints y and Yl in The walk composed of followed by 

, 'vI] and is a Hamiltonian walk between x and J in 
(b) x and yare not adjacent in T, Since T is a tree, there is a unique walk P 

between x and y in T. Let v = :] be the edge of P incident to x, By deleting l' 
from T one obtains two subtrees: a tree containing x and another tree T: 
containing z, By the induction there exists a Hamiltonian walk P: 
between z and y in . Let Xl denote a vertex of which is adjacent 10 X or 
Xl =X if reduces to x, and let be a Hamiltonian walk between x and x\ 
in T;. Since d(x 1, 2 in T. il follows Ihat contains the edge [x l' :]. The 
walk composed of followed by [Xl. z] and by is a Hamiltonian walk 
between x and y in 

It follows thaI if G is a connected graph with at least three vertices. then the 
graph G3 is Hamiltonian. Canad. Math. Bull., 11 (1969), 295-296; 
M. Sekanina, Pub!. Fae. Sci. Unit'. 412 (1960),137-142.] 

A, Hobbs proved that if G is a 2-connected IS 

Hamiltonian-connected, [Noriees Amer, Math. 

CHAPTER 12 

12.1 Suppose that the permutation p is a cycle oflenglh k. say p = [i 1." .• ikJ. 

It follows that p(i I) i2, p2(i 1) = i3 , •• , • pk- 1 (i 1 J it, and pk(i d = 11' Analogously 
one can conclude that pk(j) for every j, and hence k is the smallest number r 
such that p' = e; every multiple ks of k has the property that pks = e, 

Consider the cycles Pl' ... , PI in the representation of the permutation r 
of disjoint P=PI .. ' PI' These cycles commute among 

and hence it follows that pr Therefore if pi' = e one can 
conclude that r is a common mUltiple of the of the of the permuta-
tion p. 

12.2 Let p(n, k) denote the number of permutations of n elements which 
have k Denote by e(n, k) the coefficient of Xk in the of [x]". 
that is. 

c(n. (1 ) 

It is known (Problem 3.1) that 

c(n, k) == is(n, k)i, 

, and thus it remains to show that cin, k)=p(n, k) for every nand k. 
It follows from (1) that ern, 1) =(n l)! and p(n. 1) = (n -1 J!. since the number 

of permutations which have only one cycle permutations) is equal to 
n :/n. because every can be written in n distinct ways by as the first 
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clement each of its n elements. It will be shown that p(n, k) and c(n, k) satisfy 
the same recurrence relation. 

Let Xn={XI""'Xn} and Xn+! Xnv d. permutation of Xn+ 1 

with k cycles may contain the element Xn+ I alone in a cycle, with the remaining 
n elements a permutation with k -1 Otherwise X n + I is contained 
in a cycle together with other elements. The element Xn + I can be inserted into a 
cycle with p elements in p distinct ways. It follows that 

p(n+ 1, k)=p(n, k-1)+npln, k). (2) 

all permutations with k of the set X n+ 1 can be obtained, without 
in two ways: one can add a new cycle consisting of Xn + I to each 

permutation of with k 1 cycles, or one can insert the element Xn + 1 in one 
of n ways into each permutation of the set X n with k 

It follows from (1) that 

[X]n+ I = [x]n(x + n), 

or 

n+ c(n + 1. i)x i = (± c(n, OXI) (x + n). 
1=0 

By equating the coefficients of xl' in the two sides one obtains the recurrence 
relation 

+1, k)=c(n, k-l)+nc(n, (3) 

The relations (2) and (3), together with the values c(n, l)=p(n, 1) (n­
and c(n, k) = p(n, k) =0 for n < k, uniquely determine the values of c(n, k) and 
p(n, k), respectively. It rollows that p(n, k)=c(n, k) Is(n, for every nand k, 
since relations (2) and (3) are essentially identical. 

12.3 It follows from Problem 12.2 that the number of peS", 
which contain k cycles is equal to the coefficient of in the of the 
polynomial +1)' ··(x+m-l). This fact can be written in the form 

xC(P)=x(x + 1)'" lx +m-l). (1) 

By letting x=n in (1) one obtains the first relation. 
If x is by - x in one sees that 

(_1)C(p)x C(P) -l)"'x(x ll'··(x-m+1). (2) 

Suppose that p is of 1c
, 2<2 ••. mC

", where Cl + ... +mc",==m and 
CI ~ O. It will be shown that (- +<. +C6 + .... and hence the parity of p 
coincides with that of the number of its even cycles. 

In fact, if a cycle p = [i l , i2 , ••• , in] has n elements, then it can be f'Yr\rf'~:~"rI 
as a product of n - 1 transpositions (which are odd permutations), say 

p= 
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If p is of type 1'1 2<2. . . it follows thaI it can be written as a product of 
C2+ + ... +(m-llcm transpositions, and hence p has the same parity as 
the sum C2+C,,+C6+ .... Since C1 + + + ... +mcm=m, one can con-
clude that c(p) + m = 3C2 + 4C3 + ... , which has the same parity as 
C2 + c" + C6 + . ", and hence sgn\p) -lf1P)+m. 

By replacing \ 1 )c(P) with ( - l)m sgntp) in (2) and x = n one sees that 

[nJm. 

which establishes the second identity. [M. Marcus, American Math. Monthly. 

78(9) (1971), 1028-1029.J 

12.4 First we evaluate the number of permutations of an n-element set X 
p labeled with 0: 1 ., .. , such that the with label 0:, 

contains Xi elements (xi~1 for i=l •...• p and Xl + ... +xp=nJ. The number 
of arrangements of X in p boxes a l •• •• , such thaI box a, contains Xi 
for i = 1, ...• p is equal to n ! ... xp! US). The number of circular 
permutations having Xi elements in a is equal to -l)!. and hence the 
number of permutations of X such that a, contains Xi elements for every 
1=1, ... ,p is to 

n! 

It follows that the number of all of X having p labeled 
is obtained by these numbers for all representations n=XI + ... +xp, 
where 1 for i = 1, ...• p. and where the order of the parts X I' •••• xI' is taken 
into consideration. If one erases the labels of the cycles, it turns out that there 
are (lip!) n !Ix I .. xp permutations of X with p But, by Problem 12.2. 
this is also equal to \s(n, p)l, which establishes the equation in the 
statement of this problem. 

12.5 The element n + 1 can be inserted into a cycle of length p formed from 
elements of the set ... , n} in p distinct ways. Thus nd(n. k) counts thepermuta-
tions p E without fixed and with k which contain the element 
n+ 1 in a of length q~3. Also nd(n 1, k-l) is the number of those 
permutations which contain the element n + 1 in a of 2. ] n fact, 
the element n + 1 can form a of length 2 with each of the remaining n 
elements, The rest of the n -1 elements form a permutation of n - 1 elements 
with k - 1 cycles without fixed This observation 

Every of 2k elements with k cycles and without of 
1 contains only cycles of 2 and thus is of 2<, It follows that 

d(2k, k) lx3x5x'''x 1 ). 

In order to prove recall that the number permutations p E Sn with 
k cycles is equal to c(n, k) k)1 - 1)" +ks(n, k), where ,,(no k) is the 



number of the first kind. (Problem 12.2). Let Ai denote the set of permutations 
p E Sn for which p(i) = i and which have k cycles. By applying the Principle of 
Inclusion and Exclusion one can conclude that 

n 

=c(n, k)- L IAil+ L IA/nAjl-· .. · 
i= 1 1 (: i<j~11 

But LI<;/,<"'<lj,;;nIAi,n'" nAiJI contains C) terms, each of which is equal 
to c(n-j,k-j). This is because pEA/,n'" nAlj implies that p(il)=i l , ... , 
p(ij ) = ij' and because the restriction of the permutation p to the remaining 
elements is a permutation of n - j elements with k - j cycles. [Po Appell, Arch. 
Math. Phys., 65 (1880), 171-175; J. Kaucky, Mat. Casopis Sloven. Akad. Vied, 
21 (1971), 82--86.J 

12.6 Conjugation is an equivalence relation, since it is 

(1) reflexive: s = ese - 1, where e is the identity permutation; 
(2) symmetric: S=glg- 1 implies that t=g-lsg=hsh- l

, where h= 
g-IES

n
; 

(3) transitive: S=glg-I and t=huh- 1 imply s=ghuh-1g- 1 == 
(gh)u(gh) -1, where the perm utation gh E SM' 

In order to prove the necessity of the condition in (b), suppose that sand t 
are conjugate, that is, there exists 9 E Sn such that s = gig -1. Write the permuta­
tion t as a product of disjoint cycles as follows: 

1=[1 11 112 '" l liJ[t 21 t22 ··· t2j]'" [t m1 lm2 '" tmk], 

and let g(t pq) = Spq. The fact that s = gig - I implies that 

S(SI d=gtg- 1(SIt.!=gl(tll)==g(t12)=SI2,"" 

and hence the decomposition of the permutation s as a product of cycles is 
given by 

s= IS12'" SU][S21S22'" S2}]'" [SmISm2'" Smk]. 

It follows that two conjugate permutations can be decomposed into the same 
number of cycles having respectively the same lengths. 

In order to prove the sufficiency of the condition, define the permutation 9 
by first considering the decompositions into cycles of the perm utations sand t. 
Then let g(t pq ) = Spq. The decompositions of sand t as products of disjoint 
cycles both contain each of the numbers 1, ... , n exactly once. It follows that 
9 E Sn and, as in the previous calculation, one can show that s == gig -1. This 
observation completes the proof of the sufficiency of the condition. 

The proof of Cauchy's formula can now be given. Let f be a permutation 
which has ;'5 cycles of length S for 1 :(s:( k. Express f as a product of cycles 
written in increasing order of length: 
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k 
-'--, 

J= . , . [* , , , 

where the stars the numbers 1, ... , n. By parentheses one 
obtains a permutation al a2 ... an from the set {I, ,. " The number 
of such permutations is n1. 

However, the same permutation J generates i' l ! ' , , )'k! 1 ),' 2'2. , . e· different 
permutations of the set {l, ' , , . n}, In fact one can permute the }.j oflength 
i (1 ~ i ~ k) in the representation of J as a product of in i' l ! ' . , I'k! 
distinct ways, On the other hand. each cycle of length i can be written in i distinct 

I, taking as its first element each of the i elements. There are thus a total 
, ., . kA' representations. Starting with all the h()'1 ' , .. ,I.d permutations 

I which contain ;'$ cycles with s elements, for s"" 1, .. "k one can write each 
, cycle of length s in s different ways. By also permuting the cycles which contain 
I the same number of elements in all ways. it is easy to show that one 

I 
can obtain without repetitions all the n ~ permutations of the set {1, . , ' , It 

, follows that h(Ah ... , ! ... ,V ... k;" = n:, 

j from which formula follows. 
II. An equivalence class is characterized by the number of cycles and their 

lengths nl , ' .• , nb which must n1 + ... + nk = n. One can assume that 
nl ~ n2 ~ ... ~ nb since the order of the in the is not important, 

I inasmuch as the product of disjoint is commutative, Thus the number of 
1 equivalence c111sses is precisely the number P(n) of partitions of the n. 

I 12.7 Cauchy's can be obtained from the relation 

i h(C\'C2 .... 'cn)=n!. 1 (', + ,. +ru'n=n 

I by means of Problem 3.6 or by using part (c) of the preceding problem. 

12.8 Calculate the number of permutations in which the number 1 is 
contained in a cycle of length k. The elements of thiS cycle can be chosen in 

,1\ (~: ~) distinct ways, since after fixing the element 1 there still remain k - 1 
• elements which belong to the set ... , of cardinality n - 1. 
I With these k elements one can form -1)] distinct with k elements. 
i There are (n - k}! distinct permutations of the remaining n - k elements. Thus 

the number of permutations in which 1 occurs in a cycle with k elements is 
! equal to 

G=~)(k-l)!ln-k)! -1)1. 

. The desired probability is therefore (n-l)!jn! == lIn and is independent of k, 
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12.9 Count the permutations in which 1 and 2 belong to different cycles. 
If the cycle which contains 1 has length k, one can select the other k -1 elements 
from the set {3, ... , n} in 

(n-2) 
k-l 

distinct ways. There are (k -1)! circular of these k elements and 
(n-k)! of the n-k 
tions in which 1 and 2 to different 

.-1 ( 2) ~= 1 (k-l)l(n k)! 
"-1 

-2)1 (n-k) 

-2)!---

and thus the desired is to t. 
12.10 For 1 ~ k ~ n let PI{n) denote the number of of the set 

{1, ... , n} which contain the element i in a cycle of length k. The sum 
PI (n)+ , , . + Pn(n) represents the number of elements which are contained in 
cycles ofiength k in all the n! permutations of the set {I, ... , It foHows that 

represents the total number of of length k in the n! permutations, 
The average number oflength k in a permutation of the set {I, ... , n} 

is equal to (lIn !)Ck :::::; 11k. This follows from the fact that by Problem 12.8, 
p,(n)/n! lin for every i = 1, ... , n. 

One can thus conclude that the average number of in a permutation 
of the set {I, ... , n} is to 

1 1 +,.,+ ~lnn, 
n 

since 

lim (1 +~+ ... +~ -In n)=I'=0.5772. .. constant). 
n- 00 2 n 

12.11 Since p2:::::: e, it follows that the permutation p has all its of S 
length lor 2. Thus the set of permutations PES. such that == e can be written 
in the form Anu where is the set of permutations p E with =e which 
satisfy p(n) = n, and Bn consists of those permutations p E which p2 = e and I 
in which the element n is contained in a of length 2 in p. It follows that m 

+ I +(n 2' In if p(n)=n, the other n 1 elements 
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form a permutation q E 1 for which q2 = e. If p E Bn. then the element n 
can turn a cycle of length 2 with each of the other n -1 elements; the remaining 
elements form a permutation r E 2 for which r2 == e. 

In order to prove (b) let i denote the number of of 1 (fixed 
points) of the permutation p, and let j denote the number of cycles of length 2. 
It follows that 

Pn =Perm(li2i ; n)=n! '2)i!j 

where the summation is taken over all of n in the form i + 2j = n 
with i, O. The exponential function of the number Pn is 

Jo ~nj= C n;:2i) ~~= :; j =exp (t+~). 
Let Pn(m) be the number of permutations p E Sn for which pm == e. It can be 

shown that 

"" In L Pn(m) ~) k . 
n=O 

[E. Jacobstahl, Norske Vid. Selsk. Forh. (Trondheim), 21 (1949),49-51; S. D. 
Chowla, 1. N. Herstein, W. R. Scott, ibid., 25 (1952), 29-31.J 

12.12 Suppose that the permutation p E Sn has the 
as a product of transpositions: P=tjt2'" Ir. It follows that pl,I'-l'" II ==e. 
the identity permutation in Sn. 

Every permutation p can be associated with a digraph Gp with vertex set 
{I, ... ,11}. The graph's connected components are elementary circuits which 

rrp"onrmn to the cycles of the p, since by definition the arc U, j) 
if and only Consider the result on this if p is mUltiplied 

by a transposition [a, b] and thus q b]. 
Since the transposition b] takes a into band b into a, it follows that the 

1 "graph Gq is obtained from Gp by the arcs p(a)) and (b, p(b)) with 
the arcs (a, p(b)) and pta)), respectively. 

Suppose that a and b are located in two distinct circuits of the 
These two circuits will generate a circuit in the graph Gq• On the other 
hand, if a and b belong to the same circuit in Gp , then this circuit decomposes 
into two circuits without common vertices in Gq , as in Figure 12.1. 

The graph of the identity permutation e E Sn consists of n circuits oflength 1. 
By multiplying a permutation p with a transposition ( one sees that 
c(pt):::;c(p)+ 1. Thus it follows that the number r of transpositions in the repre­
sentation of p as a product of transpositions satisfies the inequality 

:::;c(p)+r, or r~n-

The num ber 11- c(p) of transpositions can be attained, since each cycle of length 
m can be written as a product of m - 1 transpositions; 

.. , [im-!, im]. 
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Thus if the 
product of 
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Fig. 12.1 

p::fo e is of type 1"2'2. . . it can be expressed as a 
1) == n - c(p) transpositions, since Cl + + ... + nc. n. 

12.13 In order to prove the of the suppose that the 
graph (X, T) is connected. Since this graph has n vertices and n -1 edges, it 
must be a tree. In ifit contained a cycle, then one could suppress an arbitrary 
edge of the to obtain a connected graph. By this process we 
arrive at a tree with n vertices and n-1 edges, which contradicts the hypothesis 
that (X. T) has n -1 is not connected, then there exist two vertices 
of the graph, say a and b, which belong to different connected components. 
Since f is a circular permutation, it follows that there is a number r~n-l 
such that !,,(a) == b. On the other hand the permutation J is a product of trans­
positions from T and transforms each vertex from X into a vertex in the same 
connected component as itself. Thus!" has this property, which implies that 
/'(a)::fo b. It follows that T) is connected, that it is a tree. 

To prove the suppose that (X. T) is a tree. Consider the sequence 
of permutations gl = t1, g2 gl l 2, g3=g2 t3"" ,go 1 

It will be shown that the two elements i and j which the transposition 
j] are not located in the same circuit of the graph of the permutation 

t ll2 ... lq-l for q == 2, ... , n 1. (This graph is defined as in Problem 12.12.) 
If i and j belonged to the same circuit in the graph of the permutation 

tIt 2 ' .. tq -1. then in this sequence of transpositions there would exist trans-
[i. i 1], [iI, j](k~ 1), which to a walk from 

ito j. But in this case the (X, T) contains the j] and 
lq = [i, j]. It therefore and this contradicts the hypothesis 
tha t it is a tree. 

rf i and j do not to the same circuit in the graph of the 
gq-1 = II 12" . tq_ l' then the of gq = gq-l tq can be obtained from the 

of the gq_! the two circuits which contain i andj, 
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It follows that the number of its connected components is C(Ggq ) 

-1. But c(Gg.)=n-l, since the graph Gg , consists of one circuit with 
two vertices and n - 2 circuits which each contain a single vertex. Thus 
n c( Gg,) == n - 3 .... , c(G f) = 1. Since G f is connected and has a single con­
nected component, it reduces to a circuit with n and hence f is a circular 
pcrmutation. 

Let A(j) denote the number of representations of a circular permutation f 
as a product of n - 1 Thus the number of of n-l 

which generate all (n - 1) I circular of n elements 
is equal to (n-l}!A(j). This is because the number A(j) does not depend on the 
circular permutation f. but is a function of n. 

In view of the preceding result, it can be seen that the only products t 1 t 2 • .. f n - 1 

of n -1 transpositions which generate a circular permutation of n elements are 
those for which the T) is a tree. It follows that the products of n 1 
transpositions which generate all circular of n elements can be 
obtained in the manner: For each tree (X, T) which has its vertices 
labeled with the numbers 1, ... , n, let 11 t2 •.. In - 1 be the product of the trans-

i associated with its edges. Now permute the transpositions t 1,1 2"", In-I ! in (n -1) ~ distinct ways to obtain distinct products which generate circular 

t The number oflabeled trees with n vertices is to nn- 2 

I 
Problem 6.15). Two such trecs which contain at least two different edges will 
generate different products of transpositions. Thus (1'1 -1) !AU):::: (n -l)~nn- 2, 

: and hence A(j')=nn-2, that is, the number of ways in which a circular permuta-
, tion on n elements can be written as a product of n - 1 is equal 
i to the number of labeled trees with n vertices. [J. Magyar Tud. Akad. 

Mat. K Wato Int. Ked, 4 (1959), 63- 71; O. Berl. Mach. G .. 
17 (191 64-·67.] 

12.14 In order to prove (a), observe that if P 1 = al G2 ... an is a permutation 
"I, in Sn and P2 == anan-I ... a!, then 

/(Pl} + 1(P2) =c)· 
lIn fact, if then there is exactly one value of the index k for which Pk(i) > 
j (I:;;;; Thus the number of inversions from PI and from P2 is equal to the 
1 number of pairs (i, j) with i that is. 
1 It follows that one can arrange the permutations in Sn in so that one has 
i G) inversions together. But contains n! and hence there are 
j ~n! pairs. which implies (a). 
i Ifl(Pd;;::: k. then l(P2):::: (;) - k. The correspondence thus defined between the 
l permutations in Sn which have k inversions and the permutations in S" with 
: (~) - k inversions is injective and surjective and hence a This estab-

lishes (b). 
The recurrence relation (c) will follow from fd). 
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In order to prove start with the equation: 

+ 1, k)= (1) 

where 

Ai = {pip E Sn+ l' l(p)= k, and p(i)=n+ I}, 

If the element n + 1 is found at position i, then it is in inversion with all the 
n + 1- i elements which are found at i + 1, ' , , , n + 1, Thus if p E Ail 
then by the element n + 1 from position i one obtains a permutation 
Pi E S n such that I( Pi) = k - n + i-I, The correspondence which is thereby 
defined associates with a permutation pEa permutation Pi E Since it is a 
bijection between the set Ai and the set of permutations in with k - n + i-1 
inversions, it follows that 

iAii=ptn,k n+i-l), 

Part (d) now follows by using (1). 
in S. has at most (;) inversions. The maximum number 

of inversions is attained only for the permutation n, n-l, ... ,LIt follows that 
p(n, (~)}= 1 and 0=0 for i> The permutation with no inversions 
is the identity permutation 1, 2, ' , ., n, and hence p(n, 0) 1. These initial values 
together with recurrence relation (d) a determination of the 
matrix of numbers p(n, k). 

In order to prove (c), observe that if k<n, then it follows from that 

p(n,k)=p(n l,k)+p(n l,k-l)+ ," + -1,0), 

p(n,k-l)=p{n-l,k-ll+p(n-l,k-2)+ '" +p(n-l,O), 

and hence k)=p(n-l, + k-
For let 

(1+x)(1+x+ "'(1+x+ ... +xn-I) 

The term of maximum is Xl +2+--+(n-1) and thus ern, C))=l, and 
ern, k)=O for k>(;). The constant term is 1, which that c(n.O)=1. 

In order to obtain a recurrence relation for the numbers ern. k) observe that 

L c(n+ 1, +x)"'(l+x" 
k;,O 

= (.L c(n, i)x l
) (1 + x + ... + xn

), 
1;;.0 

the coefficient of on the two sides one finds that 

c(n+ 1, k}=c(n, k)+dn. k-1)+ ." + k-n). 

where i)=O for kO. 
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Since the numbers c(n, k) and p(n, k) have the same initial values and satisfy 
the same recurrence relation, which uniquely determine them, it follows that 
c(n, k) k) for every nand k. This completes the proof of equation (e). 

12.15 Write a given permutation pEas a of disjoint 
Include cycles of length 1 (fixed points of p), and write the cycles so that their 
largest elements are written first. These first elements are to occur in increasmg 
order from cycle to cycle. For example, the permutation 

(
1 2 3 4 5 6 7) 

p= 3 4 5 2 1 7 6 eS 7 

will be written in the form 

p=[4, 6]. 

In this way the last cycle will always with the element n. The sequence 
of numbers obtained in this way can be considered to be another permutation 
f(p). In the previous example one has 

f(p} 2 3 4 5 6 7) . 
25137 6 

The permutation p can be uniquely reconstructed from the permutation 
f(p) E . The last of p begins with the number n. The next to last begins 
with the number which is not contained in the last cycle, and so on. 

If the permutation p contains k then the permutation PI = f(p) will 
contain exactly k elementsj for which PIU»PI(i) for every i<j, and these will 
be the first elements in these k of the p. 

j The permutation p with k cycles can be uniquely reconstructed from the 
permutation Pl = f(p) which contains k elements j for which PIUl> pdi) for 
every i It follows that! is a between the set of permutations P E Sn 
with k cycles and the set of permutations PI E Sn which have the property stated 
in the problem. 

The number of permutations P E Sn with k 
Problem 12.2. This observation the 
Aarhus (1 104-11 

is equal to Is(n, k)/ by 
[A. Colloquium 

12.16 It is clear that d(f, g) == 0 implies !U)=g(i) for every i = 1, .... n, and 
hence f == 9 and d(j,g);J;: 0 for every j,g E Sn. Furthermore dig,}'), 
and for j; g, hE one has 

\f(i) - gU)1 ~ II(O - hU)1 + Ih(i) - g(OI 
for every i == 1, ... , n, which implies that 

max \f(i) - g(i)\ 
i 

~max {1!(i)-h(OI+!h(i)-g(i)\} , 

If(O- 17(01 +max 
I 
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or 

d(J, q)<d(J, h)+d(h, g). 

Hence d(j', g) is a metric or distance on Sn' If p E Sn and d(en, p)< 1, where e. 
is the identity permutation in SM' then either p(n) = n or p(n)= n -1 and p(n -1) 
== n, since otherwise one would have p);;?; 2. 

Let q, r denote the restrictions of p to the first n-J and n- 2 elements of 
{1,. , . , n} respectively, In the first case one can conclude that d(en _! , 1, and 
in the second case 2, r)::;;;; 1. Thus F(n, l)==F{n-l, l)+F(n 2,1), which, 
together with the values 1)= 1 and F(2, 1)=2, the equation 1)= 

for every n;;?; 1. 

12.17 Define the permanent of a square matrix A 1 .. ",. by the 

where p runs the set of permutations of {1, ... , Observe that 

an=per 

1 
o 

o 

000 
o 0 

o 

o 1 1 
o 0 1 
000 

o 

In this nth-order matrix the element 1 occurs in the successive rows 
3, 4. 5, 5, . , , , 5, 4, 3 times, while the remaining elements are zero, In the sum­
mation which defines the permanent of this matrix, only the which 

to p which Ip(j) - il::;;;; 2 for i == 1, ' .. ,n have 
value 1; the values are zero, and this observation justifies the given 
equality. 

From properties of permutations one can conclude that the permanent can 
be obtained by an expansion on a row or column analogous to the way in which a 
determinant is expanded, with the difference that all the permanents in 
the expansion occur with a plus sign. 

this permanent on the first row 

where 
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bn=per 

1 

o 

o 

o 
1 
o I 

o 

o 

1 

1 

By expanding bn and en on their first columns one can see that 

where 

I 
1 
.\ 
~ 

1 , , 
! 

1 and all the 
) , 

; where 

dn=per 

1 

1 
o 

o 

o o 

matrices have order n. Expansion of dn 

1 
o 1 

o 1 

en=per 

o 

293 

o 

L"IJUll'UU'/S en on the first column, one can conclude that en = Gn- I_ These 
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recurrence relations determine an, bn , Cn, dn, en for every n with initial values 
forn=2:a2 =C2 =2, e2=1. Let 

0 

1} 
0 0 

A= 1 0 1 

0 0 0 

1 0 0 0 

The given recurrence relations can be PYr,rp<:<prt in matrix form as follows: 

2= ... =An IV! =Anvo' 

Here 

which coincide with the directly obtained values for the case n = 2. Thus an 
can be as the scalar of the vector of the first row 
of the matrix An and the vector Vo, that is, (A"}ll' [D. H. Lehmer, in: Comb. 
Theory Appl., Call. Math. Soc. J. 4, North-Holland, 1970, 

12.18 The desired number is the permanent of the matrix 

0 0 0 0 

)n- p 
1 0 0 0 

0 
.. . I .. I \ 

J P 1 
"---v----' 

P n-p 

By the permanent on the first row of the matrix one can obtain the 
recurrence relation 

A(n, p) -1, p). 
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Thus A(n,p)=pA(n-l,p)="'=pn-PA(p,p) -Pp !, since A(p,p) is the 
num ber p! of permutations of the set {I, 2, ... , p}. 

12.19 For an up-down permutation of the set {I, ... , n} the number 1 
may be found in one of the positions of rank I, 3, 5, ... , while the number n 
can be found in one of the positions of rank 2, 4, 6, .. . 

Suppose the number 1 is found in position 2k + L The number of up-down 
permutations of the set {I, ... , n} with this property is equal to I 1 - 2k' 

This follows from the fact that the numbers at positions 1, ... ,2k can be 
chosen in r ~/) ways from 2, 3, ... , n, and the num ber of up-down permutations 
with 2k positions is equal to At the same time the number of 

formed with the remaining elements on the positions 2k + 2, ... , " 
is to 1 2k·lfthe number n occurs in the position of rank 2k, then one 
can show analogously that the number of up-down permutations is equal to 
n-l)A2k _ 1 2k' From this follows the recurrence relation 

(n-1) ("-1) 2An = 0 AoAn- 1 + 1 

+(n-1) n-1 where Ao=A~ = 1. 

Notice that each up-down permutation with the number 1 in position 2i + 1 
and the number" in position 2j is counted exactly twice: once among the up­
down permutations with the number 1 in position 2i + 1 and once among the 
up-down permutations with the number n in position If ak=Aklk: for 0, 
then this recurrence relation can be written 

and hence the generating function of the numbers aj, 

satisfies the differential equation 1 + f2(X)} with initial condition 
flO) = ao = 1. The solution of this equation yields 

arctan f=~+C, or f=tan (;+C), 
where C = Thus 

(
X 11:) l+sinx 

tan -2+- ::::: secx+tanx. 
4 cos x 

[D. Andre, C. R. Acad. Sci. Paris, 88 (1879), 965-967.] 
There are many extensions of this classical result [L. Carlitz, Discrete Mathe­

matics, 4 (1973),273-286; L. Carlitz, R. Scoville, Duke Mathemmical J., 39(4) 
(1972), . etc.] 
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12.20 It follows from the given conditions that 

p(1)<p(3)<p(5)<p(7)<··· and p(l)<p(4)< <p(8)< .... 

Thus p(1 min(p(3), p(4), p(5), p(6), .. . ). One can show analogously that 
p(i}< 2 pU). 

Let the number be denoted g(n) for every n ~ 1. It can be seen that 
g(1)= land = 2, since both of the 1,2 and 2, 1 satisfy the 
conditions. The set of permutations of the set which are 2-ordered 
and 3-ordered can be written in the form Anv where An is the set of perm uta-
tions of the set (1, ... , n} which are 2-ordered and 3-ordered and for which 
p(1) 1. The set Bn consists of those permutations of the set {1, ... , n} which are 
2-ordered and 3-ordered and for which 2 and p(2) = 1. 

In if the permutation p is 2-ordered and 3-ordered and p(1) = 2, then 
p(2l = 1, since otherwise the number 1 would appear in one of the 
3,4, .. ,n; this contradicts the inequality 

< min{p(3), p(4) •. .. , pen)). (1) 

In the same way one can show that p(l)" 2, since if p(l) ~ 3 at least one of the 
numbers 1 or 2 appears in one of the positions 3, 4, ... , n, and this again con­
t radicts (1). 

It is clear that the sets and are disjoint, and thus g(n}= IAnl + IBnl == 
g(n-l) + g(n - 2), since An has the same cardinality as the set of permutations 
of the set ... , n} which are 2-ordered and 3-ordered. The set Bn has the same 
cardinality as the set of of the set p, ... , n} which are 2-ordered 
and 3-ordered, 

Since g(1) = and g(2) = and the numbers g(n) the same recur-
rence relation of the Fibonacci numbers, it follows that g(n) = for every n ~ 1. 
[H. B. Mann, Econometrica, 13 (1945), 

12.21 It follows from the proof of the problem that 
u;<mink'-'l UIH and hence the sequence can contain at most two consecutive 
terms which are equal. 

Let q) denote the number of sequences where U 1 , ••• , uq 

belong to a set of p distinct numbers which satisfy the 
conditions Uj<u1+2(1:r(i:r(n-2) and Uj<ui+3(1"i:r(n 3). It follows that 
!(n)=F(n, n). 

Suppose that Ul,' .. ,uq E {I, ... , p}. If the sequence Ul, •.• , Uq with 
I and u2~2, then the number of such sequences is to F(p-l,q-l), 
while if U2 = 1, the number of these sequences is to F(p -1, q - since 

fJV'''''''''''' 3, 4, ... , q there must be numbers from the set .. , p} which 
conditions. If the sequence with Ul =k, then U 1 =k 

and u2=1, or ul=k and U2 ... ,or u1=k and u2=k, or u2~k+1. Thus 
in this case the number of the sequences (u I, •.. , uq ) is equal to F(p - k, q 1) + 
kF(p - k, q one can conclude that the numbers F(p, q) satisfy the 
recurrence relation 
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F(p, q) = -I,q-l)+ -2, q -3, q-

+F(p l,q-2)+2F(p 2,q 2)+ -3, q-2)+'" 

for every p, q ~ 3. 
It is also true that F(r, 1) rand F(r,2) r2, F(l. r) =0 for r~ 3, F(r,2r) 1 

when the unique sequence 112233··· rr is obtained, and 2r + 1) = 
F(r, 2r+2)= ... =0. One can also conclude that F(2.3) 2, since in this case 
there exist sequences 112 and 122 which satisfy the conditions. These 
initial conditions yield the following table of numbers j) in which the first 
two rows and the first two columns are determined from the initial conditions: 

2 4 l 2 o 0 0 o .................... .. ..... '" ............ --.. 
3 9' 3 0 
4 16 24 31 22 
5 25 I 50 85 88 
6 36 ' 126 

7 7 49 , 

The number F(p, q) with p, 3 is obtained 

13 4 
75 42 19 

288 

q I and the numbers from column q - 2 multipJied 
the numbers from column 

I, 2. 3, 4. 5 .. , , , respec-
tively, and located in row p I and above. 

In particular, f(6)=F(6, 6)=288. 

12.22 It is clear that A(n, n) = I, since there exists a permutation 
with n falis, namely n, n I, ... , 1; and A(n, 1) = 1, since the permutation 
with one fall is the identity By one has A(n, 0) =0 and 

A(n, k) nL Consider the set Q of the A(n I, k) of the 
set ... , n I} which have k falls. One can obtain kA(n-l, k) permutations 
of the set {I, ... , which have k falls each by inserting k ways) the element n 
between any two positions p(i) and p(i 1) such that p(i) > p(i + 1) [and also 
after p(n - 1)], for every permutation p E Q. 

The set R of the A(n - 1, k -1) of {I, ... , n - I} which have 
k -1 falls yields (n - k + I)A(n 1, k - 1) permutations of the set {I, " . ,n} with 
k falls by n- k+ 1 the element n between any two 
p(O and p(i+ 1) such that p(i)< + and also to the left of p(l), for every 

pER. In this case the number of possible ways is to 
n - (k - I) = n - k + I, and the number of falls increases by one. these 
two one obtains all A(n, k) permutations p E Sn with k falls, without 
repetitions, and hence (a) follows. 

By using this recurrence relation one can compute in tabular form the 



298 Problems in Combinatorlcs and Graph Theory 

numbers A(n, k) row row, taking into account that A(n. k)=O for k>n. For 
11 ~ 6 the table is given below: 

n 2 3 4 5 6 

1 0 0 0 0 0 

2 1 0 0 0 0 

3 1 4 0 0 0 

4 11 11 1 0 0 

5 26 66 26 0 

6 57 302 302 57 

In order to prove let Pn.k be the set of permutations p E Sn with k falls, 
and let I be the function which associates the permutation p=p(l)p(2)'" 
p(n) E Sn with the permutation = p(n)p(n -1) . . E Sn. It is clear that 
p has a fall at p(j) if and only if does not have a fall at p(j + 1) for 1 ~ i ~ n 1. 

definition f(p) has a fall at pill and p has a fall at p(n), Thus f(p) E I-k' 

Since f: Pn,k-+ Pn,n + 1 -k is a bijection, it follows that IP n.kl = + I -kl, that is, 
(b) holds. 

In order to obtain we prove that the 

k) (m+: (1) 

holds for fixed n;;;:t I and for any integer m;;;:t L 
Consider the set of m" words Ql Q2 •.• an' where the at are integers and 

m. One can sort this sequence so as to obtain the 
~ . , , ~ap("), where p(1)p(2) ' .. pen) is a particular 

set 1,.... under the condition that ap(i) = ap(i + implies that p(i) 
for any 1 ~ i ~ n - t. This condition is equivalent to following: if p{i) > 
then <apu ... foranyl~i~n 1. It will now be shown that if the 
tion ... p(n) k then the number of words a 1 a2 . , . an sorted in the 

abovementioned the permutation is equal to n Indeed, if PES. 
has k then the number is equal to the number of sequences 
al G2 •.• an such that 

where the sign @ between ap(l) and ap(i + I) is ~ if the permutation p does not 
have a fall at p(i) and is < otherwise. But the number of sequences satisfying (2) 
is equal to the number of sequences b l b2 ... bn composed of integers 
which satisfy the following conditions: 

(3) 

Let b l = let b2 = ap(2) if p has a fall at pi 1) and b2 Qp(2) + 1 otherwise: 
if by =ap(y) +s, let br+ I ap(r+ I) + s if p has a fall at per) and b Y " 1 =ap(r+ 1) + S+ 1 
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otherwise, for any r~ 2. This correspondence is a bijection between the set of 
sequences satisfying (2) and the set of sequences satisfying (3). But the number 
of sequences hi h2 ... bn which satisfy (3) is equal to the number of n-eJement 
subsets of the set {1,,, . , m + n - that is, (m +;-k). Hence one has defined a 
function 9 which associates to every sequence a=a 1 ••• an, where 1 ~aj~m, a 

P which sorts this as previously described. 
Let Ak = {a = al ... an I g(a) has k It follows that 

and the sets A! •... , are pairwise 

n n (m+n k) 
m" = IAkl == k~l A(n, k) n 

n­
n 

One can write 

= t A(n,n k+l)(m-l+(n-k+l l)= " A(n,k)(m+k-l). 
k= 1 n n 

which is (l). Since (1) holds for every m~ 1, it follows that polynomial identity 
also because the polynomials on both sides take equal values for an 
infinite number of values of the variable x. 

(d) may be deduced from (cl as follows. For x = lone finds that 
A(n, 1) = 1. For x =2 it can be seen that A(n, n-l)= A(n, 2) =2" n -1, which 
is in accordance with (d). Suppose that (d) is true for A(n. where 1 ~ s~ k-1. 
It will be shown that this relation is also true for s = k. 

Let x = k in (cl to obtain 

or 

kn= k)+A(n'k_l)(n:l)+"'+A(n,n)(n+~ 1)-
The induction hypothesis 

k-! 

A(n,k)= L (-l)Pc(n,p)(k pl", 

where the coefficient c(n, p) = 
is now necessary to show that 
identity holds: 

p=o 

1 (_1)5+ l(;-:'~)(":S) for p?J: 1 and 
P) = (n; 1), or that the 

t (_1)5+\ (n~l)(n+s) 0 
5=0 P s n 

(4) 

for any p ~ 1. By using Newton's generalized binomial formula one can conclude 
that 
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1 (1-

=={I_(n;l)X+ ;1) + .. +(_I)n~lxn~l} 

X{I+C71)x+(n;2) + .. +(n;s)xs+ .. } 

In the of the product on the right-hand side the coefficient of xP 

vanishes for any p?; 1, so that 0 ( 1 O. By multiplying both 
members by (- - P and the = (": S), one obtains (4). 

the Eulerian number A(n, k) may be as the number of perm uta-
tions of {l, ... , n) with k rises. By definition, a permutation P(1)'" p(n) has a 
rise at p(i) if p( i) 1); by convention, there is a rise to the left of p(l). [L. 
InslilUliones Calculi DiJJerentialis, St. Petersburg, 1755, 485-487; see also 
L. Opera Omnia, 1913, Vol. 1, Section 10, 373·-375.J 

12.23 Let 

2 ... nl. 
n-l ... 1/ 

Since p2 is an even permutation, it follows that 1(0')=(;)=0 
implies that n=O or 1 (mod 4). Two cases will be considered: 

2), which 

(a) Let n =4m. Here p has no fixed points. In if there exists a E 1, ... Am} 
such that pta) == a, then cr(a) = p( pta)) = a, so 4m a + 1 = a, and a is not an 
integer. Now let k, i E {I, ... , 4m} such that p(k) = i. One can write cr(k)= 
p(p(k))=p(i), or p(i) 4m k+ 1; ali) p(p(i)) -k+ 1), or -k+ 1)= 
4m-i+ 1; k+ 1}=p(p(4m-k+ 1))=p(4m- i+ and hence 
p(4m-i+l)=k. The numbers in the set A i,4m-k+l, 4m-i+1} are 

distinct. For if k=i, then would be a fixed point; if k= 
4m-k+ 1, then k would not be an if k 4m- i+ 1, then k would be a 
fixed point of p; and so on. 

It follows that ptA) = A, and the restriction PI of p to the set {1, ... ,4m} '-A 
belongs to -4 and satisfies pt = a I' Here 0'1 denotes the permutation 
of the set {l, ... , 4m} '-A l(al)==("~4) inversions. 

Since p2 = a implies that p(k) ~ {k, 4m k + I} for every k, one can conclude 
that the recurrence relation satisfied by N(4m) is 

It follows that 

N(4m) 

(4m 

-2)(4m-6)" . 

4). 

2x6x'" x(4m-2) 

(2m)! 
=2m{1x3x5x"'x(2m-l)} , 

m 
since -"'I - .... 

(b) If n=4m+ 1 then p2(2m+ 1)= 
can be shown that 

+ 1)=2m+ 1. Lei a p(2m+ 1). It 
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+1)) + 1)=a. 

Since 2m + 1 is the unique fixed point of a, it follows that p(2m + 1 )=2m + 1 
and p has no other fixed points. The restriction of p to the set {1, ... , 4m + I} " 

+ 1 ) has properties analogous to those of p, and hence one can conclude that 

N(4m + 1)= N(4m) 

CHAPTER 13 

13.1 Consider the axis of symmetry xx' of the rectangle which is parallel 
to the sides AC and BD (Figure 13.2). The desired number of configurations 
is equal to 

N l +N2 , 

where N 1 represents the number of configurations which coincide with their 
with respect to a reflection in xx'. The number N z represents one-half 

the number of configurations which are not self-corresponding under a reflec-
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tion in xx'. 
follows that 

the which contains no it 

+2N 2 29 -1=51l. 

In order to the value of N I, consider the configurations of the six per-
forations located on the same side of the axis xx' and on the axis xx' under a 
symmetry with respect to xx'. The result is that N! - 1 = 63, The desired 
number is thus 

+ 11 +63)=287. 

the side AB contains n 
so that there are a total of mn perforations. Vrr1,('".,,'l1m 

it follows that 

and N 1 + 2N.2 =2mn -1. Thus the desired number of ways of performing a 
perforation is equal to 

1)12J-l_1. 

[1. Tomescu, Problem Gazeta M atematica, 84(7) (1979).J 

13.2 First we show that x - y(G) is an equivalence relation, It satisfies: 

(1) Reflexivity: x - since x = e{x), where e is the identity permu-
tation, e E G. 

(2) x- y(G) implies that y because there exists 
9 E G such that y and hence x with g- 1 E G. 

(3) Transitivity: x-y(G) and y-z(G) implies x-z(G), since there 
exist gl' g2 E G such that y=gl(X) and z= and hence z= 

with g2g1 E G. 

In order to prove Burnside's lemma let Gk = Ig E G, g(k) k} be the set 
of which leave the element k, For every k= 1, ... , n the set 

is a subgroup of G, since if f, 9 E Gk then fg E Gk , because fg(k):= f(k) =k. 
The set Gk is nonempty, since the identity satisfies k for 
every k 1, ...• n. 

Let Ok denote the orbit of the group G which contains the element k. It will 
be shown that 

In fact, since is a 
are sets of the form 
whose cardinality is equal to 
is equal to lOki by 

of G, one can consider the set GIGk whose classes 
9 E Gk }, which form a of the set G and 

=IGI/IGkl. It will be shown that this number 
a bijection from Ok to Observe that 
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g(i)=h(i)=k with g, heG implies that h(i)=k, that is, I1g- 1 EG. or 
he Gky. 

F or every element i e Ok there exists a permutation g/ E G such that g/(I) == k. 
since i"" k(G). The bijection J: Ok-+G/Gk is defined as follows: J(i) == Gkgl e , 
where the permutation gi satisfies g,(i) = k. The mapping J is well defined, since 
ifthere exist two permutations h, 9 e G such that g(O = h(i) = k, then it has been 
shown that hE Gkg, that is. the class of h coincides with the class of g, so Gkh == 

The J is injective. In i. j E Ok and i imply the existence of 
two permutations h, 9 E G such that g(O:= hUJ k and thus hg - = 17(1) 1: k = 
hU), since h, being a permutation, is injective and i that h(i) 1: hlj). 

But hg- 1(k)l:k means that hg- 1 ¢Gk or h¢Gkg, and hence Gk91:Gk h or 
J(i):1= JUl. Also, J is surjective for the class G.g if the of the element 

l(k):= 1 E Ok, since g(l) = k and hence 1- k( G). Since the mapping J is bi­
jective, it follows that 10kl=IG/Gkl=IGI/IGkl. Now count the elements in X 
which are invariant under the permutations 9 E G in two d ilTerent ways: 

where 0 1 , •••• Or denote the orbits of the group G. It has been seen that if 
j, kEO, then IGj =IGkl=IGI/IOd, and hence 

IGI 
10d 10,(qIGI. 

which that q=(l/IGj) 
13.3 Denote by R 1 , R 2 , ••• , Rn the clockwise rotations of the poly-

gon about its center through an 2n/n, 4n/n •... ,2n respectively. These 
rotations form a group with respect to the composition of rotations; R. is the 
identity element of the group. Two polygons PI and P 2 with k vertices are con­
sidered to be identical if there exists a rotation R", with 2nm;n such that 

By Burnside's lemma of the preceding the desired number is equal to 

1 n 
L }.1(Rm), (1) 

n m-l 

where }.j(Rm) represents the number of polygons P with k vertices which are 
invariant under Rm, that is, Rm(P) = P. Observe that jf one the rotation 

su(;ce!;siv'ely to a vertex A of the regular polygon with n then the 
smallest index d for which R~(A)=A is equal to d==n!(m, n). In fact it must be 
the case that n I dm or n/(m, n) I d· {m/(m, n)}. This that the smallest 
integer d which satisfies this relation is n/(m, n), since the numbers n/(m, n) and 
m/(m. n) are relatively prime. 

the vertices of the with n vertices the numbers 
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0, I, ... , n -1. The rotation R", defines a permutation of these the 
of the number i the number i+m(mod n), as is seen considering 

the vertices of the polygon to be num bered 0, ... , n - 1 in the clockwise 
sense. Thus if the P with k vertices is invariant under the rotation Rm , 

then this defines a permutation of the k vertices of P, which can be in 
the following form as a product of disjoint cycles: 

where all the have the same length d=n/(m, n). [t follows that d I k or 
n I kim, nl, and the number of cycles in (2) is equal to kid = k(m, n)/n. 

Consider the permutation induced by on the set X of vertices of the poly-
gon P and written as a product of It will be shown that every 
(m, n) consecutive num bers modulo n of the set {O, I, ... , n - I} have the property 
that no of them belong to the same cycle of the induced by 

on X. For suppose the contrary. One can then show that there exist two 
numbers ° ~ a, b ~ n -1 such that 0< bl ~ (m, n) - 1 and such that they are 
found on the same cycle as e.lt follows that c+pm=a(modn) and c+qm=b 
(mod n), and hence 

where r, s ~ 0 are 

a=c+ pm rn and b=c+ qm-sn, 

Thus one has 

la-bl=l(p-q)m+(s- ~(m,n) 

because a::f:: b, and Ihis contradicts the inequality la - bl ~ (m, n) - 1. 
It follows that for every (m, n) consecutive numbers (modulo n) of the set 

{O, ... , n -I} there are kim, n)/n distinct numbers which belong to 
different cycles of the permutation (2) induced by R", on X. For otherwise the 
number of elements in X would be smaller than {k(m, n)/n} {n/(m. n)} = k, which 
is a contradiction. In order to find the number of polygons P with k vertices 
which are invariant under Rm, one must find the number of permutations of 
form (2) where d == n/(m, n) which contain k(m, n)ln cycles. The permutation 
is uniquely determined if one chooses an element in each the other el-
ements of the cycles are obtained repeated addition of m (modulo n) to the 
number chosen. Thus if n • k(m, then the number )'1 (Rm) is equal to the 
number of ways of k(m, elements from among lm, n) 
that is, it is equal to 

( 

(m, n) \ 

fen, k, m) = k(: n) ). 

If n is not a divisor of k(m, n) then )'1 (RmJ O. In view of (1) the desired number 
has the form 

n 

L fen, k, m). 
n m 1 

(4) 
n I k(m •• ' 
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By using the notation d = n!(m, n), the condition n I k(m, n) becomes d • k, and 
since din, it follows that d I (n. k), 

Now calculate the number of terms in summation (4) which have the same 
value. Assume that d is fixed and m takes values between 1 and n such that 
k(m, n) is divisible by n. If e = ml(m, n) then e ~ n/(m, n) = d and (e, d) 1. The 
condition n I k(m, n) is satisfied if d I (n, k). Thus for fixed d, fen, k, m) takes the 
same value for all numbers e which are prime to and less than d. The number e 
uniquely determines m m = e(m, n) = en/d. It follows that the number of 
convex polygons with k vertices which cannot be obtained from one another 
by a rotation is to 

({J(d) 
n d 

where ({J(d) is Euler's function which the number of positive 
smaller than and prime to d (Problem 2.4). 

13.4 Proceeding as in the preceding 
of colorings with k colors of the vertices of the polygon with n vertices 
which cannot be obtained from one another by a rotation is equal to 

1 " 
- ;'1 (Rm), 
n m= 

where ;.!(Rm) represents the number of invariant under the rotation 

Rm of angle 211m/n. One can show analogously that if a k-coloring is invariant 
under a rotation , then this rotation defines a permutation of the n vertices 
which can be in the following form as a product of 

[11, ... , .... ,in .. · " .. ,in, (1) 

where d =n/(m, n) and p=(m, nl. Each cycle in (1) is formed from numbers of the 
set ... n - !} to vertices of the regular polygon which are 
colored with the same color. 

Also, every (m, nl consecutive numbers modulo n in the set {O, ...• n -1 } 
belong to different cycles in (1). Thus the number of invariant under 
Rm is equal to the number of colorings with k colors of(m, nl consecutive numbers 
modulo n from {O, ... , n -1;. that is. to the number of functions 

g:{1, ... ,tm.n)} 1, .... 

It follows that AdRm)=k(m.n,. Finally the desired number of k-colorings is 
equal to 

1 " 1 - I ki".m,= I ({J(d)k"'d. 
nm=! ndln 

13.5 One first obtains a formula for gn' If in the representation of the 
permutation p Ii:' Sn as a of disjoint cycles there are dk cycles of 
k for k 1, ... , n, then p said to be a permutation of 1 dt2d,. . nd n• where 
d! + + ... +ndn=n. 
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Suppose that the graph G U) has vertex set X = {1. ... , n}. 
permutation pin Sn can be considered to be a permutation of the set of 
G defining p(G)=(X,p(U)), where p(U)={[p(i), p(J)]1 E One first 
determines the number d(p) of graphs G with n vertices such that p(G)=G, 

that is, the number of fixed points of p. Let G be a graph such that p(G)=G, 
and suppose that p is of 14'24, .•. nd 

•• The graph G can be partitioned into 
subgraphs Gz, ... such that two vertices i and j belong to the same sub­
graph if and only if i and j belong to the same cycle in p. Among the 
G; there are dk which contain exactly k vertices. for k=l, ... , n. 

that 1,2, ... , k} and 1, k+ 2 .. ,., k+ I} are sets of vertices for 
two of these Gland One can assume that the permutation p 
contains the cycles [1,.,., kJ and + 1, ... , k+ IJ. The [k/2] possible 
between the vertex 1 and the vertices 2, 3, . , . , [k/2] + 1 in the graph G 1 uniquely 
determine the existence of the other of G t in view of the condition p(G) =G. 

Similarly the (k, 1) possible between the vertex 1 and the vertices 
k + i for i = I, ... , I) uniquely determine the existence or nonexistence of the 
other which vertices of and vertices of G 2 in view of the con-
dition p(G)=G. Thus if p(G}=G, one can select in an arbitrary manner the 
existence of a number of edges equal to 

Thus 2Gd, from which (a) follows, since the number of permutations of 
type "'n4"is ton!/Ndand =n!. 

In order to prove (b) one can proceed Two vertices x, y can be 
nonadjacent, joined by the arc (x. y) or the arc x), or joined by both the 
arc (x, y) and the arc (y, There are thus four possible cases. Also, in the 
expression for the summation even !kdk must be replaced by 
Lk even t(k - 2)dk • For two vertices u, v of an even cycle of length k, separated by 
the maximal distance k12, there are only two either u and v are 

or u and v by both arcs (u, v) and (v, u), since the existence 
arc would contradict the in variance of the G under the per-

mutation p. Thus by applying Burnside's formula one obtains the numerator of 
d., which is expressed by 

from which (b) follows. 
The formula for en can be established analogously in view of the fact that there 

are three ways to two vertices arcs. Consider a tournament, and 
suppose the permutation p under which G is invariant contains a of even 
length. say, and that G contains the arc (i t , 1)' Since p( G) == G, 
it follows that G also contains the arcs (i2' 2),03, 3)"'" (iu I' id. But the 
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existence of both arcs (iI' il<+ d and (ik + I' id contradicts the definition of a 
tournament, and hence in this case d(p)=O. Otherwise, if p(G) G, one can 
choose an direction only for 

arcs; the orientation of the remaining arcs is uniquely determined by the orienta-
tion of these arcs, and the numbers d l , d3, ••• satisfy (3). 

The values of the numbers 9n' dn, and In up to n 7 are given in the following 
table: 

13.6 

n 9n d. t n 

1 1 1 1 
2 2 3 1 
3 4 16 2 
4 11 218 4 
5 34 9,608 12 
6 156 1,540,944 56 
7 1044 882,033,440 456 

The relation fl - f 2 is an equivalence relation. It satisfies: 

(1) Reflexivity: f"'- f because f"" fe, where e is the identity permuta­
tion and e E G. 

(2) Symmetry: fl"'" implies that f2.... ,since there exists 9 e G 
such that and thus f2g- 1 == fl and g-I E G. 

(3) Transitivity: fl"" and imply that fl '" 
fig f2 and f2h= f3 with g, he G implies (flg)h= 
where g17 E G, since G is a group. 

Let F denote the set of the m" f:X ..... A. For every permutation 
9 of X the == is an injection of F into F. In fact, =1= 

the existence of an object ieX such that ft(i)=1= f2(i). Let It 
follows that flg(j)= =1= f2(0= f2g(j) and thus flg=l= The mapping 
g: F ..... F is injective. and since F is finite, this mapping must be surjective and 
hence a bijection. In other words g E S, where S denotes the set of permutations 
of the set F. 

The Ip(g) defines a mapping 

Ip:G ..... S. 

This mapping is injective, since if gl there exists k e X such that gl (k):i:: 92(k). 
It will be shown that the functions iii :F ..... F and ;F ..... F are different, 

that is, there exists f E F such that fgl =F f92, in view of the of g. 
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If m;;r. 2 there is a I which uses different colors for the distinct elements 
and since F is the set of all functions I: X ...... A. 

Thus =1= or jgI(k)"I" Ig2(k), from which it follows that j9I 
and are different and I/> is an injection. If m = 1, then I/> no longer is 
However, in this case the number of colorings is equal to L so aJl the 
have the same color and P(G;I, ... ,1)=(l/iGI)Lg<c1=1, which completes 
the proof of the property. 

Let G={9IgeG}. Since I/> is an injection, it follows that there exists a 
bijection I/>I :G ..... GcS defined I/>I(g)=I/>(g) for every 9 E and hence 
IGi=IGI· 

The set G is a subgroup of the group S of permutations of the set F of colorings, 
since iiI' 92 E G implies that 9192 e G. In fact -lg2U)=gl(Jg2)= j(g2gd= 
g2gdf), and thus the product of two elements of say 91 and , is an element 
of G which to the g2g1 e G. Since S is a finite group, it 

of S. 
to the given definition, two 11 and are if 

there exists 9 e G such that f1 9 or gUt> "" 12' and thus belong 10 the 
same orbit of the group This implies that the number of equivalence classes 
is to the num ber of orbits of the group By Burnside's theorem (Problem 

this number is equal to 

where }'lUi) represents the number of fixed points of the 9 or the 
number of colorings I such that g(f) == f or fg = f. But fg f implies that I 
is constant for every of the permutation g, since otherwise one would have 

*1· 
Thus there exist as many I with the property fg = f as there are 

functions on the set of cycles which contain + ' .. + }'n(g) elements in the 
set of the m colors, namely, m~dg)+ .. ·+;,,(g). In view of the fact that 
one finds that the number of equivalence classes is to 

1 

IGI 

13.7 Consider the set X whose six elements are the faces of a which 
will be denoted 1. . , . , 6 as in 13.3. The vertices of the cube are labeled 
a. b. c, d, e, J, g, h. 

Now use Poly a's method to count the equivalence classes of the colorings, 
that is, the I: X -> A {a l ,.,., am). The group G of rotations of the 
cube will be determined; it is a of the group of permutations of the 
set X. 

The rotations which leave the cube invariant can be as follows as a 
of disjoint and of I : 
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Fig. 13.3 

(1) about the axis abcd- efgh: 6,4, 
(2) about the axis bcfg-adhe: [1, 5, 3, 

r­
I 4 

d 
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(3) about the axis abfe-dcgh: [1, 2, 3, [1,3J[2, [1,4,3, 2J; 
(4) about the axis a-g: [1,4,5][6,3, 2J, [1, 5,4][6,2, 3J: 

(5) about the axis b·-h: [1,5, 2J[6. 4, [1,2, 5J[6, 3, 4J; 
(6) abouttheaxisc-e:[1,2,6][3,4. [1,6, 5,4]; 

(7) abouttheaxisd-f;[l,6, 5, [1,4, 2,5]; 
(8) about the axis ab 17g: [1, 5][3, 6][2, 4J; 
(9) about the axis bc-eh: [1, 

(10) 6J[3, 
(11 ) 

(12) 

(13) about the axis 

The axis bcfg-adhe means the axis determined by the centers of the squares 
bcfg and adhe. The axis ab-l1g is the axis determined by the midpoints of the 

ab and hg, and so on. Since cycles of 1 are not the 
~~~~~fuct ~~ ~ 

is [1J[3][2, 4J[6, 5], and so on. 
This procedure, together with the identity permutation e = [1][2]l3][ 4][5][ 6J, 

yields a group G of 24 permutations, written as products of cycles, and hence the 
index polynomial of the group of rotations of the eu be is 

P(G;x 1 '· ... X 6) +3xix~+ 6x~+8x3). 
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By using theorem from Problem 13.6 one finds that the number of 
ways of coloring the faces of a cube with m colors is equal to 

'm,.... +3m4 + +8m2
). 

13.8 In the solution to Problem 13.3 it was shown that the rotation R", 
of 2nm/n of a about its center can be written as a 
of (n, m) cycles of length d = n/(m, n): 

where the numbers it, ... , jl , . . . • . ..• t 1 ••.. , td are the numbers 0, 1, ... , 
n 1 which represent the vertices of the polygon. Thus the cycle index 
polynomial is equal to 

I 1" (n m) 1 x' -
n .'(n.m) --n 

",=1 
X~'d 1 

11 m"" 
(m,n)=nld 

1 
1=­

n 
rp(d)X~/d, 

because if e=m/(m, n) then the conditions m~n and (m, n) n/d are satisfied if 
and only if e~d and (e, d)= 1. An application of theorem shows that 
the number of with k colors of the vertices of a regular polygon with 
n vertices which are not obtained from one another a rotation is equal to 
(l/n) 

In if G is a finite group with p 
sentation as a group of by 

xa 

one can consider its repre­
for every a EO G 

for every x E G. Thus a becomes a permutation of the set G which can be de­
composed into p/k cycles of k, where k is the order of the element a in C. 
In fact xam = x if and only if a'" = 1. as one finds that the 
cycle index polynomial of the group G is equal to 

1 

IGI p 

where p=ici and rp(C, d) is the number of elements of order d in the group C. 
Observe that in Problem 13.1 the group of rotations about the axis xx' which : 

leave invariant the ABeD is formed from permutations 

G={e [IJ[2J[3J[4J[5][6][7][8J[9] and 

in the notation of Figure 13.1. The cycle index 

,3][4, 

vnr,m I A I is thus 

The number of perforations is to the number of 

[7,9J} 

schemes with two the case when there are no perforations on 0 

the ticket. Thus the number is equal to 1 
rl 

; 2, 
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If there for example, two types of perforations. of different diameters, 
Ihen it would follow from P61ya's theorem that the num ber of possible perfora­
lions of a ticket is equal to 

PIG; 3. 3)-1 + 1 = 10.205. 

13.9 In the solution to Problem it was shown that if c is a cycle of 
k. then the permutation ci has (k. i) each of kirk. n. It 

. rollows that the contribution to the cycle index of G of the 

fon t is to r 

n [X(k.i) JAkIn 
k;(k. i) • 

1 
k 1 

iThe upper limit in this may be taken to be r because r is the least 
of f. H. Redfield, Amer. J. Math., 'common of the cycle 

:'9 (1927), 

13,10 The automorphism group of this 
[2J[4][1. 3J, [1J[3][2, 4], [1, 3][2, 4]}, and hence 

is G={[1][2][3J[4], 

13.11 Denote this number by MG(m). It is clear that MGfm)= P(m, 1)+ 
P(m, 2)+ P(m, since any multigraph with three unlabeled vertices and m 

corresponds to a partition of m into at most three parts. One finds that 
1, P(m, 2) = [mI2J, and P(m, 3) = 3, 1) + P(m - 3, 2) + P(m - 3, 

I1G(m-3) (see Problem 5.2). Thus MG(m)=l +[m/2J+MG(m-3} for any 
~~3, where MG(O) = 1. 

The formula for MG(m) now follows by induction on m, since MG(O) = 
I1G(I)=I, MG(2) 2, MG(3)=3. MGt4) and MG(5)=5. 

Suppose that the expression for MGtm) is valid for m<n-l. The fact that it 
lIso holds for m = n follows from consideration of the cases n == 0,1, ... , 5 tmod 6). 

13.12 Letw(a)=al+a2+ ... +anfor any Boolean vector Then 
I~ w(a) ~ n. and if I is symmetric, it follows that I(a) = I(b) for any a, b E Bn 

uch that w(a)=w(b). Thus it is sufficient to define any symmetric Boolean 
unction of n variables for Vo == to, ... ,0), v! 0, ... ,0), V2 (1, 1,0, ... ,0), ... , 
,=(1,1, .... 1) to either be 0 or I, where w(v[) = i for any 0< i< n. This can be 
lone in 2n '" 1 ways. 

:HAPTER 14 

14,\ Consider the graph of Figure 14.1 in which all edges have length equal 
o I. Suppose that the property does not hold, and assume that A is colored a, 
! is colored b. D is colored c, and thus that F is colored a. One can conclude 
nalogously that G is colored a and hence there are two points F and G at a 
istance 1 which have the same color; this contradicts the hypothesis. 
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A 

B c 

F G 
Fig. 14. t 

14.2 Suppose that the two colors are red and blue. For every coloring there 
will be two M and N with the same color, say red. If the midpoint P of 
the segment M N is red, then one has obtained three equidistant collinear points 
with the same color. Otherwise, suppose that P is blue. If the point N 1 which is 

to N with respect to M is red, then the points N 1, M, and N are red. il 
If N 1 is blue, consider the point M 1 which is symmetric to M with respect to N. 
If M 1 is red, then the desired points are M. N, M l' Otherwise M 1 is blue and is 
thus N 1, P, and M 1 are three equidistant collinear blue points. fe 

Thus in any coloring of the of the plane with red and blue there will Cl 

exist three collinear points of the same color, say red. Denote these 
01 

by A, B, C. Construct the equilateral triangle AFC so that E, D are the Sl 

of its 14.2). If F is then AFC is the desired 
Otherwise F is blue. If D and E are blue, then the equilateral triangle DEF has 
blue vertices and the problem is solved. Otherwise at least one of the points D 
and E is red. Suppose that D is red and thus the triangle ABD has the desired an 
property. In order to show that there exists a 2-coloring of the points of the 

in which no triangle of side I is monochromatic, consider 
the plane with an x-y coordinate system. The lines y tl 
(J3/2)k with k an integer partition the plane into a network of parallel bands. 0 

Suppose that the band bounded by the lines (J3/2)k and (J3/2)(k + U contains: 
all the points of the line (J3/2)k and none of the of the line (.J3/2)(k + 1). ~re 

10. 

F 

lid( 
EFI 

I 
side 
:ria: 
orig 

A B C irial 
Fig. 14.2 me 
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D 

E 
Fig. 14.) 

lere Now color the points of the plane red and blue so that all the points of a 
) of band have the same color but each two neighboring bands have different colors. 
lnts Sihce each band has width J3/2, which is equal to the altitude of an equilateral 
his triangie of side 1, it follows that every equilateral triangle of side 1 has vertices 
·ed. in two bands and thus does not have all of its vertices the same color. 

. N. 14.3 If all the of the plane have the same color, then the property 
md is evident. Otherwise there will exist two points A. B at a distance 2, with dif-

ferent colors. In fact every two points of the plane which have different colors 
Nill can be joined by a polygonal line which has all of its segments of length 2, and 
e~e one of these segments must have of different colors. In 14.3 
tl e suppose that 
~ e. 

AC=CB=AD=DC-AE=EC=1 1as 
'D 
:ed and 

~he DE=BD=BE=J3. 

jer Let A be colored red and B colored blue. One can assume that C is red, for 
)." otherwise one could make the argument below for the which are sym­
?s. metric to D and E with respect to the perpendicular bisector of AB. If D or E is 
I~S then one obtains an equilateral monochromatic triangle of side 1. If D and E 

). are blue, then the triangle BED has all of its vertices blue and side length equal 
IOJ3. 

14.4 Consider an equilateral monochromatic red) triangle ABC of 
side a. In 14.4, BDE and CH F are equilateral triangles of side b, 
EFG is congruent to ABC, and BE and CF are perpendicular to AB. 

Problem 14.3 there exists a monochromatic equilateral triangle ABC of 
lide a E {I, .j3}. If a= 1, then Jet b=,J3, and if a=J3, then let b= l. The 
Iriangles ABE, DBC, GFC, EFH, ACH, and DEG are all congruent to the 

T. Now A, B, and C are ali red. If there are no monochromatic 
congruent to T, then by considering DBC, and ACH. 

me can see that E, D, and H must be blue. DEG forces G to be red. 
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A H 

b 

b 

b 

b ""=:"' __ -----i F 

b 

D 

G 
Fig. 14.4 

CFG and EFH force F to be blue and 
contradiction. Thus one of the six 

It has been conjectured that for any there exists a 
monochromatic triangle which is T unless T is 
equilateral, and moreover, that any with no mono-
chromatic equilateral triangle of side d in fact has monochromatic equilateral 
triangles of side d' for all d' =f.: d. P. B. L. Rothschild, 
1. Spencer, E. G. Strauss, J. Combinatorial 341-363.J 

14.5 It will be shown that in any X and Y, at 
least one of t he sets contains the vertices of a one can find 
points A' on BC, B' on CA, and Con AB such that the A'B'C is equi-
lateral with edges perpendicular to the of ABC if one chooses 

A'C B'A 
-= 
BC 

CB 1 
3 

14.5). 

A 

Fig. 14.5 

d 

Ie 
\\ 

Ie 
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Suppose that there exists a partition E Xu Y such that neither X nor Y 
l contains the vertices of a right triangle. At least two vertices from A', B', and C' 
belong to the same class, say A' E X and B' EX. Then all points of the segment 

: Be which are different from A' belong to y, and hence C' EX. But this 
, implies that all points of the segment AB which are different from C' to 

Y, and hence Y contains the vertices of a right triangle, which is a contradiction. 
[Problem at the 24th International \1athematical Olympiad, 
1983.] 

14.6 Let Eta. ah(a b)(a+b)= ab 3.Ifoneofthenumbersaorbis 
equal to zero, it follows that E(a, b) = 0, which is a multiple of 10. a, b) = 
E(a, -b):= - b) and -a, -b)= one need only consider the case 
in which all three numbers are positive 

It can be seen that for every a and b, E(a, b) is even. since if a and hare 
both odd, both their sum and their difference are even. 

It remains to show that among three pairwise distinct positive numbers there 
will be two numbers a and b such that E(a, b) is a multiple of 5. If one of the 
three numbers is itself a multiple of 5, then the property is immediate. 

a Suppose on the other hand that the last digit of the three numbers belongs to 
the set r 1, 2, 3,4,6,7.8,9}. It will be shown that for every choice of three numbers 

a from this set there exist two whose sum or difference is a multiple of 5. 
is Consider the graph with vertices in Figure 14.6. Two vertices I and 
). f(i are ifandonlyifi ori isa multipleof5. This reduces 
al to two complete subgraphs = {1, 4, 6,9} and = J, 7, Thus for any 
d, choice of three vertices of this graph there will be at least two which are in the 

same connected component of G, and therefore have their sum or difference a 
at multiple of 5. This the proof of the property. 
Id 

2 3 

9 6 8 7 

Fig. 14.6 

14.7 1 t will be shown that every sequence of numbers (11, a2' ... ,amn ~ 1 con· 
lains either an increasing subsequence with at least m + j terms or a decreasing 

with at least n + 1 terms. 
Suppose that every sequence has at most m terms and every 

sequence has at most n terms. 
For each term al define the numbers Ci and di as the numbers of terms in a 

iongest increasing or decreasing sequence which begins with ai' The mapping 
which associates with every term al the ordered pair (c" dJ is injective. In fact, 
iet and al ~ aj. In this case one has Ci:;;: 1 and hence cd Cj or , dd r 
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If a,;;;aj then dj;;;d j + 1, that is, and hence (cl' di):f:(cj, dJ). But 
implies that the number of elements of the sequence is less than or 1, 

equal to the number of elements in the Cartesian product {L 2 .... ,m} x 
{1, 2, ... , n}, that is, mn + 1 ~mn, which is a contradiction. 

C 
L 
C 

14.8 Let t(x) denote the maximum length of a sequence x = at < a2 < ... el 
which satisfies f(ad~ f(a2}~ .... Since fO)= 1, it follows that max t(x)==t(l). 
It must be shown that 1(1);;;n. Use induction on n. For n=l the is 

since t(1) == 1. Suppose that the property holds for every number rr 
m~ n 1, and show that /(1);;; n. Under these conditions one can first show that 
if ;;;1(1)-k then f(x)~2k for k ... , t(l)-1. 

Suppose on the other hand that f(xj > 2k and t(xl;;; t(1) - k. It follows from 
the fact that 1 ~f(i)~i that X>2k and k<n 1. 

Let x=al < ... <a,ix! and f(al)~ ... ~f(at(x)' the induction hypothesis 
there exists a sequence 1 ~ bl < ... < t ~ 2k with f(b l ) ~ ••• ~ f(b k + I), since 
k + 1 ~ n - 1. One can thus conclude that 

and hence t(l);;;t(x)+ k+ 1, which contradicts the inequality t(x);;;t(l)-k. 
Now observe that if t(x)=t(y) and one has f(xl:f: fry). In fact, if, for 

example, x<r, then f(x) > fry), since otherwise >t(y). 
The t(x) ~ t(1) - k implies that . It follows from this and 

the observation that 

I t(x) 1(1) k} I ~ 2k for O~k~t(lJ-1. 

Since the number of elements in the domain of f is equal to 2"-1, one can con­
clude that 

f!l)-I 

2"-1 = L It(x) t(1)-k}l~ 
k=O 

and hence t(1) ~ n. 
In order to show that 2"-1 is the best possible value with this 1"11'(\npr!v 

define the function 9 on the set {I, ... ,2"-1 -1} by 

-p 

It follows that g(i) ~ Hor i = 1, .. " 2"- 1_1, and the values taken on by 9 form 
n 1 intervals which are strictly sequences. If 1 ~ a 1 < ... < a, ~ 
2""1_1 and f(atl~ ... ~ f(a,), then two f(ai) and f(aj) with i cannot both 

to the same interval, and hence t ~ n -1. [E. Harzheim, Pub!. Math. 
Debrecen, 14 (1967), 

14.9 If the convex covering of the nine points (the smallest convex polygon 
which contains the nine points in its interior or on the sides) has at least five 
vertices, then the property is immediate. M 

Now analyze the remaining cases in which the convex covering is a quadri­
lateral or a triangle. 



(a) that the convex covering is the M N PQ (Figure 
r 14.7). If the other five form a convex the proof is finished. 

Otherwise there exist four points which do not form a convex quadrilateraL 
Let D be the interior of the triangle ABC. the angles ADB, BDC, 
CDA, there exists one which contains two vertices of the quadrilateral. for 
example, M and N. One has thus obtained a convex pentagon MNBDA. 

(b) If the convex covering of the nine points is the triangle ABC, then one 
must analyze two subcases: 

(1) The convex covering of the six is a quadrilateral 
Let V be the two other in the interior of the 

If the line UV intersects two edges of 
(Figure 14.8). 

---

M 
/ Q 

/ 
/ 

/ 
/ 

/ 
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/ 
Fig. 14.7 
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Suppose that U V intersects the opposite edges M Nand PQ. The 
half lines UN, VQ. VP divide the exterior of the quadri~ 
lateral M N PQ into four regions. If the region bounded by the 
lines UN, N P, V P the region bound by the lines UM, fo.1Q. 
VQ contains at lcast onc of the points A, B, C, then a convcx 
pentagon is obtained (Figure 14.8). Otherwise one of the regions 
bounded the half lines N, U or and l/Q contains two 
of the points A, B, C. The result is a convex pentagon with these 
points as vertices. The line AB no longer cuts the segments V P. 
V Q. since convex covering the points is the triangle 
ABC. 

Suppose that the convex of the points in the interior 
of the triangle ABC is another triangle M N P, and let U, V be two 
of the remaining points in the interior of the triangle M NP 
(Figure Now assume that the line UV intersects Ihe 
ments M Nand M P. If one of the angles M UN and M V Peon­
tains at least two of the points A. R, C, then one obtains convex 
pentagon as in Figure 14.9, since, by hypothesis, the convex 
covering of the nine points is the triangle ABC. Otherwise, at b 
least one of the points A, C is found the bounded el 
the segment U V and the half lines UN and V P, which again a 
yields a convex pentagon. It is indicated with heavy lines in [. 
Figure 14.9. a: 

~----------------------~~ 
..... 
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"-

Fig. 14.9 
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e ~ It has been conjectured that for every choice of 2m 
2 + 1 points in the plane 

_ ,such that no three are collinear there are m which are the vertices of a convex 
. polygon. The has been verified through m = 5. It has also been shown 
,that there is a choice of 2m 

- 2 points in the with no three collinear such 
,that no m points form a convex polygon, 

14.10 Suppose that there exists a coloring of the of the graph G 
. which does not induce a monochromatic and which uses different 
colors for the of the Thus there exist two of 
,which have different colors, say [AI' A 2] red and [A 2 , A3J blue. 

Consider an arbitrary vertex Bj of the cycle Cm. One can assume, for example, 
that the [B), A 2] is red. Since there is no monochromatic triangle, it follows 
that the [AI, Bj ] is blue. 

Let + 1 be a by an edge to B) in the eycle (taking Brn -1 = B 1)' 

, If the [B]4- I, is red, then the edge [B)+ I' Ad is blue, and no 
matter whether the edge [B}! B]+ 1] is colored red or blue, one of the triangles 
B]Bj + I A I or BjB,+ 1 A2 is monochromatic (see 14.10), which contradicts 
the hypothesis. 

Thus if the [Bl , is colored red, then the [B)Tl' is colored 
blue. Analogously if the edge [B), is colored blue, then one finds that the 
edge l' A2 ] must be colored red by A I with A3 in the 
argument. Traverse the cycle em, starting from the vertex with the 
[B}, colored red and passing through the neigh boring vertices. One will 

meet Bi , which implies that A2J must be colored blue, since m is odd. 
This yields a contradiction which establishes that all the of the cycle C. 
have the same color. II can be shown since n is also odd, that all 
the edges of the cycle must also be colored with the same color. 

It remains to show that the two colors of the cycles Cn and Cm are identical. 
Suppose that there exists a coloring without monochromatic triangles with the 
property that all the of the cycle are blue and all the of the 

are red. Suppose, without loss of that the 
[otherwise the colors red and blue can be interchanged). (See 14.11.) 

It follows from the nonexistence of a monochromatic triangle that [A l' B 2] 
IS blue, , B2 ] is red, [A2' is blue, and hence [AI' B3] is red. 'Now replace 
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BI by and repeat the argument. It turns out that for every two adjacent 
and I of the cycle the colors of the edges and 

,BJ ';'1 are But this conclusion leads to a contradiction, since the 
Cm is odd. It follows that the m + n of the and Cn are 

colored with the same color. 
m == n = 5 this problem was 

matical Olympiad in London in 1979.) 
at the 21st International Mathe-

14.11 The will be established by induction on p + q. For p= 1 or 
q = 1 it is immediate. now that p, q> 1. Let x be a vertex of the complete 

with no vertices which is colored with two colors. Denote by d,(xJ the 
number of red edges which have an endpoint at x, and db(x) the number of 
blue which have an endpoint at x. 

Since 

dr(x)+db(x)=no l=(P p -1 
(p;~ 1 l)+(P+: -1)_1, 

it follows that either 

(
p+q-

d,(x)); p-1 (
P+q-l) or db(x)); p . 

Suppose, for that the first inequality holds, and let G be the complete 
subgraph induced by the vertices which are by red edges to x. (The 
second inequality can be treated analogously.) Since G has at least e';~~ I) 
vertices and its are colored red and blue, it follows from the induction 
hypothesis that G contains either a complete red subgraph with p vertices or a 
complete blue subgraph with q + 1 vertices. In the second case, the proof is 
finished. But in the first case G contains a complete red subgraph with vertex 
set H, where IHI = p. However, in this case H u {x} is a complete red subgraph 
with p + 1 and the is finished. It is clear that R(p, q) = p} and 
R(p,2)=p. The only known nontrivial values of the numbers q) with 
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p, q ~ 3 are in the table, where % 
lower bound a and an upper bound b are known. 

3 

6 

4 9 

5 14 

6 18 

7 23 

8 
28 

9 36 

4 

9 

18 

25 

34 
36 

5 

14 

25 

38 

38 

6 

18 

34 

38 

102 

7 

23 

the fact that 

28 
29 

9 

36 
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14.12 Consider the complete graph with five vertices as being repre-
sented a pentagon together with all its diagonals. Color the sides of 
the pentagon red and the diagonals blue. There are no monochromatic triangles, 
and hence 6. 

[n order to prove the opposite it remains to show that every 
coloring of the of K 6 with red and blue will yield at least one monochro-
matic triangle. 

Let x be a vertex of K 6 . There are five which at x. and hence 
at least three of these have the same color, say red. Thus there exist three vertices 
ai' a2, G3 which are joined to x by red If one of the determined by 
ai' az , a3, say is red. then there is a red triangle x, a I' a2' Otherwise the 
triangle with vertices GI, G2' G3 has all of its edges blue. 

Thus every of with two colors contains a monochromatic 
triangle. 

14.13 The upper bound follows from Problem 14.11. In 
that 

for p=q==k I. 

it has been seen 
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Observe that 

(
2
k
k -12) 2(2k - 3) (2k 4) < 4 (2k 4), 

k-1 ,k 2 ,k-2 

For k=2 one has 

(
2k-2)=2= 
k-l 

Suppose that 

(1) 

v, 

l1 
R 

(
2k-2\,;:: 
k-l J"" 12) tI 

I 

for every 2"'k"'p. It then follows from (1) that 

(2: ) < 4 c: ~ n '" 4 x 

a 
II 

o 
e 
o 

and thus (2) is true for every k';P 2. In order to obtain the lower bound one can F 
suppose that the index k ';P 4. In fact for k = 2, 2) = 2 = 2"'2, and for k = 3 g 
one finds that R(3, 3)=6>2.ji Problem 14.12. 

Let n = that is, the smallest integer which is greater than or equal to 
. Let Xbe the set of the complete graph and let E = {E l , ... ,Em } 

be the family of subsets of X defined as follows: Ei is the family of edges of a 
complete subgraph with k vertices in Kn. Since there are (~) such complete 
subgraphs, it follows that m=(~). By a similar one can show that 
r= lEd =(~) for every 1", i '" m, since Kk has (~) 

By the given it is possible to color the elements of X with two colors 
so that no subset in the E has all elements of the same color if and 

1 

if the complete graph can be colored with two colors so that there is no \' 
complete monochromatic subgraph with k vertices. Thus n < R(k, k) if one can e 
color the elements of X with two colors so that no subset in the family E is mono­
chromatic. By Problem 4.24 this condition holds for m'" 2' - 1, or 

(~)"'2(~)-1. 

The validity of (3) follows from the fact that (~) 
every k';P 3 and n - 1 < 2"/2. One can therefore conclude that 

sincel~) 1- -k+lJ o if k';P 4. 
Finally, it follows from 

k) > n ';P 2k12. 

14,14 Problem 14.11 shows that 

(3) 
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R(al' +a2 2). 
all-

which is the first in the induction on k. 
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Let k;a: 3, and suppose the numbers I (b! , ... , bk _ d exist for all 
values bl , .• " bk - I;a: 1. It will be shown that 

-I' ad)· 

In order to do this, let G be the complete graph with R. , ... , ak - 2, 

R2(ak -1, vertices. Color its arbitrarily with the colors C1 , ••• , ch. For 
the time recolor the which have colors Ck _ I and Ck with a new color d, 

the induction hypothesis there are two possible cases. Either there exists 
an index i, 1 <:i<:k-2, such that the G contains a complete subgraph 
with aj vertices and with all colored Ci (in which case the proof is 
or G contains a subgraph G1 with R 2(ak-!, ak ) vertices and with all 
edges colored d. In the G1 the color d with color Ck ! or (;k, which 
originally existed for the of G. From the definition of the Ramsey number 

1, it follows that (and hence G) contains either a sub-
graph with ak 1 vertices and with all edges colored Ck 1, or a complete subgraph 
with ak vertices and with all edges colored Ck-

14.15 Observe that 

[k!eJ= ~J== k k!. ., " 

J. J. 

The proof will use induction on k. 
For k=2 it follows from Problem 14.12 that R 2(3, 3)=6. 
Let x be an arbitrary vertex of a complete graph G with [k! eJ + 1 vertices 

) whose are colored with the colors C1 , ...• Ck' The vertex x is thus an 
1 endpoint of [k! eJ in G. Since 

[k! eJ 1 +k[(k-l)! e], 

it follows that among the [k! e] with an endpoint at x there will exist 
at least 1 + [(k -I)! e J with the same color, say C1' Let X be the set of 

r vertices which are joined to x by an of color Cl' If X contains two vertices 
joined by an edge of color c1 , then these two together with x, form a 
monochromatic of color Cl' and the is proved. 

Otherwise X induces a complete with 1 + [(k -1)! e] vertices 
of G, whose are colored with k-l colors. the induction 
G1 (and hence G) contains a monochromatic triangle whose sides all have one 
of the colors C 2, ..• , Ck; th is com pletes the proof of the 

Observe that R3(3, 3, [31 eJ + 1 == 17. In order to prove the 
inequality one must find a coloring with three colors of the edges of the com­

graph K 16, which does not contain a monochromatic triangle. 
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Thus let M {1, 2, 3, 4, 5} be the set of vertices of a pentagon P, and let X 
be the set of vertices of the graph K 16' Denote by Y the family of the 16 subsets 
of M of even cardinality (empty set, ten subsets with two elements, and five 
subsets with four elements). Let A /!.. B = (A "B) u (B "A) denote the symmetric 
dilTerence of the sets A and B. It is clear that if A, BEY and A + B, then A /!.. B 
is a subset of M with two or four elements. Let f be any bijection from X to Y. 

The of 6 will be colored as follows: If a, b E X and a + b, color the 
b] according to the following rule: With color C1 if f(a) /!.. feb) is a side 

with color C2 if f(a) c. feb) is a of P; with color C3 ifl/(a) c. =4. 
It must be shown that in this case there are no monochromatic 

that there is a with sides colored C1 and having vertices 
a, b, c. It can be seen that f(a) /!.. f(b), f(a) /!.. ftc), and feb) /!.. ftc) are sides of the 
polygon P. But {f(a) /!.. feb)} /!.. {feb) /!.. fCc)} = f(a) /!.. ftc), and thus f(a) /!.. ftc) 
cannot be a side of the polygon P. In fact, if the sides f(a) c. feb) and feb) c. ftc) 
have a common vertex, then their symmetric dilTerence is a diagonal of the 
pentagon P and hence the side [a, c] is colored C2' If the sides have no common 
vertex, then their dilTerence has cardinality 4 and thus the side 

c] is colored c). which is a contradiction. An can be 
used if it is that the monochromatic 

14.16 Denote by nk the maximum number of vertices of a complete 
which admits a of its edges with k colors and without a 
triangle. It will be shown that nk;;;:' 2nk-I' 

Consider two copies of a complete graph with nk-l vertices with 
colored c 1 , .• • , Ck-l and without a monochromatic triangle, and color with a 
new color Ck all the which pairs of vertices which belong to the two 
copies of the complete graph with nk- 1 vertices. One thus obtains a complete 
graph with I vertices with its edges colored with k colors and which does 
not contain a monochromatic triangle. This justifies the inequality nk;;;:' I' 

Since nl it follows that R.(3);;;:' nk+ 1;;;:. 2' + 1. [R. E. A. M. 
Gleason, Canadian J. Math., 7 (1955), 

r 
a 
C 
S 

\1 

g 

{ : 
b 
S 
tc 
51 

14.17 Since n;;;:. k! e, by Problem 14.15 it follows that in any w 
complete K n + I with k colors at least one monochromatic Sl! 

appear. Let Ai denote the set of natural numbers in class i for i = 1, 2, ... , k. b( 
Denote the vertices of K n + 1 by the numbers 1, 2, ... , n + 1. and color the in 
[i, j] with color p if Ii - jl E Ap. If a monochromatic triangle has vertices i, j, k, K 
then x=li y U-kl, and z li-kl belong to the same class. Suppose, for ar 

that < k. Then x + y = z, which completes the proof. [1. Schur. 
Jahresb. Deutschen Math.-Ver., 25 (1916),114·-1 to 

The Schur function is defined as follows: S(k) = max f r I { 1,2, ... , r} can be im 
into k subsets empty) with the property that none of them it: 

contain numbers x, y, z such that x + y= The result of this ree 
that e] -1. The only known of the Schur function are the wi 
following: S(1) 1, S(2)=4, S(3)=13, S(4) = 44. The last value was found in fin 
1961 using a computer. 
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14.18 Let no(k) = [k! If the nonempty subsets of the set {1, 2, ... , n} are 
colored with k then color the [i,n (where 1 ~ n + 1) of the 

graph Kn+ 1 with vertices I, 2, ... ,n + 1 with the same color as the 
subset {i, ... ,j- to Problem 14.15, 1 contains a mono-
chromatic 

Suppose that the vertices of this triangle are p, q, r where I < q < r ~ n + 1. 
It follows that X = {p .... , q-l}, Y ={q, ... , r-l}, and Xu Y ={p, ... , r-l} 
have the same color. 

14.19 The will be established by induction on r. Let r denote 
the vertices of by Xl' X2' ... , x., .. , and let r(xl) denote the number of red 

incident with Xi; the two colors will be called red and blue. 
Two cases will be examined: 

(a) There exist a countable infinity of vertices XI" Xi2"'" which satisfy 
r(xi) < 00. Define inductively the vertices Yl, .1'2' .. , of the infinite 
monochromatic as follows: Let Yt ::= ; Y2 is the first of the vertices 
XI) which is not to Yl by a red and Y2 is joined to Yl by a 
blue There will exist such a vertex Y2 because there exist only a finite 
number of red edges which are incident with YI' The vertex Y3 is the first vertex 
among the vertices with indices greater than the index of Y2 which are joined 
by a blue to YI and Yl' and so on. The process can be continued 
since the set of vertices Xi) with 1 is infinite and each such vertex is incident 
with a finite number of red It follows that the infinite subgraph 
generated by the set of vertices {YI, Yl""} has all of its edges blue. 

(b) Suppose that (a) does not hold, and assume that the graph K (f:; does not 
contain a complete infinite subgraph with all of its edges blue. Let Xl = 

I r(x) = It follows that is an infinite set. Choose Yl eX 1, and denote 
by X~ c:: X \ the subset of vertices of X I which are joined to Yl by a red 
Since (al does not it follows that the vertices of which do not belong 
to are finite in number, and thus X; is an infinite set. Denote by X 2 c:: X; the 
subset of vertices of X i which are incident with an infinite number of red 
with both endpoints in X~. If is finite, it follows that X~ ,",X 2 is an infinite 
set of vertices which are incident with a finite number of red which have 
both endpoints in The problem is thus reduced to case (a) for the 
infinite with vertex set X~. There is a infinite 

with all blue which contradicts the Thus 
and one can choose Y2 e X 2' 

It has been shown that the hypothesis that is an infinite set leads 
to a contradiction, and thus X; ,",X 2 must be finite. Since Y2 is incident with an 
infinite number of red with endpoints in X~, and since Xl ,",X 2 is finite, 
it follows that the subset c:: of vertices in which are to Y2 a 
red is infinite. Let X 3 c:: X z be the subset of vertices of X z which are incident 
with an infinite number of red with both endpoints in Xl' As before, one 
finds that X 3 is an infinite set, so that one may choose Y3 eX 3, and so on. 

By induction, a complete infinite graph generated by the set of vertices 
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{J'I' Y2""} is It has all of its red. This establishes the result 
for r=2. 

Suppose that the property holds for all colorings of with at most r-1 
colors, and consider a coloring of with r colors: C1 , C2,' •• , c,., where r?it 3. 
Recolor the which are colored Cr -! or c, with a new color Cr + I' the 
induction for r 1 there exists a infinite mono-
chromatic If the color of the of this graph is one of the colors 
Cl"'" C,-2' then the proof is finished. Otherwise there exists a I'ATnnlPI 

infinite subgraph with all colored Cr + l' recoloring the edges of this 
graph which originally were colored Cr- I and Cr with these colors and applying 
the property for two colors, one obtains a complete infinite subgraph with all 

the same color 1 or cr }. The property is thus demonstrated 
for every r. 

14.20 Denote the vertices of the graph K y , numbers from the 
set {I, 2, .. 'J' The j] is colored red kj and a;<uj. It is colored yellow 
if i and aj > aj' and blue if i and ai aj' using the problem 
one can show the existence of a complete infinite monochromatic subgraph. If 
its color is red, then there will be an infinite strictly increasing subsequence; 
for yellow one finds an infinite strictly decreasing subsequence, and for blue an 
infinite constant 

14.21 First we show that for every infinite set A of points in the plane there 
is an infinite subset A 1 of collinear points or an infinite subset A 2 of points such 
that no three points are collinear. Consider all the lines determined by pairs of 
points from A. If one of them contains an infinite number of points of A, then 
the property is demonstrated. Otherwise each line determined by tv;,o points 
of A contains a finite number of points of A, 

In this case carry out the following construction: Let x 1 and x;; be two 
of A, Denote the set obtained from A by eliminating aU the points 

of the line x I x 2, including x 1 and X2' 1t follows that B 1 is an infinite set. Let 
X3 E B!. Denote by B2 the set obtained from by eliminating all points on the 
Jines X3X! and X3X2 which belong to A. It follows that B2 contains an infinite 
number of points. If a set of points has been obtained with the 
property that no three are and if B'-1 is the infinite set of points which 
belong to the set A and are not found on any of the lines determined by of 

from , , .. , then let X y + I E B"-I' Denote by B,. the infinite subset 
of points of Br _ 1 which are not found on any line x 1 Xr~ ! , ... , XrXy+ I , and so on. 
Tt has thus been shown by induction that this construction can be continued 
indefinitely, and thus A contains an infinite subset ! ' x 2, , . ,} of points with 
the property that no three are collinear. 

Now let A be an infinite set of points in space. If there exists a line determined 
by a pair of points in A which contains an infinite set A 1 of points of A, then Al 
is a set of the type discussed in case Otherwise, if there exist three points in 
A which determine a plane containing an infinite number of points of A. then 
by the previous result one obtains a set A2 as discussed in case 
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every pair of of A determines a line which contains only a 
finite number of points of A, and every three noncollinear of A determine 
a plane which contains a finite number of points of A. 

Now make the following construction: Let Xl, X2 EA. Eliminate from the 
set A all the points of the line X 1 X 2 to obtain an infinite set B I' Let x 3 E B 1 . 

Eliminate from B I all points of the XI X2X3 and obtain an infinite set B2 • 

Let X4 E . It follows that X4 does not belong to the plane x I x 2X 3, nor there-
fore to the lines x I X2' Xl X 3, and x 2X3' Eliminate from all of the 
X\X2X4, X1X3X4, and X2X3X4 to obtain an infinite subset of A. 

If one has found points x I, ... , Xl' with the property that no four are coplanar 
and an infinite subset _ I of A with the property that it does not contain any 
point of the (;) planes determined by x I' ... ,X,., then let X,.+ I E l' The 
infinite set B,. is obtained from \ by eliminaring all points of the 
determined by Xl'd and the I' lines determined by of from the 
set , ... ,x,.}. 

It has been shown by induction that this construction can be continued 
indefinitely, and hence A contains an infinite subset A3 = {x 1, X2' ..• } of points 
with the property that no four are coplanar. 

14.22 Suppose that the property is false. Let the two classes be A and B, 
and suppose that 5 EA. It follows that the numbers 1 and 9 do not both belong 
to A. In view of the symmetry, without loss of it is sufficient to con­
sider only the following two cases: 

(a) 1 E A and 9 E B. Since 1 and 5 are in class A. it follows that 3 E B; 3,9 E B 
implies that 6 E A; 5, 6 E A implies that 4 E B; 3,4 E B that 2 E A ; 5,6 E A 

that 7 E B; and 7,9 E B implies that 8 EA. Thus 5,8} c A, and hence 
the class A contains an arithmetic with three terms. 

1 E Band 9 E B. There are two subcases: 

7 EA. In this case 5, 7 E A implies that 6 E Band 3 E B. Thus 
{3, 6, c B, and B contains an arithmetic with 
three terms. 

7 E B. From the fact that 7, 9 E B it follows that 8 e A; 1,7 E B 
implies 4 E A: 4, 5 E A implies 3 E . and 1,3 E B implies 2 EA. 

One has found an arithmetic 5, 8} c A. 

The property is no true if one considers the set {I, ... ,8}. This result 
is a particular case of a theorem due to van der Waerden which states that for 
every two k, I, there exists a natural number W(k, t) which is 
the smallest integer with the following : If the set {I, 2, .. ,W( k, t)} is 
partitioned into k classes, there will always exist a class of the partition which 
contains an arithmetic progression with t + 1 terms. [8. L. van der Waerden, 
Nieull'. Archielvoor Wiskunde, 15 (1927), 212-21 

The following values of the van der Waerden numbers are known: 
W(l,t)=t+I,W(k,1)=k+I,W{2,2) W(2,3)= W(3,2)= W(4,2)=76, 
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D. E. P. O'Neil, Discrete Mathematics, 28(2} (1979), 

M = M \ u M 2 be a partition of M into two classes, and let 
Define a decomposition P =P 1 u P2 as follows: kEPi if and 

for every 0::;;'; 8 (1::;;'; i::;;';2). It follows that PI f"\P 2 If 
will contain three numbers a, b, and c in arithmetic progression. 

then PI u P2 is a partition of P into two classes, and by 
Problem 14.22 at least one class, say PI' will contain an arithmetic progression 
with three terms a, b, and c. It follows that 2", 2b

, and 2< is a geometric nrr\!l'r,"~'" 
and 2°, 2h, 2< E 

14.24 The answer is yes. To see this define a sequence of sets An' n == I, 2, .. , 
as follows: 

A\= 2} and \=AnufAn+3") for n~l. 

where A +b denotes the set + bl a E A}. 
Let an be the greatest element of These numbers 

recurrence formula: an+ I =an+ 3n, and hence by induction + 1), since 
at =2. One can show, also by induction, that none of these sets contains an 
arithmetic triple. This is obviously true for A\. Assume that An contains no 
arithmetic triple and that An.,.l does contain such a x, y, Z E 1 such 
that z - y = y - x> O. By the induction hypothesis, this cannot be con-
tained in A" or in A.+ 3n, and, since An+ 3" is located on the real axis to the 
right of An' it follows that x E An and Z E An + 3". Thus 

whence 

y = t(x + z) E [t(3" + 2), tw + 2a.)] = + 
Thus this interval is disjoint both from A" and + 3", since + 1) 
and t(2 x 3" + 1) < 3" + 1. It follows that y , l' which is a contradiction. One 
can conclude from the construction of the An's that ! has twice as many 
elements as An (the sets An and An + 3n being disjoint). Hence the 
of An is 2". 

For n= 11 this reduces to a problem proposed at the 24th International 
Mathematical Olympiad (Paris, 1983): Is it to choose 1983 distinct 
positive integers, all less than or equal to , and no three of which are con-
secutive terms of an arithmetic "rrH'n'~OI 

14.25 First \Ve establish the following 

R(3, t)::;;';R(3, t 1)+ t. 

contain a or an 
be a vertex of G. Since G does not contain a 

(1) 

vertices which does not 
set with t vertices. Let x 
every two vertices which 
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are to x are themselves Let d(x)=d. It follows that 
d ~ t -1, since G does not contain an independent set with t vertices. Let Go 
denote the subgraph obtained from G by suppressing the vertex x and the d 
vertices adjacent to x. It follows that contains R(3, t)-d-2=po vertices. 

Since d ~ t -1, one has 

Po-;:R(3, I-I. 

The graph does not contain a triangle, since G has this Similarly, 
cannot contain an set with 1-1 since if it did. the same 

set together with the vertex x would yield a set of t 
in G. Thus R(3, l-I»po, which (1). Now 
l = 2 one has R(3, () 3 while (12 + > 3. and thus the 
that it is valid for 1 ~ n - L n ~ 3. and let t = n. Take n to be 
It follows from (1) that 

2k+l):S;;R(3, +2k+l, 

and hence, by the induction hypothesis, 

2k+ I) 

or 

R(3, 2k+ 1)~ +2k+2 
+3 

Thus the property is established for n odd. 
Now let n = 2k be even. again applying and the induction hypothesis 

it can be shown that 

R(3. 2k):S;; R(3. 2k -l} + 2k 

The is concluded showing that the last inequality for R(3, 2k) is strict. 
that that in fact R(3, 2k2 + I «4kl + Suppose that there exists a 
value of the index k~ 2 for which R(3, 2k)= 2k2 + 2. Thus there exists a graph H 
with 2k2 + 1 vertices which contains neither a triangle nor an independent set 
with 2k vertices. 

If there existed a vertex y with 2k. then no two vertices to r 
\vould be selfadjacent. It follows that H contains an independent set with 2k 
vertices. which contradicts the hypothesis. Hence for every vertex x of Hone 
has d(x):S;; 2k 1. Since H has an odd number of vertices and the sum of the 

of its vertices is even, it follows that not all the vertices of H can have 
the even degree 2k - 1. Hence H contains a vertex z such that d(z) 2k - 2. 
Consider the graph obtained from H by the vertex z and all the 
vertices adjacent to z. It can be seen from the induction hypothesis that H 0 

has qo where 
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Thus H 0 contains either a triangle or an independent set with 2k -1 vertices. 
If H 0 contains a triangle, then H has the same property. If H 0 contains an 
independent set with 2k-l vertices. then this set together with the vertex z 

set with 2k vertices in the H. This leads to a con-
the proof of the theorem. 

M. Ajtai, 1. Komlos, and E. Szemeredi that R(3, < lOOt 2/ln t 
Combinatorial Theory A29(3)(1980), and C. Naraand Tachibana 

showed that R(3,t):;;; 5 for every t ~ 13 [Discrete Math., 45 (1983), 

14.26 Suppose that the partite sets of G are A and B and hence = IBI = 
2p + 1. Assume that the two colors are a and b, and let U e A. It follows that u is 
adjacent to at least p + 1 vertices of B by having the same color, say a. 
Let U c B denote the set of vertices of B which are adjacent to u by having 
color a, so that I + 1. Let be the connected component composed only 
of with color a and containing the vertex Ii eA. Suppose that ICoti Ai = 
x ~ 1. It follows that every vertex of A that does not belong to Co is to 
all vertices of U by edges of color b only. Denote the number of these vertices 
which are found in A ""Co by O. It follows that the x vertices of A ti 
together with the vertices of U are included in the connected component Co 
having all edges of color a, and the y vertices of A which do not belong to Co 
together with the vertices of U are contained in a connected component of G 
having all edges of color b. Let 1= r ~ p + 1. One must show that 
max(x+r,y+r)~2p+2. thatx+r:;;; +landy+r:;;; +1. In this 
case x + y + 2r + 2, but one can write x + y + 2r = + 1 + 2p + 1 .... 
2(p + 1} = 4p + 3, which is a contradiction. This completes the proof. 

In order to see that the bound 2p + 2 cannot be improved, consider the 
partitionsA=Aju andB=B j uB 2 ,whereIA 11 IBt!=p, =p+l. 
Now color with a all the between Aj and B and between and 
and with b all the remaining of K 2p" Up.j' 

14.27 (a) It is necessary to show that if G is not then its com-
plement G is connected. Let x and y be two vertices of G. If x and yare not 
adjacent in G, they are adjacent in G, and therefore x and y belong to the same 
component C 1 of G. Since G is not connected, there exists a vertex z ¢ C!, 
which implies that z is not adjacent to x and to yin G. It follows that z, yJ 
is a walk of length 2 in G between x and y, and that G is connected. 

(b) that the of are colored with three colors a, b, c. It will 
be shown that there exists a monochromatic connected spanning 

of with at least [(n + 1 )/2] vertices. If one of the three colors is not 
follows from (a) that this property holds. Suppose that Kn contains 
colors a, b, and c, and let R denote a connected component of the spanning 
subgraph of K. composed of all edges with the color a. If IRI =n, the property is 
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Otherwise, let x be a vertex of such that x Ii R. It follows that all 
joining x with the vertices of R have color b or c. Hence one can assume 

that there exist at least i vertices of R which are to x by with 
color b. Let V be the set of these vertices of R, and let W be the connected com­
ponent of the spanning subgraph of composed of all edges with color b. 
which contains x. If y is a vertex of Kn such that y f. Rand y r/: W, it follows that 
all between y and the vertices of V have the color c. Let Q be the connected 
component of the spanning subgraph of Kn consisting of all edges with the 
color c, which contains y. If there do not exist vertices y having the above­
mentioned then Q The sets R, W, Q together contain all the 
vertices of Kn. Indeed, every vertex z ¢ R is connected with any vertex of V 
an edge with color b or c. and hence z e Wor z e 

If Q then IR 1+ 1 WI;;;: n, and therefore max CR I, I Wi);;;: ni 2, which 
that max iWi);;;: +1)/2]. sinceVc VcW,andVcQ,one 
can write 

n+IRI, 

or I WI + IQ;;;: n, which implies that max (I Wi.;;;: Thus it has been 
shown that h(n);;;: + 1)/2]. Ifn=.E 2 (mod 4). the inequality also holds. 
Let X denote the vertex set of Kn , and consider an equipartition 

X=X 1UX2 UX 3 UX4 

such that 1 ~ -IXll ~ 1 for every i,j = 1, ... ,4. Color the edges of Kn in the 
following way: all between Xl' and between X 3, with the color a: 
all between Xl' X 4, and between with the color b; and all 
between Xl' X 3 and between X 2' X 4, with the color c. All edges having both 
ends in a set Xi where 1 ~ i ~ 4 will be colored arbitrarily with the colors G, b, or c. 
If n ¢ 2 (mod 4) it is clear that the maximum number of vertices of a mono-
chromatic connected of is to [(n + 1}j2], and hence 
in this case it follows that If n == 2 (mod 4), then for the above-
defined of the set of Kn the maximum number of vertices of a 
monochromatic connected spanning subgraph is equal to ni2 + 1, and therefore 
in this case 1 3(n) ~ n!2 + 1. In order to prove the opposite consider 
an arbitrary with the colors G, b, and of the for n 4p + 2 
(p;;;: 1). It has been shown that there exists a monochromatic connected span­
ning subgraph of K. with at least + 1}/2J = + 1 vertices. Let H be such a 
subgraph, and suppose that the edges of H have the color c. If A denotes the 
connected component composed of with the color c, which contains the 
vertices of and if ;;;:2p+2. it follows that 13(n);;;: + 1. Hence in this 
case the 13(n)=nI2+1 holds for n 2(mod4}. 
IAI = + 1, and if H denotes the set of the 
[HI = + 1. No one extremity in A and the other in H is colored 
with the color c, and hence the bipartite graph whose partite sets are 
A and H has with the colors a or b only. By Problem 14.26 there exists a 
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monochromatic connected spanning subgraph of K. with 2p + 2 = 
vertices. This observation completes the proof. [L. A. 
Annales UniO'. Sci. Budapest. R. Sect. Math., X (1967), 167-1 
Andrasfai, Ibid .. XIII (1970), 103-107 (197l).] 

14.28 We prove that R(Kl,m, Kl m+n considering a coloring of 
of _. red and green. At each vertex there are m + n - 1 incident 

so that if fewer than m are then at least n are green. If m is odd, then 
m 1 is even and hence there exists a regular graph of m - 1 on m + n - 1 
vertices (see Problem 8.8). Moreover, the complementary graph is regular of 
degree n-l. One can therefore 2-color K m +n- I so that there is no red K I •m 

and no green K I •• ' Thus in this case R(K I.m, K I •• ) == m + n. If m and n are both 
even, then there is no regular graph of m - 1 on m + n 1 vertices, in 
view of the fact that there would be an odd number of vertices of odd 
It follows that R(Kl."" Kl,n):r.;m+n 1. But there does exist a 
of m 1 on m+n-2 so that R(KI KI 

Graph Theory and Applications, Proceedings the at 
Western Michigan May 10-13, Lecture Notes in Math., 
Springer-Verlag, 1972, 125-138.] 

14.29 Let k -l}/(m 1). Form a 2-coloring of K m+.- 2 by taking k+ 1 
copies of I all having only red and interconnecting them by blue 

No red has been formed, since has m vertices. Also, no blue K I •• 
has been formed, since the blue in 2 is k(m - 1) = n - 1. 
This shows that R(Tm , Kim + n -1. Next we show by induction on m that 

for m~2. (1) 

For m=2, (1) is immediate, since if I has no red , it follows that it has 
only blue and hence any vertex of K ... 1 is a center of a blue star K I •• ' 

Assume (I) to be true for all m':r.; m-l, and form the tree I removing an 
endpoint x of T m and the edge [x, yJ incident to x in T m' In a 2-colored K", +._\ 

one can assume by induction that there is either a blue K l.n or a red l' 

that the latter choice obtains. Since there are m + n - 1 - (m 1) = n 
vertices Vi of 1 which are not vertices of the red l' and K", +" _ 1 con­
tains no blue Kl.., it follows that some from to some VI must be red. But 
this forms a red in I' by induction holds and the proof is 

The corresponding results for the case in which m -1 does not divide n-1 
are much more complicated, and a solution has not been obtained. 
However, in this case (1) still holds and. in fact, for almost all trees 

R(T"" K1."l m+n-2 for n sufficiently large. [So A. Burr, Graphs and 
Combinatorics, Lecture Notes in Mathematics, 406, Springer-Verlag, Berlin, 
1974, 

14.30 Form a of Kiln-I)" by taking m - ! copies of K. all having 
only green and interconnect them by red This coloring contains no 
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red Km and no green K I."! and hence R(Km• K I..) -1)n + 1. The inequality 
R(Km , K l,n) ~(m -1)n + 1 can be obtained for m;?: 2 and n;;: 1 as a corollary of 
Turan's theorem (Problem 9.9). Indeed, in a graph G with p (m -1)n + 1 
vertices and minimum degree (m 2)n + 1 (the complement has maximum 
degree n-l), the number q of is bounded below by q;?:(mn-n+ l)(mn-
2n + The number of in Turan's graph with (m -1)n + 1 vertices and 
m - 1 ;;: I parts is equal to 

m 2 (mn-n+l)2-1 
M (mn - n + 1, m) = -m---l • -'------:;:---'---

n(m n+ 2) 

The inequality 

is equivalent to n + 1 > 0, which holds for n;;: 1. Hence q > M(mn - n + 1, m) and 
by Tunin's theorem G must contain For m= 1 the result is obvious. 

This formula was to R(Km• d, where I is any tree with 
n+ 1 vertices, by V. Chvatal Theory 1(1) (1977), 93]. 

14.31 It will be shown that r(m) == - m - 1. Let {l, ... ,m2 m 2} = A u B 
be a partition into two classes, where 

A {1,2, ... ,m-2,(m-l)2,(m-l)2+1, ... , -m-2} 

and 

B={m l,m, ... ,(m-I)2-1}. 

Each of A and B is m-sum-free, that is, the equation 

has a solution which is neither in A nor in B. 
If XI"'" Xm - I belong to {I, ... , m- 2}, then 

m -l';;;x I + ... +X", 1 ~(m- t)(m-2) 

and hence XI + ... +Xm- l E B. If the sum Xl + ... + X",-l also contains terms 
from the set {(m-l)2, ... , m 2}, then the smallest of its values is 
l+'''+l+(m-l)l m l~A. 

Similarly if Xl' .•• ' Xm - I are terms from B, one can conclude that 
Xl+'" +Xm 1;;: _1)2, or XI+'" +Xm- I ~B. It follows that r(m);;:m 2 -

m-L 
It will now be shown that the inequality also holds. In other words, 

every partition of the set {I, ... m2 - m- I} contains a class which is not 
m-sum-free. 
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that this property does not hold. Let 1 EA. It follows that m -1 E B 
and (m 1)2 EA. Now consider two cases: (a) mEA and (b) m E B. 

(a) If mEA one can see that -2m+l=m+ .'. +m+1, that is, 
A is not m-sum-free. 

(b) lfmE then since (m l}+m+ .,. +m=m2-m 1 it follows 
that m2 -m 1 € A, [n this case one can write 

1 + .. , + 1 + m2 - 2m + 1 = - m - 1 ; 

thus A is not m-o.\,4W.-! and this contradicts the 

[A. Beute!spacher, W, Brestovansky, Combinatorial Theory, 
Lecture Notes Math., Springer-V eriag, Berlin, 969 (1982), 30- 38.J 
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